Package ‘VplotR’

January 10, 2024

Type Package
Title Set of tools to make V-plots and compute footprint profiles
Version 1.12.1
Date 2021-11-21
Encoding UTF-8

Description The pattern of digestion and protection from DNA nucleases such as DNase I, micrococcal nuclease, and Tn5 transposase can be used to infer the location of associated proteins. This package contains useful functions to analyze patterns of paired-end sequencing fragment density. VplotR facilitates the generation of V-plots and footprint profiles over single or aggregated genomic loci of interest.

URL https://github.com/js2264/VplotR
BugReports https://github.com/js2264/VplotR/issues
Depends R (>= 4.0), GenomicRanges, IRanges, ggplot2
Imports cowplot, magrittr, GenomeInfoDb, GenomicAlignments, RColorBrewer, zoo, Rsamtools, S4Vectors, parallel, reshape2, methods, graphics, stats
Suggests GenomicFeatures, TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, testthat, covr, knitr, rmarkdown, pkgdown
VignetteBuilder knitr
biocViews NucleosomePositioning, Coverage, Sequencing, BiologicalQuestion, ATACSeq, Alignment
License GPL (>= 3)
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/VplotR
git_branch RELEASE_3_18
git_last_commit 3f96ff5
git_last_commit_date 2023-12-01
Repository Bioconductor 3.18
Date/Publication: 2024-01-09

Author: Jacques Serizay [aut, cre] (<https://orcid.org/0000-0002-4295-0624>)

Maintainer: Jacques Serizay <jacquesserizay@gmail.com>

R topics documented:

ABF1_sacCer3 .. 3
alignToTSS .. 3
ATAC_ce11_Serizay2020 4
bam_test .. 4
ce11_all_REs .. 5
cel1_proms .. 6
computeNucleosomeEnrichmentOverBackground 6
computeVmat .. 7
CTCF_hg38 .. 8
dehconvolveBidirectionalPromoters 9
getcuts .. 9
getFragmentsDistribution 10
importPEBamFiles ... 11
MNase_sacCer3_Henikoff2011 12
MNase_sacCer3_Henikoff2011_subset 12
normalizeVmat ... 13
nucleosomeEnrichment 14
nucleosomeEnrichment.GRanges 15
nucleosomeEnrichment.Vmat 15
plotFootprint ... 16
plotProfile ... 17
plotVmat .. 18
plotVmat.default .. 19
plotVmat.GRanges ... 20
plotVmat.list ... 21
plotVmat.Vmat ... 23
plotVmat.VmatList .. 24
REB1_sacCer3 ... 25
sampleGRanges .. 25
sampleGRanges.GRanges 26
shiftATACGranges .. 27
shuffleVmat ... 28
theme_ggplot2 ... 28

Index: 31
Description

Genomic loci with a REB1 binding motifs according to http://jaspar.genereg.net/api/v1/matrix/MA0265.1.jaspar. PWM and scanning done with TFBSTools.

Usage

data(ABF1_sacCer3)

Format

An object of class "GRanges".

References

Rossi, Lai & Pugh 2018 Genome Research

Examples

data(ABF1_sacCer3)
ABF1_sacCer3

alignToTSS

A function to re-align a GRanges object to TSSs

Description

This function re-aligns ranges (typically regulatory elements) to a set of coordinates, either the TSS column or the TSS.fwd and TSS.rev columns. If none are found, the function assumes the ranges are promoters and that the end or the ranges are the TSSs.

Usage

alignToTSS(granges, upstream = 0, downstream = 1)

Arguments

granges A stranded GRanges object with a TSS column or TSS.rev and TSS.fwd columns
upstream How many bases upstream of the TSS should the GRanges object be extended by? [Default: 0]
downstream How many bases downstream of the TSS should the GRanges object be extended by? [Default: 1]
Value

GRanges aligned to the TSS column or to TSS.rev and TSS.fwd columns, and extended by upstream/downstream bp.

