Package ‘TPP2D’

January 12, 2024

Title Detection of ligand-protein interactions from 2D thermal profiles (DLPTP)

Version 1.18.0

License GPL-3

Encoding UTF-8

VignetteBuilder knitr

LazyData false

biocViews Software, Proteomics, DataImport

BugReports https://support.bioconductor.org/

URL http://bioconductor.org/packages/TPP2D

RoxygenNote 7.1.2

Depends R (>= 3.6.0), stats, utils, dplyr, methods

Imports ggplot2, tidyr, foreach, doParallel, openxlsx, stringr, RCurl, parallel, MASS, BiocParallel, limma

Suggests knitr, testthat, rmarkdown, BiocStyle

git_url https://git.bioconductor.org/packages/TPP2D
git_branch RELEASE_3_18
git_last_commit f78c9fc
git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-01-11

Author Nils Kurzawa [aut, cre],
 Holger Franken [aut],
 Simon Anders [aut],
 Wolfgang Huber [aut],
 Mikhail M. Savitski [aut]

Maintainer Nils Kurzawa <nilskurzawa@gmail.com>
R topics documented:

- `annotateDataList` .. 3
- `bootstrapNull` ... 4
- `bootstrapNullAlternativeModel` 5
- `bootstrapNullAlternativeModelFast` 7
- `competeModels` .. 9
- `computeFdr-defunct` .. 10
- `computeFstat` .. 10
- `computeFStatFromParams` .. 11
- `configWide2Long` .. 12
- `config_tab` ... 12
- `filterOutContaminants` ... 13
- `findHits` ... 13
- `fitAndEvalDataset` .. 14
- `fitH0Model` .. 15
- `fitH1Model` ... 16
- `getFDR` ... 17
- `getModelParamsDf` ... 18
- `getPEC504Temperature` ... 19
- `getPvalues` .. 20
- `gg_qq` ... 21
- `import2dDataset` ... 22
- `import2dMain` .. 23
- `plot2dTppFcHeatmap` .. 25
- `plot2dTppFit` .. 25
- `plot2dTppProfile` .. 27
- `plot2dTppRelProfile` ... 27
- `plot2dTppVolcano` .. 28
- `raw_dat_list` .. 29
- `recomputeSignalFromRatios` 29
- `renameColumns` .. 30
- `resolveAmbiguousProteinNames` 31
- `runTPP2D` .. 32
- `simulated_cell_extract_df` 34
- `TPP2D-defunct` ... 35
- `tpp2dExperiment-class` .. 35
- `TPP_importCheckConfigTable` 36

Index

- `Index` .. 38
annotateDataList

Annotate imported data list using a config table

Description

Annotate imported data list using a config table

Usage

annotateDataList(dataList, geneNameVar, configLong, intensityStr, fcStr)

Arguments

dataList list of datasets from different MS runs corresponding to a 2D-TPP dataset
geneNameVar character string of the column name that describes the gene name of a given protein in the raw data files
configLong long formatted data frame of a corresponding config table
intensityStr character string indicating which columns contain raw intensities measurements
fcStr character string indicating which columns contain the actual fold change values. Those column names containing the suffix fcStr will be regarded as containing fold change values.

Value

data frame containing all data annotated by information supplied in the config table

Examples

data("config_tab")
data("raw_dat_list")
dataList <- import2dMain(configTable = config_tab,
 data = raw_dat_list,
 idVar = "protein_id",
 fcStr = "rel_fc_",
 addCol = "gene_name",
 naStrs = NA,
 intensityStr = "signal_sum_",
 nonZeroCols = "qusm",
 qualColName = "qupm")
configLong <- configWide2Long(configWide = config_tab)
annotateDataList(dataList = dataList,
 geneNameVar = "gene_name",
 configLong = configLong,
 intensityStr = "signal_sum_",
 fcStr = "rel_fc_")
bootstrapNull

Bootstrap null distribution of F statistics for FDR estimation

Description

Bootstrap null distribution of F statistics for FDR estimation

Usage

```r
bootstrapNull(
  df,
  maxit = 500,
  independentFiltering = FALSE,
  fcThres = 1.5,
  minObs = 20,
  optim_fun_h0 = .min_RSS_h0,
  optim_fun_h1 = .min_RSS_h1_slope_pEC50,
  optim_fun_h1_2 = NULL,
  gr_fun_h0 = NULL,
  gr_fun_h1 = NULL,
  gr_fun_h1_2 = NULL,
  ncores = 1,
  B = 20,
  byMsExp = TRUE
)
```

Arguments

- **df**: tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column “nObs” containing the number of observations per protein
- **maxit**: maximal number of iterations the optimization should be given, default is set to 500
- **independentFiltering**: boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile
- **fcThres**: numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering
- **minObs**: numeric value of minimal number of observations that should be required per protein
- **optim_fun_h0**: optimization function that should be used for fitting the H0 model
- **optim_fun_h1**: optimization function that should be used for fitting the H1 model
- **optim_fun_h1_2**: optional additional optimization function that will be run with parameters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL
bootstrapNullAlternativeModel

Bootstrap null distribution of F statistics for FDR estimation based on resampling alternative model residuals

