Package ‘VAExprs’
March 21, 2024

Type Package
Title Generating Samples of Gene Expression Data with Variational Autoencoders
Description A fundamental problem in biomedical research is the low number of observations, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. By augmenting a few real observations with artificially generated samples, their analysis could lead to more robust and higher reproducible. One possible solution to the problem is the use of generative models, which are statistical models of data that attempt to capture the entire probability distribution from the observations. Using the variational autoencoder (VAE), a well-known deep generative model, this package is aimed to generate samples with gene expression data, especially for single-cell RNA-seq data. Furthermore, the VAE can use conditioning to produce specific cell types or subpopulations. The conditional VAE (CVAE) allows us to create targeted samples rather than completely random ones.

Version 1.8.0
Date 2022-05-16
LazyData TRUE
Depends keras, mclust
Imports SingleCellExperiment, SummarizedExperiment, tensorflow, scater, CatEncoders, DeepPINCS, purrr, DiagrammeR, stats
Suggests SC3, knitr, testthat, reticulate, markdown
License Artistic-2.0
biocViews Software, GeneExpression, SingleCell
NeedsCompilation no
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/VAExprs
git_branch RELEASE_3_18
git_last_commit 7c08c18
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-20
Author Dongmin Jung [cre, aut] (<https://orcid.org/0000-0001-7499-8422>)
Maintainer Dongmin Jung <dmdmjung@gmail.com>
R topics documented:

- fit_vae 2
- gen_exprs 5
- plot_aug 7
- plot_vae 9

Index 11

fit_vae

Variational autoencoder model fitting

Description

A fundamental problem in biomedical research is the low number of observations available. Augmenting a few real observations with generated in silico samples could lead to more robust analysis. Here, the variational autoencoder (VAE) is used for the realistic generation of single-cell RNA-seq data. Also, the conditional variational autoencoder (CVAE) can be used if labels of samples are available. This function allows us to fit variational autoencoders with the standard Gaussian prior to expression data. It is assumed that there will likely be no clusters in the latent space representation of variational autoencoders.

Usage

```r
fit_vae(object = NULL,
       x_train = NULL,
       x_val = NULL,
       y_train = NULL,
       y_val = NULL,
       encoder_layers,
       decoder_layers,
       latent_dim = 2,
       regularization = 1,
       epochs,
       batch_size,
       preprocessing = list(
         x_train = NULL,
         x_val = NULL,
         y_train = NULL,
         y_val = NULL,
         minmax = NULL,
         lenc = NULL),
       use_generator = FALSE,
       optimizer = "adam",
       validation_split = 0, ...)
```

Arguments

- **object**: SummarizedExperiment object
- **x_train**: expression data for train, where each row is a cell and each column is a gene
- **x_val**: expression data for validation, where each row is a cell and each column is a gene
- **y_train**: labels for train
- **y_val**: labels for validation
- **encoder_layers**: list of layers for encoder
- **decoder_layers**: list of layers for decoder
- **latent_dim**: dimension of latent vector (default: 2)
- **regularization**: regularization parameter, which is nonnegative (default: 1)
- **epochs**: number of epochs
- **batch_size**: batch size
- **preprocessing**: list of preprocessed results, they are set to NULL as default
 - x_train: expression data for train
 - x_val: expression data for validation
 - y_train: labels for train
 - y_val: labels for validation
 - minmax: result of min-max normalization
 - lenc: encoded labels
- **use_generator**: use data generator if TRUE (default: FALSE)
- **optimizer**: name of optimizer (default: adam)
- **validation_split**: proportion of validation data, it is ignored when there is a validation set (default: 0)
- **...**: additional parameters for the "fit" or "fit_generator"

Value

- **model**: trained VAE model
- **encoder**: trained encoder model
- **decoder**: trained decoder model
- **preprocessing**: preprocessed results

Author(s)

Dongmin Jung

References

See Also

SummarizedExperiment::assay, SummarizedExperiment::colData, scater::logNormCounts, keras::fit, keras::fit_generator, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, DeepPINCS::multiple_sampling_generator

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  ### simulate differentially expressed genes
  set.seed(1)
  g <- 3
  n <- 100
  m <- 1000
  mu <- 5
  sigma <- 5
  mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
  rownames(mat) <- paste0("gene", seq_len(m))
  colnames(mat) <- paste0("cell", seq_len(n*g))
  group <- factor(sapply(seq_len(g), function(x) {
    rep(paste0("group", x), n)
  })), names(group) <- colnames(mat)
  mu_upreg <- 6
  sigma_upreg <- 10
  deg <- 100
  for (i in seq_len(g)) {
    mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <-
      mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
  }
  # positive expression only
  mat[mat < 0] <- 0
  x_train <- as.matrix(t(mat))