Examples

data(cell1_proms)
cell1_proms
alignToTSS(cell1_proms)

ATAC_cell1_Serizay2020

Description

A sample of ATAC-seq fragments from individual worm tissues (Serizay et al. 2020, "Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes", BiorXiv)

Usage

data(ATAC_cell1_Serizay2020)

Format

An object of class "list".

Examples

data(ATAC_cell1_Serizay2020)
ATAC_cell1_Serizay2020

bam_test

Description

A .bam file sample

Usage

data(bam_test)

Format

An object of class "GRanges".

Examples

data(bam_test)
bam_test

data(ce11_all_REs)
table(ce11_all_REs$regulatory_class)
table(ce11_all_REs$which.tissues)

Description

Usage

data(ce11_all_REs)

Format

GRanges

Source

BiorXiv

References

Serizay et al. 2020, "Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes", BiorXiv. (DOI)
Description

Usage

data(ce11_proms)

Format

An object of class "GRanges".

Source

BiorXiv

References

Serizay et al. 2020, "Tissue-specific profiling reveals distinctive regulatory architectures for ubiquitous, germline and somatic genes", BiorXiv. (DOI)

Examples

data(ce11_proms)
table(ce11_proms$which.tissues)

desc

computeNucleosomeEnrichmentOverBackground

Internal function

Description

A function to compute nucleosome enrichment of a Vmat
Usage

computeNucleosomeEnrichmentOverBackground(
 Vmat,
 background = NULL,
 plus1_nuc_only = FALSE,
 minus1_nuc = list(c(xmin = -150, xmax = 70), c(ymin = 165, ymax = 260)),
 minus1_nuc_neg = list(c(xmin = -150, xmax = 70), c(ymin = 60, ymax = 145)),
 plus1_nuc = list(c(xmin = 70, xmax = 150), c(ymin = 165, ymax = 260)),
 plus1_nuc_neg = list(c(xmin = 70, xmax = 150), c(ymin = 50, ymax = 145)),
 ...
)

Arguments

Vmat A Vmat computed by nucleosomeEnrichment function
background a background Vmat
plus1_nuc_only Boolean Should compute nucleosome enrichment only for +1 nucleosome?
minus1_nuc list where the -1 nucleosome is located
minus1_nuc_neg where the background of the -1 nucleosome is located
plus1_nuc where the +1 nucleosome is located
plus1_nuc_neg where the background of the +1 nucleosome is located
... additional parameters

Value

list

computeVmat A function to compute Vplot matrix

Description

This function computes the underlying matrix shown as a heatmap in Vplots. For each pair of coordinates (x: distance from fragment midpoint to center of GRanges of interest; y: fragment size), the function computes how many fragments there are.

Usage

computeVmat(
 bam_granges,
 granges,
 cores = 1,
 xlims = c(-250, 250),
 ylims = c(50, 300)
)
Arguments

- **bam_granges**: GRanges, paired-end fragments
- **granges**: GRanges, regions to map the fragments onto
- **cores**: Integer, nb of threads to parallelize fragments subsetting
- **xlims**: The x limits of the computed Vmat
- **ylims**: The y limits of the computed Vmat

Value

A table object

Examples

```
data(bam_test)
data(ce11_all_REs)
Vmat <- computeVmat(bam_test, ce11_all_REs)
dim(Vmat)
Vmat[seq(1,5), seq(1,10)]
```

Description

high-score CTCF binding motifs, obtained from JASPAR

Usage

```
data(CTCF_hg38)
```

Format

An object of class "GRanges".

Examples

```
data(CTCF_hg38)
CTCF_hg38
```
deconvolveBidirectionalPromoters

A function to duplicate bi-directional GRanges

Description
This function splits bi-directional ranges into + and - stranded ranges. It duplicates the ranges which are '*'.

Usage
deconvolveBidirectionalPromoters(granges)

Arguments
granges A stranded GRanges object

Value
GRanges with only '+' and '-' strands. GRanges with '*' strand have been duplicated and split into forward and reverse strands.