Usage

bootstrapNullAlternativeModel(
 df,
 params_df,
 maxit = 500,
 independentFiltering = FALSE,
 fcThres = 1.5,
 minObs = 20,
 optim_fun_h0 = TPP2D:::min_RSS_h0,
 optim_fun_h1 = TPP2D:::min_RSS_h1_slope_pEC50,
 optim_fun_h1_2 = NULL
)

Value

data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative on the Null distribution of F statistics

Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clusternname %in% paste0("protein", 1:3)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup
boot_df <- bootstrapNull(temp_df, B = 2/10)
optim_fun_h1_2 = NULL,
gr_fun_h0 = NULL,
gr_fun_h1 = NULL,
gr_fun_h1_2 = NULL,
BPPARAM = BiocParallel::SerialParam(progressbar = TRUE),
B = 20,
byMsExp = TRUE,
verbose = FALSE
}

Arguments

df tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and
 addition of a column "nObs" containing the number of observations per protein
params_df data frame listing all null and alternative model parameters as obtained by 'get-
 ModelParamsDf'
maxit maximal number of iterations the optimization should be given, default is set to
 500
independentFiltering boolean flag indicating whether independent filtering should be performed based
 on minimal fold changes per protein profile
fcThres numeric value of minimal fold change (or inverse fold change) a protein has to
 show to be kept upon independent filtering
minObs numeric value of minimal number of observations that should be required per
 protein
optim_fun_h0 optimization function that should be used for fitting the H0 model
optim_fun_h1 optimization function that should be used for fitting the H1 model
optim_fun_h1_2 optional additional optimization function that will be run with paramters re-
 trieved from optim_fun_h1 and should be used for fitting the H1 model with the
 trimmed sum model, default is NULL
gr_fun_h0 optional gradient function for optim_fun_h0, default is NULL
gr_fun_h1 optional gradient function for optim_fun_h1, default is NULL
gr_fun_h1_2 optional gradient function for optim_fun_h1_2, default is NULL
BPPARAM BiocParallel parameter for optional parallelization of null distribution genera-
 tion through bootstrapping, default: BiocParallel::SerialParam()
B numeric value of rounds of bootstrap, default: 20
byMsExp boolean flag indicating whether resampling of residuals should be performed
 separately for data generated by different MS experiments, default TRUE, rec-
 ommended
verbose logical indicating whether to print each protein while its profile is bootstrapped

Value

data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative
on the Null distribution of F statistics
Examples

```r
data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
  filter(clustername %in% paste0("protein", 1:3)) %>%
  group_by(representative) %>%
  mutate(nObs = n()) %>%
  ungroup

temp_params_df <- getModelParamsDf(temp_df)
boot_df <- bootstrapNullAlternativeModelFast(
  temp_df, params_df = temp_params_df, B = 2)
```

bootstrapNullAlternativeModelFast

Bootstrap null distribution of F statistics for FDR estimation based on resampling alternative model residuals with only one round of model fitting on resampled data and subsequent resampling of thereby obtained residuals

Description

Bootstrap null distribution of F statistics for FDR estimation based on resampling alternative model residuals with only one round of model fitting on resampled data and subsequent resampling of thereby obtained residuals

Usage

```r
bootstrapNullAlternativeModelFast(
  df,
  params_df,
  maxit = 500,
  independentFiltering = FALSE,
  fcThres = 1.5,
  minObs = 20,
  optim_fun_h0 = TPP2D:::.min_RSS_h0
  optim_fun_h1 = TPP2D:::.min_RSS_h1_slope_pEC50,
  optim_fun_h1_2 = NULL,
  gr_fun_h0 = NULL,
  gr_fun_h1 = NULL,
  gr_fun_h1_2 = NULL,
  BPPARAM = BiocParallel::SerialParam(progressbar = TRUE),
  B = 20,
  byMsExp = TRUE,
  verbose = FALSE
)
```
Arguments

df tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and
addition of a column "nObs" containing the number of observations per protein

params_df data frame listing all null and alternative model parameters as obtained by 'getModelParamsDf'

maxit maximal number of iterations the optimization should be given, default is set to 500

independentFiltering boolean flag indicating whether independent filtering should be performed based
on minimal fold changes per protein profile

fcThres numeric value of minimal fold change (or inverse fold change) a protein has to
show to be kept upon independent filtering

minObs numeric value of minimal number of observations that should be required per
protein

optim_fun_h0 optimization function that should be used for fitting the H0 model

optim_fun_h1 optimization function that should be used for fitting the H1 model

optim_fun_h1_2 optional additional optimization function that will be run with parameters re-
trieved from optim_fun_h1 and should be used for fitting the H1 model with the
trimmed sum model, default is NULL

gr_fun_h0 optional gradient function for optim_fun_h0, default is NULL

gr_fun_h1 optional gradient function for optim_fun_h1, default is NULL

gr_fun_h1_2 optional gradient function for optim_fun_h1_2, default is NULL

BPPARAM BiocParallel parameter for optional parallelization of null distribution genera-
tion through bootstrapping, default: BiocParallel::SerialParam()

B numeric value of rounds of bootstrap, default: 20

byMsExp boolean flag indicating whether resampling of residuals should be performed
separately for data generated by different MS experiments, default TRUE, rec-
ommended

verbose logical indicating whether to print each protein while its profile is boostrapped

