Package ‘StarBioTrek’

May 30, 2024

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>StarBioTrek</td>
</tr>
<tr>
<td>Version</td>
<td>1.30.0</td>
</tr>
<tr>
<td>Date</td>
<td>04-16-2019</td>
</tr>
<tr>
<td>Author</td>
<td>Claudia Cava, Isabella Castiglioni</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Claudia Cava claudia.cava@ibfm.cnr.it</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.3)</td>
</tr>
<tr>
<td>Imports</td>
<td>SpidermiR, graphite, AnnotationDbi, e1071, ROCr, MLmetrics, grDevices, igraph, reshape2, ggplot2</td>
</tr>
<tr>
<td>Description</td>
<td>This tool StarBioTrek presents some methodologies to measure pathway activity and cross-talk among pathways integrating also the information of network data.</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 3)</td>
</tr>
<tr>
<td>biocViews</td>
<td>GeneRegulation, Network, Pathways, KEGG</td>
</tr>
<tr>
<td>Suggests</td>
<td>BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, qgraph, png, grid</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
<tr>
<td>LazyData</td>
<td>true</td>
</tr>
<tr>
<td>URL</td>
<td>https://github.com/claudiacava/StarBioTrek</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/claudiacava/StarBioTrek/issues</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>6.1.1</td>
</tr>
<tr>
<td>PackageStatus</td>
<td>Deprecated</td>
</tr>
<tr>
<td>git_url</td>
<td>https://git.bioconductor.org/packages/StarBioTrek</td>
</tr>
<tr>
<td>git_branch</td>
<td>RELEASE_3_19</td>
</tr>
<tr>
<td>git_last_commit</td>
<td>ab618a7</td>
</tr>
<tr>
<td>git_last_commit_date</td>
<td>2024-04-30</td>
</tr>
<tr>
<td>Repository</td>
<td>Bioconductor 3.19</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2024-05-29</td>
</tr>
</tbody>
</table>
average

For TCGA data get human pathway data and creates a matrix with the average of genes for each pathway.

Description

average creates a matrix with a summarized value for each pathway

Usage

average(pathwayexpsubset)
circleplot

Arguments

pathwayexpsubset

list of pathway data

Value

a matrix value for each pathway

Examples

list_path_gene<-GE_matrix(DataMatrix=Data_CANCER_normUQ_fil,genes.by.pathway=pathway[1:50])
score_mean<-average(pathwayexpsubset=list_path_gene)

Preparation for circle plot

circleplot

Description

circleplot function takes as input data derived by the function plotcrosstalk and plot a circle plot.

Usage

circleplot(preplot, scoregene)

Arguments

preplot a list as obtained from the function plotcrosstalk
scoregene a score for each gene with values included between -10 e +10

Value

a list with correlation matrix and gene set for each gene

Examples

formatplot<-plotcrosstalk(pathway_plot=pathway[1:6],gs_expre=tumo)
score<-runif(length(formatplot[[2]]), min=-10, max=+10)
circleplot(preplot=formatplot, scoregene=score)
Description

GetPathNet creates a list of genes inside the pathways.

Usage

ConvertedIDgenes(path_ALL)

Arguments

path_ALL variable. The user can select the variable as obtained by GetData function

Value

a list of pathways

Examples

pathway<-ConvertedIDgenes(path_ALL=path[1:3])

Description

pathway data list

Format

A dataframe with gene expression profiles
dsscorecrtlk

For TCGA data get human pathway data and creates a measure of discriminating score among pathways

Description

dsscorecrtlk creates a matrix with discriminating score for pathways

Usage

dsscorecrtlk(dataFilt, pathway_exp)

Arguments

dataFilt TCGA matrix
pathway_exp a list of pathway data

Value
a matrix value for each pathway

Examples

cross_talk_st_dv<-dsscorecrtlk(dataFilt=tumo[,1:2],pathway_exp=pathway[1:5])

eucdistcrtlk

For TCGA data get human pathway data and creates a measure of cross-talk among pathways

Description
eucdistcrtlk creates a matrix with euclidean distance for pairwise pathways

Usage
eucdistcrtlk(dataFilt, pathway_exp)

Arguments
dataFilt TCGA matrix
pathway_exp list of pathway data

Value
a matrix value for each pathway
Examples

```r
score_euc_dist_t<-eucdistcrtlk(dataFilt=tumo[,1:2],pathway_exp=pathway[1:5])
```

GetData

Get general information inside pathways.