  ### model
  batch_size <- 32
  original_dim <- 1000
  intermediate_dim <- 512
  epochs <- 2
  # VAE
  vae_result <- fit_vae(x_train = x_train,
                         encoder_layers = list(layer_input(shape = c(original_dim)),
                                layer_dense(units = intermediate_dim,
                                              activation = "relu")),
                         decoder_layers = list(layer_dense(units = intermediate_dim,
                                                           activation = "relu"),
                                       layer_dense(units = original_dim,
                                                    activation = "sigmoid")),
                         epochs = epochs, batch_size = batch_size,
                         validation_split = 0.5,
                         use_generator = FALSE,
                         callbacks = keras::callback_early_stopping(}
```
from preprocessing

```r
vae_result_preprocessing <- fit_vae(preprocessing = vae_result$preprocessing,
          encoder_layers = list(layer_input(shape = c(original_dim),
                                          layer_dense(units = intermediate_dim,
                                                        activation = "relu")),
          decoder_layers = list(layer_dense(units = intermediate_dim,
                                             activation = "relu"),
                                           layer_dense(units = original_dim,
                                                        activation = "sigmoid")),
          epochs = epochs, batch_size = batch_size,
          validation_split = 0.5,
          use_generator = FALSE,
          callbacks = keras::callback_early_stopping(
                     monitor = "val_loss",
                     patience = 10,
                     restore_best_weights = TRUE))
```

gen_exprs
Generate samples with expression data

Description

This function generate expression data by drawing samples from the latent vectors following the standard multivariate Gaussian distribution (the standard multivariate normal distribution) for convenience. However, this assumption for the prior may not be appropriate because there may be underlying distinctions between groups of samples. Any density function can be modeled by the Gaussian mixture model. Here, by using the library "mclust", the finite Gaussian mixture is applied for such sampling. Note that the Gaussian mixture model is not used for fitting in the function "fit_vae".

Usage

```r
gen_exprs(x, num_samples,  
           batch_size, use_generator = FALSE)
```

Arguments

- `x`
 result of the function "fit_vae"
- `num_samples`
 number of samples to be generated
- `batch_size`
 batch size
- `use_generator`
 use data generator if TRUE (default: FALSE)
Value

- `x_gen`: generated expression data, where each row is a cell and each column is a gene
- `y_gen`: generated labels
- `x_train`: real expression data, where each row is a cell and each column is a gene
- `y_train`: real labels
- `latent_vector`: latent vector from real expression data

Author(s)

Dongmin Jung

See Also

`mclust::mclustBIC`, `mclust::mclustModel`, `mclust::sim`, `DeepPINCS::multiple_sampling_generator`, `CatEncoders::inverse.transform`

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  ### simulate differentially expressed genes
  set.seed(1)
  g <- 3
  n <- 100
  m <- 1000
  mu <- 5
  sigma <- 5
  mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
  rownames(mat) <- paste0("gene", seq_len(m))
  colnames(mat) <- paste0("cell", seq_len(n*g))
  group <- factor(sapply(seq_len(g), function(x) {
    rep(paste0("group", x), n)
  }))
  names(group) <- colnames(mat)
  mu_upreg <- 6
  sigma_upreg <- 10
  deg <- 100
  for (i in seq_len(g)) {
    mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <-
      mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
  }
  # positive expression only
  mat[mat < 0] <- 0
  x_train <- as.matrix(t(mat))

  ### model
  batch_size <- 32
  original_dim <- 1000
  intermediate_dim <- 512
  epochs <- 2
} 
```
VAE
vae_result <- fit_vae(x_train = x_train,
 encoder_layers = list(layer_input(shape = c(original_dim)),
 layer_dense(units = intermediate_dim,
 activation = "relu")),
 decoder_layers = list(layer_dense(units = intermediate_dim,
 activation = "relu"),
 layer_dense(units = original_dim,
 activation = "sigmoid"),
 epochs = epochs, batch_size = batch_size,
 validation_split = 0.5,
 use_generator = FALSE,
 callbacks = keras::callback_early_stopping(
 monitor = "val_loss",
 patience = 10,
 restore_best_weights = TRUE))

plot
plot_vae(vae_result$model)

generate samples
set.seed(1)
gen_sample_result <- gen_exprs(vae_result, num_samples = 100)

plot_aug

`plot_aug` **Visualization for augmented data**

Description
For augmented data, we can create plots for specific types of dimension reduction.