Value
data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative
on the Null distribution of F statistics

Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:3)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup

temp_params_df <- getModelParamsDf(temp_df)

boot_df <- bootstrapNullAlternativeModelFast(
 temp_df, params_df = temp_params_df, B = 20)
competeModels

Compete H0 and H1 models per protein and obtain F statistic

Description
Compete H0 and H1 models per protein and obtain F statistic

Usage

```r
competeModels(
  df,
  fcThres = 1.5,
  independentFiltering = FALSE,
  minObs = 20,
  optim_fun_h0 = .min_RSS_h0,
  optim_fun_h1 = .min_RSS_h1_slope_pEC50,
  optim_fun_h1_2 = NULL,
  gr_fun_h0 = NULL,
  gr_fun_h1 = NULL,
  gr_fun_h1_2 = NULL,
  maxit = 750
)
```

Arguments

df: tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein

fcThres: numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering

independentFiltering: boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile

minObs: numeric value of minimal number of observations that should be required per protein

optim_fun_h0: optimization function that should be used for fitting the H0 model

optim_fun_h1: optimization function that should be used for fitting the H1 model

optim_fun_h1_2: optional additional optimization function that will be run with parameters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL

gr_fun_h0: optional gradient function for optim_fun_h0, default is NULL

gr_fun_h1: optional gradient function for optim_fun_h1, default is NULL

gr_fun_h1_2: optional gradient function for optim_fun_h1_2, default is NULL

maxit: maximal number of iterations the optimization should be given, default is set to 500
computeFstat

Value

data frame summarising the fit characteristics of H0 and H1 models and therof resulting computed F statistics per protein

Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:10)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup
 competeModels(temp_df)

computeFdr

Compute FDR for given F statistics based on true and null dataset (old function)

Description

Compute FDR for given F statistics based on true and null dataset (old function)

See Also

TPP2D

computeFstat

Compute F statistic from H1 and H0 model characteristics

Description

Compute F statistic from H1 and H0 model characteristics

Usage

computeFstat(h0_df, h1_df)

Arguments

- **h0_df**: data frame with H0 model characteristics for each protein
- **h1_df**: data frame with H1 model characteristics for each protein

Value

data frame with H0 and H1 model characteristics for each protein and respectively computed F statistics
Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:20)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup

h0_df <- fitH0Model(temp_df)
h1_df <- fitH1Model(temp_df)

computeFstat(h0_df, h1_df)

computeFStatFromParams

Compute F statistics from parameter data frame

Description

Compute F statistics from parameter data frame

Usage

computeFStatFromParams(params_df)

Arguments

params_df data frame listing all null and alternative model parameters as obtained by 'get
ModelParamsDf'

Value

data frame of all proteins and computed F statistics and parameters that were used for the computation

Examples

data("simulated_cell_extract_df")
params_df <- getModelParamsDf(simulated_cell_extract_df)
computeFStatFromParams(params_df)
configWide2Long Transform configuration table from wide to long

Description
Transform configuration table from wide to long

Usage
configWide2Long(configWide)

Arguments
configWide data frame containing a config table

Value
data frame containing config table in long format

Examples
data("config_tab")
configWide2Long(configWide = config_tab)

config_tab Example config table for a import of a simulated 2D-TPP cell extract dataset

Description
Config table for import of simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package. It's a data frame with the columns "Compound" describing the compound used for the assay, "Experiment" listing MS experiment ids of the separate runs (typically comprising two multiplexed adjacent temperature), "Temperature": the temperature used for a given sub-experiment, the respective TMT labels "126"."131L", RefCol referring to the label used as a reference label for computing relative fold changes (usually the label used for the control treatment). Please note that when the data is not supplied as a list of already imported data frames the config table for the import function should be a path to an txt, csv or xlsx file containing an additional column "Path" listing for each row the respective path to a searched protein output file.

Usage
data("config_tab")
filterOutContaminants

Filter out contaminants

Format

"Compound" describing the compound used for the assay, "Experiment" listing MS experiment ids of the separate runs (typically comprising two multiplexed adjacent temperature), "Temperature": the temperature used for a given sub-experiment, the respective TMT labels "126"-"131L", RefCol referring to the label used as a reference label for computing relative fold changes (usually the label used for the control treatment).

filterOutContaminants
Filter out contaminants

Description

Filter out contaminants

Usage

`filterOutContaminants(dataLong)`

Arguments

- `dataLong`
 long format data frame of imported dataset

Value

data frame containing full dataset filtered to contain no contaminants

Examples

```r
data("simulated_cell_extract_df")
filterOutContaminants(simulated_cell_extract_df)
```

findHits
Find hits according to FDR threshold

Description

Find hits according to FDR threshold

Usage

`findHits(fdr_df, alpha)`

Arguments

- `fdr_df`
 data frame obtained from computeFdr
- `alpha`
 significance threshold, default is set to 0.1
Value

data frame of significant hits at FDR <= alpha

Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:5)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup
example_out <- fitAndEvalDataset(temp_df)
example_null <- bootstrapNull(temp_df, B = 1)
fdr_df <- getFDR(example_out, example_null)
findHits(fdr_df, 0.1)

