Title Cluster analysis of Spatial Transcriptomics data
Version 1.20.0
Description SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.

biocViews Transcriptomics, Clustering, RNASeq, Software
Depends R (>= 3.6)
Imports colorspace (>= 1.3-2), data.table (>= 1.12.2), digest (>= 0.6.21), dplyr (>= 0.7.6), ggforce (>= 0.3.0), ggiraph (>= 0.5.0), ggplot2 (>= 3.0.0), ggrepel (>= 0.8.0), grid (>= 3.5.1), igraph (>= 1.2.2), lpSolve (>= 5.6.13), methods (>= 3.5.0), purrr (>= 0.2.5), readr (>= 1.1.1), rlang (>= 0.2.2), shiny (>= 1.1.0), shinycssloaders (>= 0.2.0), shinyjs (>= 1.0), shinyWidgets (>= 0.4.8), stats (>= 3.6.0), SummarizedExperiment (>= 1.10.1), tibble (>= 3.1.2), tidyr (>= 1.1.1), tools (>= 3.6.0), utils (>= 3.5.0), zeallot (>= 0.1.0)
Suggests BiocStyle (>= 2.8.2), jpeg (>= 0.1-8), knitr (>= 1.20), markdown (>= 1.1.0), testthat (>= 2.0.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 6.1.1
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/SpatialCPie
git_branch RELEASE_3_19
SpatialCPie-package

SpatialCPie: Cluster analysis of Spatial Transcriptomics data

Description

SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.

Author(s)

Maintainer: Joseph Bergenstraahle <joseph.bergenstrahle@gmail.com>
.arrayPlot

Array pie plot

Description

Array pie plot

Usage

.arrayPlot(scores, coordinates, counts = NULL, image = NULL,
 scoreMultiplier = 1, spotScale = 1, spotOpacity = 1,
 numTopGenes = 5)

Arguments

scores data.frame with cluster scores for each spot containing the columns "spot", "name", and "score".
coordinates data.frame with rownames matching those in scores and columns "x" and "y" specifying the plotting position of each observation.
image a grid.grob to use as background to the plots.
scoreMultiplier log multiplication factor applied to the score vector.
spotScale pie chart size.
spotOpacity pie chart opacity.

Value

ggplot object of the pie plot.

.clusterGraph

Cluster graph

Description

Cluster graph

Usage

.clusterGraph(assignments, clusterMeans, featureName,
 transitionProportions = "To", transitionLabels = FALSE,
 transitionThreshold = 0, numTopFeatures = 10)
.computeClusterColors

Arguments

assignments
data.frame with columns "name", "resolution", and "cluster".

clusterMeans
data.frame with columns "name", "resolution", "cluster", featureName, and "mean".

featureName
character with the name of the clustered feature.

transitionProportions
how to compute the transition proportions. Possible values are:

- "From": based on the total number of assignments in the lower-resolution cluster
- "To": based on the total number of assignments in the higher-resolution cluster

transitionLabels
logical specifying whether to show edge labels.

transitionThreshold
hide edges with transition proportions below this threshold.

numTopFeatures
integer specifying the number of features to show in the hover tooltips.

Value

ggplot object of the cluster graph.

.computeClusterColors Compute cluster colors

Description

Computes colors so that dissimilar clusters are far away in color space.

Usage

computeClusterColors(clusterMeans)

Arguments

clusterMeans
matrix of size \((n, K)\) representing the \(n\) feature means for each of the \(K\) clusters.

Value

vector of cluster colors.
.likeness

Likeness score

<table>
<thead>
<tr>
<th>Description</th>
<th>Likeness score</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>.likeness(d, c = 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector of scores.</td>
</tr>
</tbody>
</table>

.logsumexp

Logsumexp

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapted from https://stat.ethz.ch/pipermail/r-help/2011-February/269205.html</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>.logsumexp(xs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>log of summed exponentials</td>
</tr>
</tbody>
</table>
.makeApp

SpatialCPie App

Description
SpatialCPie App

Usage
.makeApp(image, ...)

Arguments
image background image.
... arguments passed to .preprocessData.

Value
SpatialCPie shinyApp object.

.makeServer

SpatialCPie server

Description
SpatialCPie server

Usage
.makeServer(assignments, clusterMeans, counts, scores, colors, image, coordinates, featureName)

Arguments
assignments data.frame with cluster assignments containing the columns "unit" (name of the observational unit; either a gene name or a spot name), "resolution", "cluster", and "name" (a unique identifier of the (resolution, cluster) pair).
clusterMeans data.frame with columns "name", "resolution", "cluster", featureName, and "mean".
scores data.frame with cluster scores for each spot in each resolution containing the columns "spot", "resolution", "cluster", "name", and "score".
colors vector of colors for each cluster. Names should match the "name" columns of the assignments and scores.
image background image for the array plots, passed to grid.raster.
coordinates data.frame with rownames matching the names in scores and columns "x" and "y" specifying the plotting position of each observation.
featureName character with the name of the clustered feature.
.makeUI

Value
server function, to be passed to shinyApp.

SpatialCPie UI

Description
SpatialCPie UI

Usage
.makeUI()

Value
SpatialCPie UI, to be passed to shinyApp.

.maximizeOverlap

Description
Maximize overlap

Usage
.maximizeOverlap(xss)

Arguments
xss list of lists of labels.

Value
xss, relabeled so as to maximize the overlap between labels in consecutive label lists.
.preprocessData

Preprocess data

Description

Preprocesses input data for .makeServer.