Examples
data(cell_all_REs)
library(GenomicRanges)
proms <- cell_all_REs[grep('prom', cell_all_REs$regulatory_class)]
proms
table(strand(proms))
proms <- deconvolveBidirectionalPromoters(proms)
proms
table(strand(proms))

gCuts

Internal function

Description
Function to extract cuts (i.e. extremities) of fragments stored as GRanges.

Usage
gCuts(gr)

Arguments
gr GRanges Paired-end fragments used to extract their extremities
getFragmentsDistribution

A function to compute sizes distribution for paired-end fragments

Description

This function takes fragments and compute the distribution of their sizes over a set or multiple sets of GRanges.

Usage

getFragmentsDistribution(
 fragments,
 granges_list = NULL,
 extend_granges = c(-500, 500),
 limits = c(0, 600),
 roll = 3,
 cores = 1
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragments</td>
<td>GRanges object containing paired-end fragments. See importPEBamFiles for more details on how to create such object.</td>
</tr>
<tr>
<td>granges_list</td>
<td>GRanges, can be a list of different sets of GRanges.</td>
</tr>
<tr>
<td>extend_granges</td>
<td>numeric vector of length 2, how the GRanges should be extended.</td>
</tr>
<tr>
<td>limits</td>
<td>numeric vector of length 2, only consider fragments within this window of sizes.</td>
</tr>
<tr>
<td>roll</td>
<td>Integer, apply a moving average of this size</td>
</tr>
<tr>
<td>cores</td>
<td>Integer, number of threads used to compute fragment size distribution</td>
</tr>
</tbody>
</table>

Value

A list of tbl, one for each .bam file.

Examples

data(bam_test)
data(cell_proms)
df <- getFragmentsDistribution(
 bam_test,
 cell_proms,
 extend_granges = c(-500, 500)
)
head(df)
which.max(df$y)
importPEBamFiles

A function to import paired end bam files as GRanges

Description

This function takes bam file paths and read them into GRanges objects. Note: Can be quite lengthy for .bam files with 5+ millions fragments.

Usage

importPEBamFiles(
 files,
 genome = NULL,
 where = NULL,
 max_insert_size = 1000,
 shift_ATAC_fragments = FALSE,
 cores = 10,
 verbose = TRUE
)

Arguments

files character vector, each element of the vector is the path of an individual .bam file.
genome character, genome ID (e.g. "sacCer3", "ce11", "dm6", "mm10" or "hg38").
where GRanges, only import the fragments mapping to the input GRanges (can fasten the import process a lot).
max_insert_size Integer, filter out fragments larger than this size.
shift_ATAC_fragments Boolean, if the fragments come from ATAC-seq, one might want to shift the extremities by +5 / -4 bp.
cores Integer, number of cores to use when indexing bam files
verbose Boolean

Value

A GRanges object containing fragments from the input .bam file.

Examples

bamfile <- system.file("extdata", "ex1.bam", package = "Rsamtools")
fragments <- importPEBamFiles(
 bamfile,
 shift_ATAC_fragments = TRUE
)
fragments
MNase_sacCer3_Henikoff2011

Description

A sample of MNase-seq fragments from yeast (Henikoff et al. 2011, "Epigenome characterization at single base-pair resolution", PNAS)

Usage

data(MNase_sacCer3_Henikoff2011)

Format

An object of class "GRanges".

Examples

data(MNase_sacCer3_Henikoff2011)
MNase_sacCer3_Henikoff2011

MNase_sacCer3_Henikoff2011_subset

Description

A sample of fragments from multiple MNase-seq experiments performed in yeast (Henikoff et al. 2011, "Epigenome characterization at single base-pair resolution", PNAS), mapping over chrXV:186,400-187,400.

Usage

data(MNase_sacCer3_Henikoff2011_subset)

Format

An object of class "GRanges".

Examples

data(MNase_sacCer3_Henikoff2011_subset)
MNase_sacCer3_Henikoff2011_subset
normalizeVmat

normalizeVmat

A function to normalized a Vmat

Description

This function normalizes a Vmat. Several different approaches have been implemented to normalize the Vmats.

