Package ‘TDbasedUFE’

May 30, 2024

Type Package
Title Tensor Decomposition Based Unsupervised Feature Extraction
Version 1.4.0
Description This is a comprehensive package to perform
Tensor decomposition based unsupervised feature extraction.
It can perform unsupervised feature extraction.
It uses tensor decomposition.
It is applicable to gene expression, DNA methylation, and
histone modification etc.
It can perform multiomics analysis.
It is also potentially applicable to single cell omics data sets.

biocViews GeneExpression, FeatureExtraction, MethylationArray,
SingleCell

License GPL-3
Encoding UTF-8
LazyData false

URL https://github.com/tagtag/TDbasedUFE

BugReports https://github.com/tagtag/TDbasedUFE/issues

Imports GenomicRanges, rTensor, readr, methods, MOFAdata, tximport,
rximportData, graphics, stats, utils, shiny

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/editon 3

git_url https://git.bioconductor.org/packages/TDbasedUFE

git_branch RELEASE_3_19

git_last_commit 63e4439

git_last_commit_date 2024-04-30
TDbasedUFE-package

Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Y-h. Taguchi [aut, cre] (<https://orcid.org/0000-0003-0867-8986>)
Maintainer Y-h. Taguchi <tag@granular.com>

Contents

TDbasedUFE-package ... 2
computeHosvd ... 3
computeHosvdSquare ... 3
convertSquare ... 4
PrepareSummarizedExperimentTensor 5
PrepareSummarizedExperimentTensorSquare 6
selectFeature ... 7
selectFeatureSquare ... 7
selectSingularValueVectorLarge .. 9
selectSingularValueVectorSmall 9
tableFeatures ... 10
tableFeaturesSquare .. 11

Index 12

TDbasedUFE-package TDbasedUFE: Tensor Decomposition Based Unsupervised Feature Extraction

Description

This is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. It can perform unsupervised feature extraction. It uses tensor decomposition. It is applicable to gene expression, DNA methylation, and histone modification etc. It can perform multiomics analysis. It is also potentially applicable to single cell omics data sets.

Author(s)

Maintainer: Y-h. Taguchi <tag@granular.com> (ORCID)

See Also

Useful links:

- https://github.com/tagtag/TDbasedUFE
- Report bugs at https://github.com/tagtag/TDbasedUFE/issues
computeHosvd

Title Compute higher order singular value decomposition

Usage

computeHosvd(Z, dims = c(10, dim(attr(Z, "value"))[[-1]], scale = TRUE)

Arguments

Z array that includes omics data
dims dimensions to be computed by HOSVD
scale If value is scaled

Value

List that includes output from HOSVD

Examples

Z <- PrepareSummarizedExperimentTensor(
 sample=matrix(as.character(seq_len(6)),c(3,2)),
 feature=as.character(seq_len(10)),
 value=array(runif(10*3*2),c(10,3,2)))
HOSVD <- computeHosvd(Z)

computeHosvdSqure

Title Compute higher order singular value decomposition from the tensor generated from squared matrix

Usage

computeHosvdSqure(
 Z,
 dims = unlist(lapply(dim(attr(Z, "value")), function(x) {
 min(10, x)
 })),
 scale = TRUE
)

Description

Title Compute higher order singular value decomposition from the tensor generated from squared matrix
convertSquare

Arguments

Z A tensor including sample names, feature values, associated with featureRange and sample properties
dims dimensions to be computed by HOSVD
scale If value is scaled

Value

List that includes output from HOSVD

Examples

```
oms1 <- matrix(runif(100),10)
dimnames(oms1) <- list(seq_len(10),seq_len(10))
oms2 <- matrix(runif(100),10)
dimnames(oms2) <- dimnames(oms1)
Multi <- list(oms1,oms2)
Z <- PrepareSummarizedExperimentTensorSquare(
  sample=matrix(colnames(oms1),1),
  feature=list(oms1=rownames(oms1),
               oms2=rownames(oms2)),
  value=convertSquare(Multi),
  sampleData=list(NA))
HOSVD <- computeHosvdSqure(Z)
```

convertSquare
Generate squared tensor from multiomics data

Description

Generate squared tensor from multiomics data

Usage

convertSquare(Multi)