Usage

`plot_aug(x, plot_fun, ...)`

Arguments
- `x` : result of the function "gen_exprs"
- `plot_fun` : "PCA", "MDS", "TSNE", "UMAP", "NMF", or "DiffusionMap"
- `...` : additional parameters for the reduced dimension plots such as "scater::runPCA"

Value
plot for augmented data

Author(s)
Dongmin Jung
See Also

SingleCellExperiment::SingleCellExperiment, scater::logNormCounts, scater::runPCA, scater::runMDS,
scater::runTSNE, scater::runUMAP, scater::runNMF, scater::runDiffusionMap, scater::plotPCA, scater::plotMDS,
scater::plotTSNE, scater::plotUMAP, scater::plotNMF, scater::plotDiffusionMap

Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
### simulate differentially expressed genes
set.seed(1)
g <- 3
n <- 100
m <- 1000
mu <- 5
sigma <- 5
mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
rownames(mat) <- paste0("gene", seq_len(m))
colnames(mat) <- paste0("cell", seq_len(n*g))
group <- factor(sapply(seq_len(g), function(x) {
  rep(paste0("group", x), n)
})
)
names(group) <- colnames(mat)
uu <- 6
sigma_upreg <- 10
deg <- 100
for (i in seq_len(g)) {
  mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <-
    mat[1:deg, group==paste0("group", i)] + rnorm(deg, uu, sigma_upreg)
}
# positive expression only
mat[mat < 0] <- 0
x_train <- as.matrix(t(mat))

### model
batch_size <- 32
original_dim <- 1000
intermediate_dim <- 512
epochs <- 2
# VAE
vae_result <- fit_vae(x_train = x_train,
  encoder_layers = list(layer_input(shape = c(original_dim)),
    layer_dense(units = intermediate_dim,
      activation = "relu")),
  decoder_layers = list(layer_dense(units = intermediate_dim,
    activation = "relu"),
    layer_dense(units = original_dim,
      activation = "sigmoid")),
  epochs = epochs, batch_size = batch_size,
  validation_split = 0.5,
  use_generator = FALSE,
  callbacks = keras::callback_early_stopping(
```
plot_vae

```r
monitor = "val_loss",
patience = 10,
restore_best_weights = TRUE))

# plot
plot_vae(vae_result$model)

### generate samples
set.seed(1)
gen_sample_result <- gen_exprs(vae_result, num_samples = 100)
# plot
plot_aug(gen_sample_result, "PCA")
```

Description

You can create a plot of the VAE model. This plot can help you check that the model is connected the way you intended. The node colors indicate the components of the VAE.

Usage

```r
plot_vae(x, node_color = list(encoder_col = "tomato",
mean_vector_col = "orange",
stddev_vector_col = "lavender",
latent_vector_col = "lightblue",
decoder_col = "palegreen",
condition_col = "gray"))
```

Arguments

- `x`
 VAE model

- `node_color`
 node colors for encoder(default: tomato), mean vector(default: orange), standard deviation vector(default: lavender), latent vector(default: lightblue), decoder(default: palegreen), and condition(default: gray)

Value

plot for the model architecture

Author(s)

Dongmin Jung

See Also

purrr::map, purrr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz
Examples

```r
if (keras::is_keras_available() & reticulate::py_available()) {
  ### simulate differentially expressed genes
  set.seed(1)
  g <- 3
  n <- 100
  m <- 1000
  mu <- 5
  sigma <- 5
  mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
  rownames(mat) <- paste0("gene", seq_len(m))
  colnames(mat) <- paste0("cell", seq_len(n*g))
  group <- factor(sapply(seq_len(g), function(x) {
    rep(paste0("group", x), n)
  })))
  names(group) <- colnames(mat)
  mu_upreg <- 6
  sigma_upreg <- 10
  deg <- 100
  for (i in seq_len(g)) {
    mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <-
    mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
  }
  # positive expression only
  mat[mat < 0] <- 0
  x_train <- as.matrix(t(mat))

  ### model
  batch_size <- 32
  original_dim <- 1000
  intermediate_dim <- 512
  epochs <- 2
  # VAE
  vae_result <- fit_vae(x_train = x_train,
                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                              layer_dense(units = intermediate_dim,
                                                           activation = "relu")),
                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                           activation = "relu"),
                                              layer_dense(units = original_dim,
                                                           activation = "sigmoid")),
                        epochs = epochs, batch_size = batch_size,
                        validation_split = 0.5,
                        use_generator = FALSE,
                        callbacks = keras::callback_early_stopping(
                          monitor = "val_loss",
                          patience = 10,
                          restore_best_weights = TRUE))

  # plot
  plot_vae(vae_result$model)
}
```
Index

fit_vae, 2

gen_exprs, 5

plot_aug, 7
plot_vae, 9