Usage

normalizeVmat(
 Vmat,
 bam_granges,
 granges,
 normFun = c("zscore"),
 s = 0.99,
 roll = 1,
 verbose = TRUE
)

Arguments

Vmat
A Vmat, usually output of computeVmat

bam_granges
GRanges, the paired-end fragments

granges
GRanges, the regions to map the fragments onto

normFun
character. A Vmat should be scaled either by:
 • 'libdepth+nloci', e.g. the library depth and the number of loci used to compute the Vmat;
 • zscore, if relative patterns of fragment density are more important than density per se;
 • Alternatively, the Vmat can be scaled to a chosen quantile ('quantile') or to the max Vmat value ('max').

s
A float indicating which quantile to use if 'quantile' normalization is chosen

roll
integer, to use as the window to smooth the Vmat rows by rolling mean.

verbose
Boolean

Value

A normalized Vmat object
nucleosomeEnrichment

Examples

```r
data(bam_test)
data(ce11_all_REs)
Vmat <- computeVmat(bam_test, ce11_all_REs)
Vmat <- normalizeVmat(
  Vmat,
  bam_test,
  ce11_all_REs,
  normFun = c('libdepth+nloci')
)
```

nucleosomeEnrichment A function to compute nucleosome enrichment over a set of GRanges

Description

A function to compute nucleosome enrichment over a set of GRanges

Usage

```r
nucleosomeEnrichment(x, ...)
```

Arguments

- `x` : a GRanges or Vmat
- `...` : additional parameters

Value

list

Examples

```r
data(bam_test)
data(ce11_proms)
n <- nucleosomeEnrichment(bam_test, ce11_proms)
n$fisher_test
n$plot
```
nucleosomeEnrichment.GRanges

A function to compute nucleosome enrichment over a set of GRanges

Description
A function to compute nucleosome enrichment over a set of GRanges

Usage
S3 method for class 'GRanges'
nucleosomeEnrichment(x, granges, plus1_nuc_only = FALSE, verbose = TRUE, ...)

Arguments
- x: GRanges, paired-end fragments
- granges: GRanges, loci to map the fragments onto
- plus1_nuc_only: Boolean, should compute nucleosome enrichment only for +1 nucleosome?
- verbose: Boolean
- ...: additional parameters

Value
list

Examples
data(bam_test)
data(cell_proms)
n <- nucleosomeEnrichment(bam_test, cell_proms)
n$fisher_test
n$plot

nucleosomeEnrichment.Vmat

A function to compute nucleosome enrichment over a Vmat

Description
A function to compute nucleosome enrichment over a Vmat

Usage
S3 method for class 'Vmat'
nucleosomeEnrichment(x, background, plus1_nuc_only = FALSE, ...)

Arguments
- x: Vmat
- background: GRanges, loci to map the fragments onto
- plus1_nuc_only: Boolean, should compute nucleosome enrichment only for +1 nucleosome?
- verbose: Boolean
- ...: additional parameters

Value
list

Examples

Arguments

- `x`: a computed Vmat. Should be un-normalized.
- `background`: a background Vmat. Should be un-normalized.
- `plus1_nuc_only`: Boolean, should compute nucleosome enrichment only for +1 nucleosome?

Value

- `list`

Examples

```r
data(bam_test)
data(ce11_proms)
V <- plotVmat(
  bam_test,
  ce11_proms,
  normFun = "",
  return_Vmat = TRUE
)
V_bg <- plotVmat(
  bam_test,
  sampleGRanges(ce11_proms),
  normFun = "",
  return_Vmat = TRUE
)
```n <- nucleosomeEnrichment(V, V_bg)n$fisher_testn$plot```

plotFootprint
A function to plot footprint of paired-end data at given loci

Description

This function takes paired-end fragments, extract the "cuts" (i.e. extremities) and plot the footprint profile over a set of GRanges.