Description

Fit H0 and H1 model to 2D thermal profiles of proteins and compute F statistic

Usage

fitAndEvalDataset(
 df,
 maxit = 500,
 optim_fun_h0 = .min_RSS_h0,
 optim_fun_h1 = .min_RSS_h1_slope_pEC50,
 optim_fun_h1_2 = NULL,
 gr_fun_h0 = NULL,
 gr_fun_h1 = NULL,
 gr_fun_h1_2 = NULL,
 ec50_lower_limit = NULL,
 ec50_upper_limit = NULL,
 slopEC50 = TRUE)

Arguments

df tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering
maxit maximal number of iterations the optimization should be given, default is set to
 500
Fit H0 model and evaluate fit statistics

Description

Fit H0 model and evaluate fit statistics

Usage

```r
fitH0Model(df, maxit = 500, optim_fun = .min_RSS_h0, gr_fun = NULL)
```
Arguments

- **df**: tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein
- **maxit**: maximal number of iterations the optimization should be given, default is set to 500
- **optim_fun**: optimization function that should be used for fitting the H0 model
- **gr_fun**: optional gradient function for optim_fun, default is NULL

Value

data frame with H0 model characteristics for each protein

Examples

```r
data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
  filter(clustername %in% paste0("protein", 1:5)) %>%
  group_by(representative) %>%
  mutate(nObs = n()) %>%
  ungroup

fitH0Model(temp_df)
```

Description

Fit H1 model and evaluate fit statistics

Usage

```r
fitH1Model(
  df,
  maxit = 500,
  optim_fun = .min_RSS_h1_slope_pEC50,
  optim_fun_2 = NULL,
  gr_fun = NULL,
  gr_fun_2 = NULL,
  ec50_lower_limit = NULL,
  ec50_upper_limit = NULL,
  sloopEC50 = TRUE
)
```
getFDR

Get FDR for given F statistics based on true and null dataset

Description

Get FDR for given F statistics based on true and null dataset

Usage

```r
getFDR(df_out, df_null, squeezeDenominator = TRUE)
```
getModelParamsDf

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df_out</td>
<td>data frame containing results from analysis by fitAndEvalDataset</td>
</tr>
<tr>
<td>df_null</td>
<td>data frame containing results from analysis by bootstrapNull</td>
</tr>
<tr>
<td>squeezeDenominator</td>
<td>logical indicating whether F statistic denominator should be shrinked using limma::squeezeVar</td>
</tr>
</tbody>
</table>

Value

data frame annotating each protein with a FDR based on its F statistic and number of observations

Examples

data("simulated_cell_extract_df")

```r
temp_df <- simulated_cell_extract_df %>%
  filter(clustername %in% paste0("protein", 1:5)) %>%
  group_by(representative) %>%
  mutate(nObs = n()) %>%
  ungroup
example_out <- fitAndEvalDataset(temp_df)
example_null <- bootstrapNull(temp_df, B = 1)
getFDR(example_out, example_null)
```

getModelParamsDf

Get H0 and H1 model parameters

Description

Get H0 and H1 model parameters

Usage

```r
getModelParamsDf(
  df,
  minObs = 20,
  optim_fun_h0 = .min_RSS_h0,
  optim_fun_h1 = .min_RSS_h1_slope_pEC50,
  optim_fun_h1_2 = NULL,
  gr_fun_h0 = NULL,
  gr_fun_h1 = NULL,
  gr_fun_h1_2 = NULL,
  slopEC50 = TRUE,
  maxit = 500,
  qualColName = "qupm"
)
```
getPEC504Temperature

Arguments

df tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein

minObs numeric value of minimal number of observations that should be required per protein

optim_fun_h0 optimization function that should be used for fitting the H0 model

optim_fun_h1 optimization function that should be used for fitting the H1 model

optim_fun_h1_2 optional additional optimization function that will be run with parameters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL

gr_fun_h0 optional gradient function for optim_fun_h0, default is NULL

gr_fun_h1 optional gradient function for optim_fun_h1, default is NULL

gr_fun_h1_2 optional gradient function for optim_fun_h1_2, default is NULL

slopEC50 logical flag indicating whether the h1 model is fitted with a linear model describing the shift of the pEC50 over temperatures

maxit maximal number of iterations the optimization should be given, default is set to 500

qualColName name of column indicating quantification quality e.g. number of unique peptides used for quantification, default: "qupm"

Value

a data.frame with fitted null and alternative model parameters

Examples

data("simulated_cell_extract_df")
getModelParamsDf(simulated_cell_extract_df)

test

getPEC504Temperature Get pEC50 for a protein of interest at a specific temperatures (optimally the melting point of the protein)

Description

Get pEC50 for a protein of interest at a specific temperatures (optimally the melting point of the protein)

Usage

gtepECS04Temperature(fstat_df, protein, temperaturePEC50 = 60)
Arguments

- `fstat_df` : data frame as obtained after calling `getModelParamsDf`, containing fitted null and alternative model parameters for each protein
- `protein` : character string referring to the protein of interest
- `temperaturePEC50` : temperature (numeric) at which pEC50 should be inferred