Arguments

Multi A list that include multiomics data

Value

A tensor computed from multiomics data
PrepareSummarizedExperimentTensor

Title Generate feature values formatted as a tensor format

Description

Title Generate feature values formatted as a tensor format

Usage

`PrepareSummarizedExperimentTensor(sample, feature, value, featureRange = GRanges(NULL), sampleData = list(NULL))`

Arguments

- `sample` Sample names
- `feature` Feature id names
- `value` Feature values
- `featureRange` Genomic coordinate attributed to feature id (if any)
- `sampleData` Sample property (labels etc)

Value

A tensor including sample names, feature id, feature values, associated with featureRange and sample properties

Examples

```r
require(GenomicRanges)
Z <- PrepareSummarizedExperimentTensor(sample=matrix(as.character(seq_len(6)),c(3,2)),
feature=as.character(seq_len(10)),
value=array(runif(10*3*2),c(10,3,2)))
```
PrepareSummarizedExperimentTensorSquare

Title Generate feature values formatted as a tensor format from Squared matrix

Description

Title Generate feature values formatted as a tensor format from Squared matrix

Usage

PrepareSummarizedExperimentTensorSquare(
 sample = list(NULL),
 feature,
 value,
 featureRange = GRanges(NULL),
 sampleData = list(NULL)
)

Arguments

 sample Sample names
 feature Feature id names
 value Squared Feature values
 featureRange Genomic coordinate attributed to feature id (if any)
 sampleData Sample property (labels etc)

Value

A tensor including sample names, feature values, associated with featureRange and sample properties

Examples

omics1 <- matrix(runif(100),10)
dimnames(omics1) <- list(seq_len(10),seq_len(10))
omics2 <- matrix(runif(100),10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
 sample=matrix(colnames(omics1),1),
 feature=list(omics1=rownames(omics1),
 omics2=rownames(omics2)),
 value=convertSquare(Multi),
 sampleData=list(NA))
selectFeature

Title Select features

Description

Title Select features

Usage

selectFeature(HOSVD, input_all, de = 1e-04, p0 = 0.01, breaks = 100)

Arguments

- HOSVD: output from HOSVD
- input_all: Selected singular value IDs
- de: Initial value for optimization of standard deviation
- p0: Threshold P-value
- breaks: The number of bins

Value

List that includes selected features and computed P-value

Examples

```r
set.seed(2)
require(rTensor)
HOSVD <- hosvd(as.tensor(array(runif(10000*3*3),c(10000,3,3)),c(10,3,3)))
input_all <- c(2,2)
index <- selectFeature(HOSVD,input_all,de=0.01,p0=0.01)
```

selectFeatureSquare

Title Select features (for tensor generated from squared matrix)

Description

Title Select features (for tensor generated from squared matrix)
Usage

```r
selectFeatureSquare(
    HOSVD,
    input_all,
    Multi,
    de = rep(1e-04, dim(HOSVD$U[[3]])[2]),
    p0 = 0.01,
    breaks = 100,
    interact = TRUE
)
```

Arguments

- **HOSVD**: output from HOSVD applied to tensor generated from squared matrix
- **input_all**: Selected singular value vector IDs
- **Multi**: Multionomics data
- **de**: Initial value for optimization of standard deviation
- **p0**: Threshold P-value
- **breaks**: The number of bins
- **interact**: if interact mode or not

Value

List that includes selected features and computed P-value

Examples

```r
omcs1 <- matrix(runif(100000),ncol=10)
dimnames(omcs1) <- list(seq_len(10000),seq_len(10))
omcs2 <- matrix(runif(100000),ncol=10)
dimnames(omcs2) <- dimnames(omcs1)
Multi <- list(omcs1,omcs2)
Z <- PrepareSummarizedExperimentTensorSquare(
    sample=matrix(colnames(omcs1),1),
    feature=list(omcs1=rownames(omcs1),
                 omcs2=rownames(omcs2)),
    value=convertSquare(Multi),
    sampleData=list(NA))
HOSVD <- computeHosvdSqure(Z)
cond <- list(0,rep(seq_len(2),each=5),c("A","B"))
input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))
index <- selectFeatureSquare(HOSVD,input_all,Multi,de=c(0.1,0.1),
                           interact=FALSE)
```
selectSingularValueVectorLarge

Title Select singular value vectors from HOSVD (boxplot version)

Description
Title Select singular value vectors from HOSVD (boxplot version)

Usage
selectSingularValueVectorLarge(HOSVD, cond, input_all = NULL)

Arguments
- HOSVD: output from HOSVD
- cond: Labels to select singular value vector number
- input_all: if list is not null, no interactive mode is activated but provided values are used.