Usage

```r
plotFootprint(  
  frags,  
  targets,  
  split_strand = FALSE,  
  plot_central = TRUE,  
  xlim = c(-75, 75),  
  bin = 1,  
  verbose = 1  
)```
**plotProfile**

### Arguments

- **frags** GRanges, the paired-end fragments
- **targets** GRanges, the loci to map the fragments onto
- **split_strand** Boolean, should the + and - strand be splitted?
- **plot_central** plot grey rectangle over the loci
- **xlim** numeric vector of length 2, the x limits of the computed Vmat
- **bin** Integer, bin used to smooth the footprint profile
- **verbose** Integer

### Value

A footprint ggplot

### Examples

```r
data(bam_test)
data(ce11_proms)
plotFootprint(bam_test, ce11_proms)
```

### Description

The paired-end fragments overlapping a locus of interest (e.g., binding sites, provided in the ‘loci’ argument) are shown in red while the remaining fragments mapping to the genomic window are displayed in black. Marginal curves are also plotted on the side of the distribution plot. They highlight the smoothed distribution of the position of paired-end fragment midpoints (top) or of the paired-end fragment length (right)

### Usage

```r
plotProfile(
 fragments,
 window = loc,
 loci = NULL,
 annots = NULL,
 min = 50,
 max = 200,
 alpha = 0.5,
 size = 1,
 with_densities = TRUE,
 verbose = TRUE
)
```
Arguments

fragments  GRanges
window    character, chromosome location
loci      GRanges, optional genomic locus. Fragments overlapping this locus will be in red.
annots   GRanges, optional gene annotations
min       integer, minimum fragment size
max       integer, maximum fragment size
alpha     float, transparency value
size      float, dot size
with_densities Boolean, should the densities be plotted?
verbose   Boolean

Value

A ggplot

Examples

data(bam_test)
data(ce11_proms)
V <- plotProfile(
bam_test,
  'chrI:10000-12000',
  loci = ce11_proms,
  min = 80,
  max = 200
)

plotVmat  A function to generate a Vplot

Description

See individual methods for further detail

Usage

plotVmat(x, ...)

Arguments

x  GRanges or list or Vmat
...
  additional parameters
Value

A Vmat ggplot

Examples

data(bam_test)
data(ce11_proms)
V <- plotVmat(
  bam_test,
  ce11_proms,
  normFun = 'libdepth+nloci'
)

Description

The default plotVmat method generates a ggplot representing a heatmap of fragment density.

Usage

```r
Default S3 method:
plotVmat(
 x,
 hm = 90,
 colors = COLORSCALE_VMAT,
 breaks = NULL,
 xlim = c(-250, 250),
 ylim = c(50, 300),
 main = "",
 xlab = "Distance from center of elements",
 ylab = "Fragment length",
 key = "Score",
 ...
)
```

Arguments

- `x` A computed Vmat (ideally, should be normalized)
- `hm` Integer, should be between 0 and 100. Used to automatically scale the range of colors (best to keep between 90 and 100)
- `colors` A vector of colors
- `breaks` A vector of breaks. length(breaks) == length(colors) + 1
- `xlim` Vector of two integers, x limits
- `ylim` Vector of two integers, y limits
main  character, title of the plot
xlab  character, x-axis label
ylab  character, y-axis label
key   character, legend label
...  additional parameters

Value

A Vmat ggplot

Examples

```r
data(bam_test)
data(cell_proms)
V <- plotVmat(
 bam_test,
 cell_proms,
 normFun = 'libdepth+nloci',
 return_Vmat = TRUE
)
plotVmat(V)
```

Description

The plotVmat.GRanges() method computes and normalizes a Vmat before passing it to plotVmat.Vmat() method.

Usage

