Package ‘SpatialCPie’

May 30, 2024

Title Cluster analysis of Spatial Transcriptomics data
Version 1.20.0
Description SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny `gadget' to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.

biocViews Transcriptomics, Clustering, RNASeq, Software

Depends R (>= 3.6)
Imports 的颜色 space (>= 1.3-2), data.table (>= 1.12.2), digest (>= 0.6.21), dplyr (>= 0.7.6), ggforce (>= 0.3.0), ggiraph (>= 0.5.0), ggplot2 (>= 3.0.0), ggrepel (>= 0.8.0), grid (>= 3.5.1), igraph (>= 1.2.2), lpSolve (>= 5.6.13), methods (>= 3.5.0), purrr (>= 0.2.5), readr (>= 1.1.1), rlang (>= 0.2.2), shiny (>= 1.1.0), shinyCSSloaders (>= 0.2.0), shinyjs (>= 1.0), shinyWidgets (>= 0.4.8), stats (>= 3.6.0), SummarizedExperiment (>= 1.10.1), tibble (>= 1.4.2), tidyr (>= 0.8.1), tidyselect (>= 0.2.4), tools (>= 3.6.0), utils (>= 3.5.0), zeallot (>= 0.1.0)
Suggests BioStyle (>= 2.8.2), jpeg (>= 0.1-8), knitr (>= 1.20), markdown (>= 1.10), testthat (>= 2.0.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 6.1.1
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SpatialCPie

git_branch RELEASE_3_19
SpatialCPie-package

Description

SpatialCPie is an R package designed to facilitate cluster evaluation for spatial transcriptomics data by providing intuitive visualizations that display the relationships between clusters in order to guide the user during cluster identification and other downstream applications. The package is built around a shiny "gadget" to allow the exploration of the data with multiple plots in parallel and an interactive UI. The user can easily toggle between different cluster resolutions in order to choose the most appropriate visual cues.

Author(s)

Maintainer: Joseph Bergenstraahle <joseph.bergenstrahle@gmail.com>
Array pie plot

Description
Array pie plot

Usage
.arrayPlot(scores, coordinates, counts = NULL, image = NULL,
 scoreMultiplier = 1, spotScale = 1, spotOpacity = 1,
 numTopGenes = 5)

Arguments
 scores data.frame with cluster scores for each spot containing the columns "spot",
 "name", and "score".
 coordinates data.frame with rownames matching those in scores and columns "x" and
 "y" specifying the plotting position of each observation.
 image a grid.grob to use as background to the plots.
 scoreMultiplier log multiplication factor applied to the score vector.
 spotScale pie chart size.
 spotOpacity pie chart opacity.

Value
 ggplot object of the pie plot.

Cluster graph

Description
Cluster graph

Usage
.clusterGraph(assignments, clusterMeans, featureName,
 transitionProportions = "To", transitionLabels = FALSE,
 transitionThreshold = 0, numTopFeatures = 10)
.computeClusterColors

Arguments

assignments data.frame with columns "name", "resolution", and "cluster".
clusterMeans data.frame with columns "name", "resolution", "cluster", featureName, and "mean".
featureName character with the name of the clustered feature.
transitionProportions how to compute the transition proportions. Possible values are:
 • "From": based on the total number of assignments in the lower-resolution cluster
 • "To": based on the total number of assignments in the higher-resolution cluster
transitionLabels logical specifying whether to show edge labels.
transitionThreshold hide edges with transition proportions below this threshold.
numTopFeatures integer specifying the number of features to show in the hover tooltips.

Value

 ggplot object of the cluster graph.

Description

 Computes colors so that dissimilar clusters are far away in color space.

Usage

 .computeClusterColors(clusterMeans)

Arguments

clusterMeans matrix of size (n, K) representing the n feature means for each of the K clusters.

Value

 vector of cluster colors.
Description
Likeness score

Usage
\texttt{.likeness(d, c = 1)}

Arguments
\texttt{d} distance vector.
\texttt{c} log multiplier.

Value
vector of scores.

Description
Adapted from https://stat.ethz.ch/pipermail/r-help/2011-February/269205.html

Usage
\texttt{.logsumexp(xs)}

Arguments
\texttt{xs} input vector

Value
log of summed exponentials
.makeApp | SpatialCPie App

Description

SpatialCPie App

Usage

```
.makeApp(image, ...)
```

Arguments

- `image`: background image.
- `...`: arguments passed to `.preprocessData`.

Value

SpatialCPie shinyApp object.

.makeServer | SpatialCPie server

Description

SpatialCPie server

Usage

```
.makeServer(assignments, clusterMeans, counts, scores, colors, image, coordinates, featureName)
```

Arguments

- `assignments`: data.frame with cluster assignments containing the columns "unit" (name of the observational unit; either a gene name or a spot name), "resolution", "cluster", and "name" (a unique identifier of the (resolution, cluster) pair).
- `clusterMeans`: data.frame with columns "name", "resolution", "cluster", featureName, and "mean".
- `scores`: data.frame with cluster scores for each spot in each resolution containing the columns "spot", "resolution", "cluster", "name", and "score".
- `colors`: vector of colors for each cluster. Names should match the "name" columns of the assignments and scores.
- `image`: background image for the array plots, passed to grid.raster.
- `coordinates`: data.frame with rownames matching the names in scores and columns "x" and "y" specifying the plotting position of each observation.
- `featureName`: character with the name of the clustered feature.
.makeUI

Value

server function, to be passed to shinyApp.