Value

numeric value specifying the pEC50 for the indicated protein and temperature

Examples

data("simulated_cell_extract_df")

model_params_df <- getModelParamsDf(
 df = filter(simulated_cell_extract_df,
 clusternname == "tp1"))

getPEC504Temperature(
 fstat_df = model_params_df,
 protein = "tp1",
 temperaturePEC50 = 60)

getPvalues

Description

Compute p-values for given F statistics based on true and null dataset

Usage

g getPvalues(df_out, df_null, pseudo_count = 1, squeezeDenominator = FALSE)

Arguments

- `df_out` : data frame containing results from analysis by `fitAndEvalDataset`
- `df_null` : data frame containing results from analysis by `bootstrapNull`
- `pseudo_count` : numeric larger or equal to 0 added to both counts of protein with an F-statistic higher than a threshold theta of the true and bootstrapped datasets
- `squeezeDenominator` : logical indicating whether F statistic denominator should be shranked using `limma::squeezeVar`

Value

data frame annotating each protein with a FDR based on it’s F statistic and number of observations
Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:3)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup
example_out <- fitAndEvalDataset(temp_df)
example_null <- bootstrapNull(temp_df, B = 2)
getPvalues(
 example_out,
 example_null)

gg_qq

Plot qq-plot of true data and bootstrapped null with ggplot

Description

Plot qq-plot of true data and bootstrapped null with ggplot

Usage

```r
gg_qq(
  x, 
  y, 
  xlab = "F-statistics from sampled Null distr.",
  ylab = "observed F-statistics",
  alpha = 0.25, 
  gg_theme = theme_classic(),
  offset = 1,
  plot_diagonal = TRUE
)
```

Arguments

- `x` vector containing values of values of first distribution to compare
- `y` vector containing values of values of second distribution to compare
- `xlab` x-axis label
- `ylab` y-axis label
- `alpha` transparency parameter between 0 and 1
- `gg_theme` ggplot theme, default is `theme_classic()`
- `offset` offset for x and y axis on top of maximal values
- `plot_diagonal` logical parameter indicating whether an identity line should be plotted
import2dDataset

Value

A ggplot displaying the qq-plot of a true and a bootstrapped null distribution

Examples

data("simulated_cell_extract_df")
recomputeSignalFromRatios(simulated_cell_extract_df)

import2dDataset Import 2D-TPP dataset using a config table

Description

Import 2D-TPP dataset using a config table

Usage

import2dDataset(
 configTable,
 data,
 idVar = "representative",
 intensityStr = "sumionarea_protein_",
 fcStr = "rel_fc_protein_",
 nonZeroCols = "qssm",
 geneNameVar = "clusternname",
 addCol = NULL,
 qualColName = "qupm",
 naStrs = c("NA", "n/d", "NaN"),
 concFactor = 1e+06,
 medianNormalizeFC = TRUE,
 filterContaminants = TRUE
)

Arguments

configTable character string of a file path to a config table
data possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referenced in config table, default is NULL
idVar character string indicating which data column provides the unique identifiers for each protein.
intensityStr character string indicating which columns contain raw intensities measurements
fcStr character string indicating which columns contain the actual fold change values. Those column names containing the suffix fcStr will be regarded as containing fold change values.
import2dMain

Import 2D-TPP dataset main function

Description

Import 2D-TPP dataset main function

```r
import2dMain
```

- **nonZeroCols**: column like default qssm that should be imported and requested to be non-zero in analyzed data
- **geneNameVar**: character string of the column name that describes the gene name of a given protein in the raw data files
- **addCol**: character string indicating additional column to import
- **qualColName**: character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers.
- **naStrs**: character vector indicating missing values in the data table. When reading data from file, this value will be passed on to the argument `na.strings` in function `read.delim`.
- **conFactor**: numeric value that indicates how concentrations need to be adjusted to yield total unit e.g. default mmol - 1e6
- **medianNormalizeFC**: perform median normalization (default: TRUE).
- **filterContaminants**: boolean variable indicating whether data should be filtered to exclude contaminants (default: TRUE).

Value

tidy data frame representing a 2D-TPP dataset

Examples

```r
data("config_tab")
data("raw_dat_list")
import_df <- import2dDataset(configTable = config_tab,
data = raw_dat_list,
idVar = "protein_id",
intensityStr = "signal_sum_",
fcStr = "rel_fc_",
nonZeroCols = "qusm",
geneNameVar = "gene_name",
addCol = NULL,
qualColName = "qupm",
naStrs = c("NA", "n/d", "NaN"),
conFactor = 1e6,
medianNormalizeFC = TRUE,
filterContaminants = TRUE)
```
import2dMain

Usage

import2dMain(
 configTable, # character string of a file path to a config table
 data, # possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referenced in config table, default is NULL
 idVar, # character string indicating which data column provides the unique identifiers for each protein.
 fcStr, # character string indicating which columns contain the actual fold change values. Those column names containing the suffix `fcStr` will be regarded as containing fold change values.
 addCol, # character string indicating additional column to import
 naStrs, # character vector indicating missing values in the data table. When reading data from file, this value will be passed on to the argument `na.strings` in function `read.delim`.
 intensityStr, # character string indicating which columns contain raw intensities measurements
 qualColName, # character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers.
 nonZeroCols # column like default qssm that should be imported and requested to be non-zero in analyzed data
)