```r
S3 method for class 'GRanges'
plotVmat(
 x,
 granges,
 xlims = c(-250, 250),
 ylims = c(50, 300),
 normFun = '',
 s = 0.95,
 roll = 3,
 cores = 1,
 return_Vmat = FALSE,
 verbose = 1,
 ...
)
```
plotVmat.list

Arguments

x     GRanges, paired-end fragments
granges     GRanges, loci to map the fragments onto
xlims     x limits of the computed Vmat
ylims     y limits of the computed Vmat
normFun     character. A Vmat should be scaled either by:
  • 'libdepth+nloci', e.g. the library depth and the number of loci used to compute the Vmat;
  • zscore, if relative patterns of fragment density are more important than density per se;
  • Alternatively, the Vmat can be scaled to a chosen quantile ('quantile') or to the max Vmat value ('max').
s     A float indicating which quantile to use if 'quantile' normalization is chosen
roll     integer, to use as the window to smooth the Vmat rows by rolling mean.
cores     Integer, number of threads to parallelize fragments subsetting
return_Vmat     Boolean, should the function return the computed Vmat rather than the plot?
verbose     Boolean
...     additional parameters

Value

A Vmat ggplot

Examples

data(bam_test)
data(ce11_proms)
V <- plotVmat(
  bam_test,
  ce11_proms,
  normFun = 'libdepth+nloci',
  roll = 5
)

plotVmat.list     A function to compute (and plot) several Vmats.

Description

The plotVmat.GRanges() method computes and normalizes multiple Vmats before passing them to plotVmat.VmatList() method.
Usage

```r
S3 method for class 'list'
plotVmat(
 x,
 cores = 1,
 cores_subsetting = 1,
 nrow = NULL,
 ncol = NULL,
 xlims = c(-250, 250),
 ylims = c(50, 300),
 normFun = "libdepth+nloci",
 s = 0.95,
 roll = 3,
 return_Vmat = FALSE,
 verbose = 1,
 ...
)
```

Arguments

- `x`: list Each element of the list should be a list containing paired-end fragments and GRanges of interest.
- `cores`: Integer, number of cores to parallelize the plots
- `cores_subsetting`: Integer, number of threads to parallelize fragments subsetting
- `nrow`: Integer, how many rows in facet?
- `ncol`: Integer, how many cols in facet?
- `xlims`: x limits of the computed Vmat
- `ylims`: y limits of the computed Vmat
- `normFun`: character. A Vmat should be scaled either by:
  - 'libdepth+nloci’, e.g. the library depth and the number of loci used to compute the Vmat;
  - `zscore`, if relative patterns of fragment density are more important than density per se;
  - Alternatively, the Vmat can be scaled to a chosen quantile ('quantile') or to the max Vmat value ('max').
- `s`: A float indicating which quantile to use if 'quantile' normalization is chosen
- `roll`: integer, to use as the window to smooth the Vmat rows by rolling mean.
- `return_Vmat`: Boolean, should the function return the computed Vmat rather than the plot?
- `verbose`: Boolean
- `...`: additional parameters

Value

A list of Vmat ggplots
Examples

```r
data(bam_test)
data(cell_proms)
list_params <- list(
 'germline' = list(
 bam_test,
 cell_proms[cell_proms$which.tissues == 'Germline']
),
 'muscle' = list(
 bam_test,
 cell_proms[cell_proms$which.tissues == 'Muscle']
)
)
V <- plotVmat(
 list_params,
 normFun = 'libdepth+nloci',
 roll = 5
)
```

Description

The `plotVmat.Vmat()` method forwards the `Vmat` to `plotVmat.default()`.

Usage

```r
S3 method for class 'Vmat'
plotVmat(x, ...)
```

Arguments

- `x`: A computed `Vmat` (ideally, should be normalized)
- `...`: additional parameters

Value

A `Vmat` ggplot

Examples

```r
data(bam_test)
data(cell_proms)
V <- plotVmat(
 bam_test,
 cell_proms,
 normFun = 'libdepth+nloci',
 return_Vmat = TRUE
)```
plotVmat.VmatList

A function to plot a computed VmatList

Description

The plotVmat.VmatList() method forwards the Vmat to plotVmat.default().