Description

GetData creates a list with genes inside the pathways.

Usage

```r
GetData(species, pathwaydb)
```

Arguments

- `species`: variable. The user can select the species of interest from `SELECT_path_species(path_spec)`
- `pathwaydb`: variable. The user can select the pathway database of interest from `SELECT_path_graphite(path_spec)`

Value

- a list of pathways

Examples

```r
# Not run:
species="hsapiens"
pathwaydb="pharmgkb"
path<-GetData(species,pathwaydb)
# End(Not run)
```

getNETdata

Get network data from GeneMania.

Description

genetdata creates a data frame with network data. Network category can be filtered among: physical interactions, co-localization, genetic interactions and shared protein domain.

Usage

genetdata(network, organismID = NULL)
GetPathData

Arguments

- **network** variable. The user can use the following parameters based on the network types to be used. PHint for Physical_interactions, COloc for Co-localization, GENint for Genetic_interactions and SHpd for Shared_protein_domains
- **organismID** organism==NULL default value is homo sapiens.

Value

list with gene-gene (or protein-protein interactions)

Examples

```r
## Not run:
organismID="Saccharomyces_cerevisiae"
netw<-getNETdata(network="SHpd",organismID)
## End(Not run)
```

GetPathData

Get genes inside pathways.

Description

GetPathData creates a list of genes inside the pathways.

Usage

```r
GetPathData(path_ALL)
```

Arguments

- **path_ALL** variable. The user can select the variable as obtained by GetData function

Value

- a list of pathways

Examples

```r
pathway_ALL_GENE<-GetPathData(path_ALL=path[1:3])
```
GetPathNet

Get interacting genes inside pathways.

Description

GetPathNet creates a list of genes inside the pathways.

Usage

GetPathNet(path_ALL)

Arguments

path_ALL variable. The user can select the variable as obtained by GetData function

Value

a list of pathways

Examples

pathway_net<-GetPathNet(path_ALL=path[1:3])

GE_matrix

Get human KEGG pathway data and a gene expression matrix in order to obtain a list with the gene expression for only pathways given in input.

Description

GE_matrix creates a list of gene expression for pathways given by the user.

Usage

GE_matrix(DataMatrix, genes.by.pathway)

Arguments

DataMatrix gene expression matrix (eg.TCGA data)

genes.by.pathway a list of pathway data as provided by GetData and ConvertedID_genes

Value

a list for each pathway (gene expression level belong to that pathway)
GE_matrix_mean

Examples

```
list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],genes.by.pathway=pathway[1:5])
```

GE_matrix_mean

Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the mean gene expression for only pathways given in input.

Description

GE_matrix creates a matrix of mean gene expression levels for pathways given by the user.

Usage

```
GE_matrix_mean(DataMatrix, genes.by.pathway)
```

Arguments

- `DataMatrix`: gene expression matrix (e.g., TCGA data)
- `genes.by.pathway`: list of pathway data as provided by getKEGGdata

Value

a matrix for each pathway (mean gene expression level belong to that pathway)

Examples

```
list_path_plot<-GE_matrix_mean(DataMatrix=tumo[,1:2],genes.by.pathway=pathway[1:5])
```

GOChord

Displays the relationship between genes and terms.