Arguments

- `configTable`: character string of a file path to a config table
- `data`: possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referenced in config table, default is NULL
- `idVar`: character string indicating which data column provides the unique identifiers for each protein.
- `fcStr`: character string indicating which columns contain the actual fold change values. Those column names containing the suffix `fcStr` will be regarded as containing fold change values.
- `addCol`: character string indicating additional column to import
- `naStrs`: character vector indicating missing values in the data table. When reading data from file, this value will be passed on to the argument `na.strings` in function `read.delim`.
- `intensityStr`: character string indicating which columns contain raw intensities measurements
- `qualColName`: character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers.
- `nonZeroCols`: column like default qssm that should be imported and requested to be non-zero in analyzed data

Value

- list of data frames containing different datasets

Examples

```r
data("config_tab")
data("raw_dat_list")
dataList <- import2dMain(configTable = config_tab,
  data = raw_dat_list,
  idVar = "protein_id",
  fcStr = "rel_fc_",
  addCol = "gene_name",
  naStrs = NA,
```
plot2dTppFcHeatmap

intensityStr = "signal_sum_",
nonZeroCols = "qusm",
qualColName = "qupm")

plot2dTppFcHeatmap

Plot heatmap of 2D thermal profile fold changes of a protein of choice

Description
Plot heatmap of 2D thermal profile fold changes of a protein of choice

Usage
plot2dTppFcHeatmap(df, name, drug_name = "", midpoint = 1)

Arguments
- df: tidy data frame of a 2D-TPP dataset
- name: gene name (clustername) of protein that should be visualized
- drug_name: character string of profiled drug name
- midpoint: midpoint of fold changes for color scaling, default: 1

Value
A ggplot displaying the thermal profile as a heatmap of fold changes of a protein of choice in a dataset of choice

Examples
data("simulated_cell_extract_df")
plot2dTppFcHeatmap(simulated_cell_extract_df,
"tp2", drug_name = "drug1")

plot2dTppFit

Plot H0 or H1 fit of 2D thermal profile intensities of a protein of choice

Description
Plot H0 or H1 fit of 2D thermal profile intensities of a protein of choice
plot2dTppFit

Usage

```
plot2dTppFit(
  df,
  name,
  model_type = "H0",
  optim_fun = .min_RSS_h0,
  optim_fun_2 = NULL,
  maxit = 500,
  xlab = "-log10(conc.)",
  ylab = "log2(summed intensities)",
  dot_size = 1,
  line_type = "solid",
  fit_color = "gray30"
)
```

Arguments

df tidy data frame of a 2D-TPP dataset
name gene name (clustername) of protein that should be visualized
model_type character string indicating whether the "H0" or the "H1" model should be fitted
optim_fun optimization function that should be used for fitting either the H0 or H1 model
optim_fun_2 optional additional optimization function that will be run with parameters retrieved from optim_fun and should be used for fitting the H1 model with the trimmed sum model, default is NULL
maxit maximal number of iterations the optimization should be given, default is set to 500
xlab character string of x-axis label of plot
ylab character string of y-axis label of plot
dot_size numeric indicating the size of the data points to plot
line_type character string defining the line type of the fitted curve, default "dashed"
fit_color character string defining the color of the fitted curve

Value

A ggplot displaying the thermal profile of a protein of choice in a dataset of choice

Examples

data("simulated_cell_extract_df")
plot2dTppProfile(simulated_cell_extract_df, "protein1")
plot2dTppProfile

Plot 2D thermal profile intensities of a protein of choice

Description
Plot 2D thermal profile intensities of a protein of choice

Usage
plot2dTppProfile(df, name)

Arguments
- df: tidy data frame of a 2D-TPP dataset
- name: gene name (clusternme) of protein that should be visualized

Value
A ggplot displaying the thermal profile of a protein of choice in a dataset of choice

Examples
data("simulated_cell_extract_df")
plot2dTppProfile(simulated_cell_extract_df, "protein1")

plot2dTppRelProfile

Plot 2D thermal profile ratios of a protein of choice

Description
Plot 2D thermal profile ratios of a protein of choice

Usage
plot2dTppRelProfile(df, name)

Arguments
- df: tidy data frame of a 2D-TPP dataset
- name: gene name (clusternme) of protein that should be visualized

Value
A ggplot displaying the thermal profile ratios of a protein of choice in a dataset of choice
plot2dTppVolcano

Examples

data("simulated_cell_extract_df")
plot2dTppRelProfile(simulated_cell_extract_df, "protein1")

plot2dTppVolcano

Plot Volcano plot of TPP2D results

Description

Plot Volcano plot of TPP2D results

Usage

plot2dTppVolcano(
 fdr_df,
 hits_df,
 alpha = 0.5,
 title_string = "",
 x_lim = NULL,
 y_lim = NULL,
 facet_by_obs = FALSE
)

Arguments

fdr_df data frame obtained from ‘getFDR’
hits_df hits_df data frame obtained from ‘findHits’
alpha transparency level of plotted points
title_string character argument handed over to ggtitle
x_lim vector with two numerics indicating the x axis limits
y_lim vector with two numerics indicating the y axis limits
facet_by_obs logical indicating whether plot should be facetted by number of observations, default: FALSE

Value

a ggplot displaying a volcano plot of the results obtained after a TPP2D analysis
Examples

data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
 filter(clustername %in% paste0("protein", 1:5)) %>%
 group_by(representative) %>%
 mutate(nObs = n()) %>%
 ungroup
example_params <- getModelParamsDf(temp_df)
example_fstat <- computeFStatFromParams(example_params)
example_null <- bootstrapNullAlternativeModel(
 df = temp_df, params_df = example_params,
 B = 2)
fdr_df <- getFDR(example_fstat, example_null)
hits_df <- findHits(fdr_df, 0.1)
plot2dTppVolcano(fdr_df = fdr_df, hits_df = hits_df)

raw_dat_list

Example raw data for a subset of a simulated 2D-TPP cell extract dataset

Description

Simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package. It contains a list of data frames resembling raw data files returned from a MS database search with 200 simulated protein profiles (protein1-200) and 3 spiked-in true positives (TP1-3).