Usage

```r
## S3 method for class 'VmatList'
plotVmat(x, nrow = NULL, ncol = NULL, dir = "v", ...)  
```

Arguments

- `x`: A VmatList (output of plotVmat.list())
- `nrow`: Integer, how many rows in facet?
- `ncol`: Integer, how many cols in facet?
- `dir`: str, direction of facets?
- `...`: additional parameters

Value

A Vmat ggplot

Examples

```r
data(bam_test)
data(cell_proms)
list_params <- list(
  'germline' = list(  
    bam_test,  
    cell_proms[cell_proms$which.tissues == 'Germline']  
  ),
  'muscle' = list(  
    bam_test,  
    cell_proms[cell_proms$which.tissues == 'Muscle']  
  )
)
V <- plotVmat(
  list_params,
  normFun = 'libdepth+nloci',  
  roll = 5  
)
```
Description

Genomic loci with a REB1 binding motifs according to http://jaspar.genereg.net/api/v1/matrix/MA0363.1.jaspar. PWM and scanning done with TFBSTools.

Usage

```r
data(REB1_sacCer3)
```

Format

An object of class "GRanges".

References

Rossi, Lai & Pugh 2018 Genome Research

Examples

```r
data(REB1_sacCer3)
REB1_sacCer3
```

sampleGRanges

A function to sample GRanges from GRanges

Description

This function takes a given GRanges and returns another GRanges object. The new GRanges has the same number of ranges and the same chromosome, width and strand distributions than the original GRanges.

Usage

```r
sampleGRanges(
  x,
  n = NULL,
  width = NULL,
  exclude = FALSE,
  avoid_overlap = FALSE
)
```
sampleGRanges.GRanges

Arguments

x GRanges object
n Integer, number of sampled GRanges
width Integer, width of sampled GRanges
exclude Boolean, should the original GRanges be excluded?
avoid_overlap Boolean, should the sampled GRanges not be overlapping?

Value

A GRanges object of length n

Examples

data(cell_proms)
sampleGRanges(cell_proms, 100)

Description

This function takes a given GRanges and returns another GRanges object. The new GRanges has the same number of ranges and the same chromosome, width and strand distributions than the original GRanges.

Usage

S3 method for class 'GRanges'
sampleGRanges(
 x,
 n = NULL,
 width = NULL,
 exclude = FALSE,
 avoid_overlap = FALSE
)

Arguments

x GRanges object
n Integer, number of sampled GRanges
width Integer, width of sampled GRanges
exclude Boolean, should the original GRanges be excluded?
avoid_overlap Boolean, should the sampled GRanges not be overlapping?
shiftATACGranges

Value

A GRanges object of length n

Examples

data(cell_proms)
sampleGRanges(cell_proms, 100)

Description

A function to shift GRanges fragments by 5/-4. This is useful when dealing with fragments coming from ATAC-seq.

Usage

shiftATACGranges(g, pos_shift = 4, neg_shift = 5)

Arguments

g GRanges of ATAC-seq fragments

pos_shift Integer. How many bases should fragments on direct strand be shifted by?

neg_shift Integer. How many bases should fragments on negative strand be shifted by?

Value

A GRanges object containing fragments from the input .bam file.

Examples

data(bam_test)
shiftATACGranges(bam_test)
shuffleVmat

A function to shuffle a Vmat

Description

This function works on a Vmat (the output of computeVmat()). It shuffles the matrix to randomize the fragment densities.