Description

The GOChord function generates a circularly composited overview of selected/specific genes and their assigned processes or terms. More generally, it joins genes and processes via ribbons in an intersection-like graph.

Usage

```
GOChord(data, title, space, gene.order, gene.size, gene.space, nlfc = 1, lfc.col, lfc.min, lfc.max, ribbon.col, border.size, process.label, limit)
```
Arguments

- **data**: The matrix represents the binary relation (1= is related to, 0= is not related to) between a set of genes (rows) and processes (columns); a column for the logFC of the genes is optional.
- **title**: The title (on top) of the plot.
- **space**: The space between the chord segments of the plot.
- **gene.order**: A character vector defining the order of the displayed gene labels.
- **gene.size**: The size of the gene labels.
- **gene.space**: The space between the gene labels and the segment of the logFC.
- **nlfc**: Defines the number of logFC columns (default=1).
- **lfc.col**: The fill color for the logFC specified in the following form: c(color for low values, color for the mid point, color for the high values).
- **lfc.min**: Specifies the minimum value of the logFC scale (default = -3).
- **lfc.max**: Specifies the maximum value of the logFC scale (default = 3).
- **ribbon.col**: The background color of the ribbons.
- **border.size**: Defines the size of the ribbon borders.
- **process.label**: The size of the legend entries.
- **limit**: A vector with two cutoff values (default= c(0,0)).

IPPI

Multilayer analysis Cava et al. BMC Genomics 2017

Description

IPPI function takes as input pathway and network data in order to select genes with central role in that pathway. Please see Cava et al. 2017 BMC Genomics.

Usage

`IPPI(pathax, netwa)`

Arguments

- **pathax**: pathway matrix Please see example path for format.
- **netwa**: a dataframe Please see example path for format netw.

Value

a list with driver genes for each pathway.

Examples

```r
# Not run:
DRIVER_SP<-IPPI(pathax=pathway_matrix[,1:3],netwa=netw_IPPI[1:50000,])
# End(Not run)
```
listpathnet

Get human KEGG pathway data and the output of list_path_net define the common genes.

Description

listpathnet creates a list of interacting genes for each human pathway.

Usage

listpathnet(lista_net, pathway_exp)

Arguments

lista_net output of path_net
pathway_exp pathway data as provided by getKEGGdata

Value

a list of genes for each pathway (interacting genes belong to that pathway)

Examples

lista_network<-pathnet(genes.by.pathway=pathway[1:5],data=netw)
list_path<-listpathnet(lista_net=lista_network,pathway=pathway[1:5])

netw network data

Description

network data

Format

A data frame with rows and variables

netw_IPPI network data for IPPI function

Description

network data for IPPI function

Format

A list
norm

TCGA data with normal samples

Description

TCGA data with normal samples

Format

A data frame with rows and variables

path

pathway data list

Description

pathway data list

Format

A list of dataframe

pathnet

Get human KEGG pathway data and creates a network data.

Description

pathnet creates a list of network data for each human pathway. The network data will be generated when interacting genes belong to that pathway.

Usage

`pathnet(genes.by.pathway, data)`

Arguments

- `genes.by.pathway`
 - a list of pathway data as provided by ConvertedIDgenes
- `data`
 - a list of network data as provided by getNETdata

Value

a list of network data for each pathway (interacting genes belong to that pathway)

Examples

`lista_net<-pathnet(genes.by.pathway=pathway[1:5], data=netw)`
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathway</td>
<td>pathway data</td>
<td>A data frame with rows and variables</td>
</tr>
<tr>
<td>pathway_matrix</td>
<td>network data</td>
<td>A data frame with rows and variables</td>
</tr>
<tr>
<td>path KEgg</td>
<td>All pathways data from KEGG</td>
<td>A list of pathways with the involved genes</td>
</tr>
</tbody>
</table>
plotcrosstalk
Preparation for plotting cross-talk

Description

plot_crosstalk function takes as input pathway data and prepares the data to visualize (e.g. ggplot2, qqgraph, igraph)