Usage

data("raw_dat_list")

Format

list of data frames with columns representative (protein id), clusternme (gene name), temperature, log_conc, raw_value, rel_value, value and log2_value

recomputeSignalFromRatios

Recompute robust signal intensities based on bootstrapped TMT channel ratios

Description

Recompute robust signal intensities based on bootstrapped TMT channel ratios

Usage

recomputeSignalFromRatios(df)
renameColumns

Arguments

 df tidy data_frame retrieved after import of a 2D-TTP dataset

Value

 A data_frame with recomputed signal intensities (columnname: value) and log2 transformed signal intensities (column name: log2_value) that more reliably reflect relative ratios between the TMT channels

Examples

 data("simulated_cell_extract_df")
 recomputeSignalFromRatios(simulated_cell_extract_df)

renameColumns Rename columns of imported data frame

Description

 Rename columns of imported data frame

Usage

 renameColumns(dataLong, idVar, geneNameVar)

Arguments

 dataLong long format data frame of imported dataset
 idVar character string indicating which data column provides the unique identifiers for each protein.
 geneNameVar character string of the column name that describes the gene name of a given protein in the raw data files

Value

 data frame containing imported data with renamed columns

Examples

 data("config_tab")
 data("raw_dat_list")

 dataList <- import2dMain(configTable = config_tab,
 data = raw_dat_list,
 idVar = "protein_id",
 fcStr = "rel_fc_",
Description

Resolve ambiguous protein names

Usage

```r
resolveAmbiguousProteinNames(df, includeIsoforms = FALSE)
```

Arguments

- **df**: tidy data frame retrieved after import of a 2D-TPP dataset
- **includeIsoforms**: logical indicating whether protein isoform should be kept for analysis

Value

data frame with resolved protein name ambiguity

Examples

```r
tst_df <- bind_rows(tibble(representative = rep(1:3, each = 3),
                          clusternname = rep(letters[1:3], each = 3)),
                    tibble(representative = rep(c(4, 5), c(3, 2)),
                            clusternname = rep(c("a", "b"), c(3, 2))))

resolveAmbiguousProteinNames(tst_df)
```
Description

Run complete TPP2D analysis

Usage

runTPP2D(
 df = NULL,
 configTable = NULL,
 data = NULL,
 idVar = "protein_id",
 intensityStr = "signal_sum_",
 fcStr = "rel_fc_",
 nonZeroCols = "qusm",
 geneNameVar = "gene_name",
 addCol = NULL,
 qualColName = "qupm",
 naStrs = c("NA", "n/d", "NaN"),
 concFactor = 1e+06,
 medianNormalizeFC = TRUE,
 filterContaminants = TRUE,
 recomputeSignalRatios = FALSE,
 minObs = 20,
 independentFiltering = FALSE,
 fcThres = 1.5,
 optim_fun_h0 = .min_RSS_h0,
 optim_fun_h1 = .min_RSS_h1_slope_pEC50,
 optim_fun_h1_2 = NULL,
 gr_fun_h0 = NULL,
 gr_fun_h1 = NULL,
 gr_fun_h1_2 = NULL,
 slopEC50 = TRUE,
 maxit = 750,
 BPPARAM = BiocParallel::SerialParam(progressbar = TRUE),
 B = 20,
 byMsExp = TRUE,
 alpha = 0.1
)

Arguments

df
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column “nObs” containing the number of observations per protein
configTable character string of a file path to a config table

data possible list of datasets from different MS runs corresponding to a 2D-TPP
dataset, circumvents loading datasets referenced in config table, default is NULL

idVar character string indicating which data column provides the unique identifiers for
each protein.

intensityStr character string indicating which columns contain raw intensities measurements

fcStr character string indicating which columns contain the actual fold change values.
Those column names containing the suffix fcStr will be regarded as containing
fold change values.

nonZeroCols column like default qssm that should be imported and requested to be non-zero
in analyzed data

geneNameVar character string of the column name that describes the gene name of a given
protein in the raw data files

addCol character string indicating additional column to import

qualColName character string indicating which column can be used for additional quality cri-
teria when deciding between different non-unique protein identifiers.

naStrs character vector indicating missing values in the data table. When reading data
from file, this value will be passed on to the argument na.strings in function
read.delim.

concFactor numeric value that indicates how concentrations need to be adjusted to yield
total unit e.g. default mmol - 1e6

medianNormalizeFC perform median normalization (default: TRUE).

filterContaminants logical variable indicating whether data should be filtered to exclude contami-
nants (default: TRUE).