Description

SpatialCPie UI

Usage

.makeUI()

Value

SpatialCPie UI, to be passed to shinyApp.

.maximizeOverlap

Maximize overlap

Description

Maximize overlap

Usage

.maximizeOverlap(xss)

Arguments

xss list of lists of labels.

Value

xss, relabeled so as to maximize the overlap between labels in consecutive label lists.
.preprocessData

Preprocess data

Description

Preprocesses input data for `.makeServer`.

Usage

```r
.preprocessData(counts, margin, resolutions, assignmentFunction, coordinates = NULL)
```

Arguments

counts count matrix. rownames should correspond to genes and colnames should correspond to spot coordinates.

margin which margin of the count matrix to cluster. Valid values are c("spot", "sample", "gene", "feature").

resolutions vector of resolutions to cluster.

assignmentFunction function to compute cluster assignments. The function should have the following signature: integer (number of clusters) -> (m, n) feature matrix -> m-length vector (cluster assignment of each data point).

coordinates optional data.frame with pixel coordinates for each spot. rownames should correspond to the colnames of counts and the columns x and y should specify the pixel coordinates of the spots.

Value

list with the following elements:

- `$assignments`: tidy assignments
- `$means`: cluster means
- `$scores`: cluster scores for each spot in each resolution
- `$colors`: cluster colors
- `$coordinates`: spot coordinates, either from coordinates or parsed from assignments
- `$featureName`: name of the clustered feature (the "opposite" of margin)
Description

SVG barplot

Usage

```
.SVGBarplot(xs)
```

Arguments

- `xs` named vector with observations

Value

- `character` SVG barplot

Description

Tidy assignments

Usage

```
.tidyAssignments(assignments)
```

Arguments

- `assignments` list of assignment vectors.

Value

A `data.frame` containing the assignments, with the data relabeled so that the overlap between consecutive assignment vectors is maximized. Additionally, a "root" resolution is added.
.zscore

Z-score

Description

Z-score

Usage

`.zscore(xs)`

Arguments

- `xs` vector of observations

Value

`xs`, z-normalized. if all elements of `xs` are equal, a vector of zeros will be returned instead.

parseSpotFile

Parse spot detector output

Description

Parse the output from the ST spot detector tool for use with SpatialCPie.

Usage

`parseSpotFile(file)`

Arguments

- `file` spot file

Value

`data.frame` with columns "x" and "y" specifying the pixel coordinates of each spot
Run SpatialCPie

Description

Runs the SpatialCPie gadget.

Usage

runCPie(counts, image = NULL, spotCoordinates = NULL, margin = "spot", resolutions = 2:4, assignmentFunction = function(k, x) kmeans(x, centers = k)$cluster, view = NULL)

Arguments

counts gene count matrix or a SummarizedExperiment-class object containing count values.
image image to be used as background to the plot.
spotCoordinates data.frame with pixel coordinates. The rows should correspond to the columns (spatial areas) in the count file.
margin which margin to cluster.
resolutions numeric vector specifying the clustering resolutions.
assignmentFunction function to compute cluster assignments.
view viewer object.
Value

a list with the following items:

• "clusters": Cluster assignments (may differ from assignments)
• "clusterGraph": The cluster tree ggplot object
• "arrayPlot": The pie plot ggplot objects

Examples

if (interactive()) {
 options(device.ask.default = FALSE)

 ## Set up coordinate system
 coordinates <- as.matrix(expand.grid(1:10, 1:10))

 ## Generate data set with three distinct genes generated by three
 ## distinct cell types
 profiles <- diag(rep(1, 3)) + runif(9)
 centers <- cbind(c(5, 2), c(2, 8), c(8, 2))
 mixes <- apply(coordinates, 1, function(x) {
 x <- exp(-colSums((centers - x)^2) / 50)
 x / sum(x)
 })
 means <- 100 * profiles %*% mixes
 counts <- matrix(rpois(prod(dim(means)), means), nrow = nrow(profiles))
 colnames(counts) <- apply(
 coordinates,
 1,
 function(x) do.call(paste, c(as.list(x), list(sep = "x"))))
 rownames(counts) <- paste("gene", 1:nrow(counts))

 ## Run SpatialCPie
 runCPie(counts)
}
Index

* internal
 .SVGBarplot, 9
 .arrayPlot, 3
 .clusterGraph, 3
 .computeClusterColors, 4
 .likeness, 5
 .logsumexp, 5
 .makeApp, 6
 .makeServer, 6
 .makeUI, 7
 .maximizeOverlap, 7
 .preprocessData, 8
 .tidyAssignments, 9
 .zscore, 10
 .SVGBarplot, 9
 .arrayPlot, 3
 .clusterGraph, 3
 .computeClusterColors, 4
 .likeness, 5
 .logsumexp, 5
 .makeApp, 6
 .makeServer, 6, 8
 .makeUI, 7
 .maximizeOverlap, 7
 .preprocessData, 6, 8
 .tidyAssignments, 9
 .zscore, 10

character, 4, 6, 9

data.frame, 3, 4, 6, 8–11

ggplot, 3, 4
grid.grob, 3
grid.raster, 6

integer, 4

logical, 4

names, 6

numeric, 11

parseSpotFile, 10

runCPie, 11

shinyApp, 6, 7
SpatialCPie (SpatialCPie-package), 2
SpatialCPie-package, 2

viewer, 11