Usage

.preprocessData(counts, margin, resolutions, assignmentFunction, coordinates = NULL)

Arguments

counts
count matrix. rownames should correspond to genes and colnames should correspond to spot coordinates.

margin
which margin of the count matrix to cluster. Valid values are c("spot", "sample", "gene", "feature").

resolutions
vector of resolutions to cluster.

assignmentFunction
function to compute cluster assignments. The function should have the following signature: integer (number of clusters) -> (m, n) feature matrix -> m-length vector (cluster assignment of each data point).

coordinates
optional data.frame with pixel coordinates for each spot. rownames should correspond to the colnames of counts and the columns x and y should specify the pixel coordinates of the spots.

Value

list with the following elements:

- $assignments: tidy assignments
- $means: cluster means
- $scores: cluster scores for each spot in each resolution
- $colors: cluster colors
- $coordinates: spot coordinates, either from coordinates or parsed from assignments
- $featureName: name of the clustered feature (the "opposite" of margin)
.SVGBarplot

SVG barplot

Description

SVG barplot

Usage

`.SVGBarplot(xs)`

Arguments

- `xs` named vector with observations

Value

- character SVG barplot

.tidyAssignments

Tidy assignments

Description

Tidy assignments

Usage

`.tidyAssignments(assignments)`

Arguments

- `assignments` list of assignment vectors.

Value

a `data.frame` containing the assignments, with the data relabeled so that the overlap between consecutive assignment vectors is maximized. Additionally, a "root" resolution is added.
.zscore	Z-score

Description

Z-score

Usage

```r
.zscore(xs)
```

Arguments

- `xs` vector of observations

Value

`xs`, z-normalized. If all elements of `xs` are equal, a vector of zeros will be returned instead.

parseSpotFile

Parse spot detector output

Description

Parses the output from the ST spot detector tool for use with SpatialCPie.

Usage

```r
parseSpotFile(file)
```

Arguments

- `file` spot file

Value

`data.frame` with columns "x" and "y" specifying the pixel coordinates of each spot
Examples

```r
## Create spot file
data <- rbind(
  c(7, 18, 7.00, 18.07, 563.2, 947.0),
  c(8, 11, 8.00, 11.04, 612.5, 627.7)
)
filename <- tempfile()
write.table(
data,
  file = filename,
  sep = "\t",
  quote = FALSE,
  col.names = c("x", "y", "new_x", "new_y", "pixel_x", "pixel_y")
)

## Parse spot file
parseSpotFile(filename)

## Delete spot file
unlink(filename)
```

runCPie

Run SpatialCPie

Description

Runs the SpatialCPie gadget.

Usage

```r
runCPie(counts, image = NULL, spotCoordinates = NULL,
  margin = "spot", resolutions = 2:4,
  assignmentFunction = function(k, x) kmeans(x, centers = k)$cluster,
  view = NULL)
```

Arguments

counts
gene count matrix or a `SummarizedExperiment-class` object containing count values.

image
image to be used as background to the plot.

spotCoordinates
`data.frame` with pixel coordinates. The rows should correspond to the columns (spatial areas) in the count file.

margin
which margin to cluster.

resolutions
numeric vector specifying the clustering resolutions.

assignmentFunction
function to compute cluster assignments.

view
`viewer` object.
Value

a list with the following items:

• "clusters": Cluster assignments (may differ from assignments)
• "clusterGraph": The cluster tree ggplot object
• "arrayPlot": The pie plot ggplot objects

Examples

if (interactive()) {
 options(device.ask.default = FALSE)

 ## Set up coordinate system
 coordinates <- as.matrix(expand.grid(1:10, 1:10))

 ## Generate data set with three distinct genes generated by three
 ## distinct cell types
 profiles <- diag(rep(1, 3)) + runif(9)
 centers <- cbind(c(5, 2), c(2, 8), c(8, 2))
 mixes <- apply(coordinates, 1, function(x) {
 x <- exp(-colSums((centers - x)^2) / 50)
 x / sum(x)
 })
 means <- 100 * profiles %*% mixes
 counts <- matrix(rpois(prod(dim(means)), means), nrow = nrow(profiles))
 colnames(counts) <- apply(coordinates, 1, function(x) do.call(paste, c(as.list(x), list(sep = "x"))))
 rownames(counts) <- paste("gene", 1:nrow(counts))

 ## Run SpatialCPie
 runCPie(counts)
}
Index

* internal
 .SVGBarplot, 9
 .arrayPlot, 3
 .clusterGraph, 3
 .computeClusterColors, 4
 .likeness, 5
 .logsumexp, 5
 .makeApp, 6
 .makeServer, 6
 .makeUI, 7
 .maximizeOverlap, 7
 .preprocessData, 8
 .tidyAssignments, 9
 .zscore, 10

 .SVGBarplot, 9
 .arrayPlot, 3
 .clusterGraph, 3
 .computeClusterColors, 4
 .likeness, 5
 .logsumexp, 5
 .makeApp, 6
 .makeServer, 6, 8
 .makeUI, 7
 .maximizeOverlap, 7
 .preprocessData, 6, 8
 .tidyAssignments, 9
 .zscore, 10

character, 4, 6, 9

data.frame, 3, 4, 6, 8–11

ggplot, 3, 4
grid.grob, 3
grid.raster, 6

integer, 4

logical, 4

names, 6

numeric, 11

parseSpotFile, 10

runCPie, 11

shinyApp, 6, 7
SpatialCPie (SpatialCPie-package), 2
SpatialCPie-package, 2

viewer, 11