recomputeSignalRatios logical variable indicating whether signals should be recomputed from relative
fold changes, recommended if Isobarquant was used for protein quantification

minObs number of minimal observations per protein to include it in the analysis

independentFiltering logical variable indicating whether independent filtering should be performed
based on minimal fold changes per protein profile

fcThres numeric value of minimal fold change (or inverse fold change) a protein has to
show to be kept upon independent filtering

optim_fun_h0 optimization function that should be used for fitting the H0 model

optim_fun_h1 optimization function that should be used for fitting the H1 model

optim_fun_h1_2 optional additional optimization function that will be run with paramters re-
trieved from optim_fun_h1 and should be used for fitting the H1 model with the
trimmed sum model, default is NULL

gr_fun_h0 optional gradient function for optim_fun_h0, default is NULL

gr_fun_h1 optional gradient function for optim_fun_h1, default is NULL
simulated_cell_extract_df

gr_fun_h1_2 optional gradient function for optim_fun_h1_2, default is NULL
slopEC50 logical flag indicating whether the h1 model is fitted with a linear model
describing the shift of the pEC50 over temperatures
maxit maximal number of iterations the optimization should be given, default is set to
 500
BPPARAM = BiocParallel::SerialParam(progressbar = TRUE),
 B
numeric value indicating number of rounds of bootstraps that should be performed to
estimate the null distribution
byMsExp logical indicating whether bootstrapping should be performed within MS
 experiments
alpha FDR level that should be controlled

Value
a tpp2dExperiment object

Examples

data("simulated_cell_extract_df")
runTPP2D(df = simulated_cell_extract_df %>%
 filter(representative %in% 1:3),
 B = 1)

simulated_cell_extract_df
Example subset of a simulated 2D-TPP cell extract dataset

Description
Simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package.
It contains a tidy data frame after import and recomputing of robust signal intensities with 200
simulated protein profiles (protein1-200) and 3 spiked-in true positives (TP1-3)

Usage

data("simulated_cell_extract_df")

Format

data frame with columns representative (protein id), clusternme (gene name), temperature, log_conc,
raw_value, rel_value, value and log2_value
TPP2D-defunct

Defunct functions in package TPP2D.

Description
The functions listed below are defunct and will be removed in the near future. When possible, alternative functions with similar functionality are also mentioned. Help pages for deprecated functions are available at help("-deprecated").

Usage
computeFdr(df_out, df_null)

Details
TPP2D defunct functions

computeFdr
For computeFdr, use getFDR.

tpp2dExperiment-class

S4 TPP2D Experiment Class

Description
S4 TPP2D Experiment Class

Value
an object of class tpp2dExperiment

Slots
configTable data.frame.
idVar character.
intensityStr character.
fcStr character.
nonZeroCols character.
geneNameVar character.
qualColName character.
naStrs character.
concFactor numeric.
TPP_importCheckConfigTable

medianNormalizeFC logical.
filterContaminants logical.
minObs numeric.
independentFiltering logical.
fCThres numeric.
optim_fun_h0 function.
optim_fun_h1 function.
slopEC50 logical.
maxit numeric.
BPPARAM character.
B numeric
byMsExp logical.
alpha numeric.
tidyDataTable data.frame.
modelParamsDf data.frame
resultTable data.frame
bootstrapNullDf data.frame
hitTable data.frame

Examples

 tpp2dObj <- new("tpp2dExperiment")

TPP_importCheckConfigTable

 Import and check configuration table

Description

 Import and check configuration table

Usage

 TPP_importCheckConfigTable(infoTable, type = "2D")

Arguments

 infoTable character string of a file path to a config table (excel,txt or csv file) or data frame containing a config table
 type character string indicating dataset type default is 2D
TPP_importCheckConfigTable

Value

data frame with config table

Examples

data("config_tab")
TPP_importCheckConfigTable(config_tab, type = "2D")
Index

* datasets
 config_tab, 12
 raw_dat_list, 29
 simulated_cell_extract_df, 34

* internal
 computeFdr-defunct, 10
 TPP2D-defunct, 35

annotateDataList, 3
bootstrapNull, 4
bootstrapNullAlternativeModel, 5
bootstrapNullAlternativeModelFast, 7
competeModels, 9
computeFdr (TPP2D-defunct), 35
computeFdr-defunct, 10
computeFstat, 10
computeFStatFromParams, 11
config_tab, 12
configWide2Long, 12
filterOutContaminants, 13
findHits, 13
fitAndEvalDataset, 14
fitH0Model, 15
fitH1Model, 16
getFDR, 17, 35
getModelParamsDf, 18
getPCE504Temperature, 19
getPvalues, 20
gg_qq, 21
import2dDataset, 22
import2dMain, 23
plot2dTppFcHeatmap, 25
plot2dTppFit, 25
plot2dTppProfile, 27
plot2dTppRelProfile, 27
plot2dTppVolcano, 28
raw_dat_list, 29
recomputeSignalFromRatios, 29
renameColumns, 30
resolveAmbiguousProteinNames, 31
runTPP2D, 32
simulated_cell_extract_df, 34
tpcResult (tpp2dExperiment-class), 35
TPP2D-defunct, 35
tpp2dExperiment-class, 35
TPP_importCheckConfigTable, 36