Usage

shuffleVmat(Vmat)

Arguments

Vmat
A Vmat, usually output of computeVmat

Value

A shuffled Vmat object

Examples

data(bam_test)
data(ce11_all_REs)
Vmat <- computeVmat(bam_test, ce11_all_REs)
Vmat <- shuffleVmat(Vmat)

theme_ggplot2

Personal ggplot2 theming function, adapted from roboto-condensed at https://github.com/hrbrmstr/hrbrthemes/

Description

Personal ggplot2 theming function, adapted from roboto-condensed at https://github.com/hrbrmstr/hrbrthemes/

Usage

theme_ggplot2(
 grid = TRUE,
 border = TRUE,
 base_family = "",
 base_size = 8,
 plot_title_family = base_family,
 plot_title_size = 12,
 plot_title_face = "plain",
 plot_title_margin = 5,
theme_ggplot2

arguments

subtitle_size = 11,
subtitle_face = "plain",
subtitle_margin = 5,
strip_text_family = base_family,
strip_text_size = 10,
strip_text_face = "bold",
caption_size = 9,
caption_face = "plain",
caption_margin = 3,
axis_text_size = base_size,
axis_title_family = base_family,
axis_title_size = 9,
axis_title_face = "plain",
axis_title_just = "rt",
panel_spacing = grid::unit(2, "lines"),
grid_col = "cccccc",
plot_margin = margin(12, 12, 12, 12),
axis_col = "cccccc",
axis = FALSE,
ticks = FALSE
)

Arguments

grid | panel grid (‘TRUE’, ‘FALSE’, or a combination of ‘X’, ‘x’, ‘Y’, ‘y’)
border | border if ‘TRUE’ add border
base_family, base_size | base font family and size
plot_title_family, plot_title_face, plot_title_size, plot_title_margin, | plot title family, face, size and margin
subtitle_face, subtitle_size | plot subtitle family, face and size
subtitle_margin | plot subtitle margin bottom (single numeric value)
strip_text_family, strip_text_face, strip_text_size | facet label font family, face and size
caption_face, caption_size, caption_margin | plot caption family, face, size and margin
axis_text_size | font size of axis text
axis_title_family, axis_title_size | axis title font family, face and size
axis_title_just | axis title font justificationk one of ‘[blmcrt]’
panel_spacing | panel spacing (use ‘unit()’)
grid_col grid color
plot_margin plot margin (specify with [ggplot2::margin])
axis_col axis color
axis add x or y axes? ‘TRUE’, ‘FALSE’, “‘xy’”
ticks ticks if ‘TRUE’ add ticks

Value
theme A ggplot theme

Examples
library(ggplot2)

ggplot(mtcars, aes(mpg, wt)) +
 geom_point() +
 labs(x="Fuel efficiency (mpg)", y="Weight (tons)",
 title="Seminal ggplot2 scatterplot example") +
 theme_ggplot2()
Index

* datasets
 * ABF1_sacCer3, 3
 * ATAC_ce11_Serizay2020, 4
 * bam_test, 4
 * cell1_all_REs, 5
 * cell1_proms, 6
 * CTCF_hg38, 8
 * MNase_sacCer3_Henikoff2011, 12
 * MNase_sacCer3_Henikoff2011_subset, 12
 * REB1_sacCer3, 25

* internal
 * computeNucleosomeEnrichmentOverBackground, 6
 * getCut, 9

ABF1_sacCer3, 3
alignToTSS, 3
ATAC_ce11_Serizay2020, 4
bam_test, 4

cell1_all_REs, 5
cell1_proms, 6
computeNucleosomeEnrichmentOverBackground, 6
computeVmat, 7
CTCF_hg38, 8
deconvolveBidirectionalPromoters, 9
getCut, 9
getFragmentsDistribution, 10

importPEBamFiles, 11

MNase_sacCer3_Henikoff2011, 12
MNase_sacCer3_Henikoff2011_subset, 12

normalizeVmat, 13
nucleosomeEnrichment, 14

nucleosomeEnrichment.GRanges, 15
nucleosomeEnrichment.Vmat, 15
plotFootprint, 16
plotProfile, 17
plotVmat, 18
plotVmat.default, 19
plotVmat.GRanges, 20
plotVmat.list, 21
plotVmat.Vmat, 23
plotVmat.VmatList, 24
REB1_sacCer3, 25

sampleGRanges, 25
sampleGRanges.GRanges, 26
shiftATACGranges, 27
shuffleVmat, 28

theme_ggplot2, 28