Value
Selected singular value vector IDs

Examples
Z <- PrepareSummarizedExperimentTensor(
 sample=matrix(as.character(seq_len(6)),c(3,2)),
 feature=as.character(seq_len(10)),
 value=array(runif(10*3*2),c(10,3,2)))
HOSVD <- computeHosvd(Z)
cond <- list(0,c("A","B","C"),c("A","B"))
input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))

selectSingularValueVectorSmall

Title Select singular value vectors from HOSVD

Description
Title Select singular value vectors from HOSVD

Usage
selectSingularValueVectorSmall(HOSVD, input_all = NULL)
Arguments

- **HOSVD**: output from HOSVD
- **input_all**: if is not null, no interactive mode is activated but provided values are used.

Value

Selected singular value vector IDs

Examples

```r
Z <- PrepareSummarizedExperimentTensor(
  sample = matrix(as.character(seq_len(6)), c(3, 2)),
  feature = as.character(seq_len(10)),
  value = array(runif(10*3*2), c(10, 3, 2)))
HOSVD <- computeHosvd(Z)
input_all <- selectSingularValueVectorSmall(HOSVD, input_all = c(1, 1))
```

Description

Title Show selected features as Table

Usage

```r
tableFeatures(Z, index)
```

Arguments

- **Z**: Tensor of features
- **index**: List that includes selected features and P-values

Value

Table list of selected features

Examples

```r
set.seed(2)
require(rTensor)
HOSVD <- hosvd(as.tensor(array(runif(10000*3*3), c(10000, 3, 3))), c(10, 3, 3))
input_all <- c(2, 2)
index <- selectFeature(HOSVD, input_all, de = 0.01, p0 = 0.01)
index[index[seq_len(100)]] <- TRUE
Z <- PrepareSummarizedExperimentTensor(
  sample = matrix(as.character(seq_len(9)), c(3, 3)),
  feature = as.character(seq_len(10000)),
  value = array(runif(10000*3*3), c(10, 3, 3)))
head(tableFeatures(Z, index))
```
tableFeaturesSquare
Title Show selected features as Table (for Squared one)

Description

Title Show selected features as Table (for Squared one)

Usage

```
tableFeaturesSquare(Z, index, id)
```

Arguments

- `Z` Tensor of features
- `index` List that includes selected features and P-values
- `id` feature to be shown

Value

Table list of selected features

Examples

```r
omics1 <- matrix(runif(100000), ncol=10)
dimnames(omics1) <- list(seq_len(10000), seq_len(10))
omics2 <- matrix(runif(100000), ncol=10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1, omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
  sample=matrix(colnames(omics1),1),
  feature=list(omics1=rownames(omics1),
  omics2=rownames(omics2)),
  value=convertSquare(Multi),
  sampleData=list(NA))
HOSVD <- computeHosvdSquare(Z)
cond <- list(0,rep(seq_len(2),each=5),c("A","B"))
input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))
index <- selectFeatureSquare(HOSVD,input_all,Multi,de=c(0.1,0.1),
  interact=FALSE)
index[[1]]$index[1:100]<-TRUE
index[[1]]$p.value[1:100] <- 1e-3
tableFeaturesSquare(Z,index,1)
```
Index

* internal
 TDbasedUFE-package, 2

computeHosvd, 3
computeHosvdSqure, 3
convertSquare, 4

PrepareSummarizedExperimentTensor, 5
PrepareSummarizedExperimentTensorSquare, 6

selectFeature, 7
selectFeatureSquare, 7
selectSingularValueVectorLarge, 9
selectSingularValueVectorSmall, 9

tableFeatures, 10
tableFeaturesSquare, 11
TDbasedUFE (TDbasedUFE-package), 2
TDbasedUFE-package, 2