Usage

`plotcrosstalk(pathway_plot, gs_expre)`

Arguments

- `pathway_plot`
 pathway
- `gs_expre`
 a gene expression matrix

Value

a list with correlation matrix and gene set for each gene

Examples

```r
formatplot<-plotcrosstalk(pathway_plot=pathway[1:6], gs_expre=tumo)
```

score_euc_dist
Score Matrix of pairwise pathway using euclidean distance

Description

Score Matrix of pairwise pathway using euclidean distance

Format

A data frame with rows and variables
SelectedSample
Select the class of TCGA data

Description

select two labels from ID barcode

Usage

```r
SelectedSample(Dataset, typesample)
```

Arguments

- **Dataset**: gene expression matrix
- **typesample**: the labels of the samples (e.g. tumor, normal)

Value

a gene expression matrix of the samples with specified label

Examples

```r
tumo<-SelectedSample(Dataset=Data_CANCER_normUQ_fil,typesample="tumour")[,2]
```

select_class
Select the class of TCGA data

Description

select best performance

Usage

```r
select_class(performance_matrix, cutoff)
```

Arguments

- **performance_matrix**: list of AUC value
- **cutoff**: cut-off for AUC value

Value

a gene expression matrix with only pairwise pathway with a particular cut-off
StarBioTrek allows you to Download data of samples from StarBioTrek.

Details

The functions you’re likely to need from StarBioTrek is path_star. Otherwise refer to the vignettes to see how to format the documentation.

stdv

For TCGA data get human pathway data and creates a measure of standard deviations among pathways.

Description

stdv creates a matrix with standard deviation for pathways.

Usage

stdv(gslist)

Arguments

gslist pathway data

Value

a matrix value for each pathway

Examples

list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],genes.by.pathway=pathway[1:5])
score_stdev<-stdv(gslist=list_path_gene)
svm_classification

SVM classification for each feature

Description

svm class creates a list with AUC, Accuracy, Sensitivity, Specificity values

Usage

```
svm_classification(TCGA_matrix, tumour, normal, nfs)
```

Arguments

- **TCGA_matrix** gene expression matrix where the first two columns represent the interacting pathways.
- **tumour** barcode samples for a class
- **normal** barcode samples for another class
- **nfs** nfs split data into a training and test set
- **Target** label for the classes

Value

a list with AUC value for pairwise pathway

Examples

```r
## Not run:
nf <- 60
res_class<-svm_classification(TCGA_matrix=score_euc_dist[,1:30,],nfs=nf,
normal=colnames(norm[,1:10]),tumour=colnames(tumo[,1:10]))
## End(Not run)
```

tumo

TCGA data with tumour samples

Description

TCGA data with tumour samples

Format

A data frame with rows and variables
Index

* internal
 - Data_CANCER_normUQ_fil, 4
 - netw, 11
 - netw_IPPI, 11
 - norm, 12
 - path, 12
 - path_KEGG, 13
 - pathway, 13
 - pathway_matrix, 13
 - score_euc_dista, 14
 - tumo, 17

average, 2

circleplot, 3
ConvertedIDgenes, 4

Data_CANCER_normUQ_fil, 4
dsscorecrtlk, 5
eucdistcrtlk, 5

GE_matrix, 8
GE_matrix_mean, 9
GetData, 6
getNETdata, 6
GetPathData, 7
GetPathNet, 8
GOChord, 9

IPPI, 10

listpathnet, 11

netw, 11
netw_IPPI, 11
norm, 12

path, 12
path_KEGG, 13
pathnet, 12

pathway, 13
pathway_matrix, 13
plotcrosstalk, 14

score_euc_dista, 14
select_class, 15
SelectedSample, 15
StarBioTrek, 16
StarBioTrek-package (StarBioTrek), 16
stdv, 16
svm_classification, 17

tumo, 17