Package ‘XNAString’

May 30, 2024

Title Efficient Manipulation of Modified Oligonucleotide Sequences
Version 1.12.0
Date 31.05.2021

Description The XNAString package allows for description of base sequences and
associated chemical modifications in a single object. XNAString is able to
capture single stranded, as well as double stranded molecules. Chemical
modifications are represented as independent strings associated with different
features of the molecules (base sequence, sugar sequence, backbone sequence,
modifications) and can be read or written to a HELM notation. It also enables
secondary structure prediction using RNAfold from ViennaRNA. XNAString is
designed to be efficient representation of nucleic-acid based therapeutics,
therefore it stores information about target sequences and provides interface
for matching and alignment functions from Biostrings and palign packages.

biocViews SequenceMatching, Alignment, Sequencing, Genetics

Depends R (>= 4.1)
Imports utils, Biostrings, palign, BSgenome, data.table,
 GenomicRanges, IRanges, methods, Rcpp, stringi, S4Vectors,
 future.apply, stringr, formattable, stats

Suggests BiocStyle, knitr, rmarkdown, markdown, testthat,
 BSgenome.Hsapiens.UCSC.hg38, pander

LinkingTo Rcpp
License GPL-2
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1

Collate 'RcppExports.R' 'utils.R' 'xnaStringSetClass.R'
 'setterGetter.R' 'classUnion.R' 'xnaStringClass.R'
 'XNAString2Helm.R' 'XNAStringFromHelm.R' 'alphabetFrequency.R'
 'data.R' 'dictFromMimir.R' 'dinucleotideFrequency.R'
 'globals.R' 'helm2String.R' 'matchPDict.R' 'matchPattern.R'
 'pairwiseAlignment.R' 'predictDuplexStructure.R'
 'predictMfeStructure.R' 'reverseComplement.R'
VignetteBuilder \texttt{knitr}

\textbf{git url} https://git.bioconductor.org/packages/XNAString

\textbf{git branch} RELEASE_3_19

\textbf{git last commit} 9347561

\textbf{git last commit date} 2024-04-30

\textbf{Repository} Bioconductor 3.19

\textbf{Date/Publication} 2024-05-29

\textbf{Author} Anna Górska [aut],
Marianna Plucinska [aut, cre],
Lykke Pedersen [aut],
Lukasz Kielpinski [aut],
Disa Tehler [aut],
Peter H. Hagedorn [aut]

\textbf{Maintainer} Marianna Plucinska <marianna.plucinska@roche.com>

\section*{Contents}

\begin{itemize}
 \item alphabetFrequency ... 3
 \item backbone .. 5
 \item base .. 7
 \item changeBase .. 8
 \item complementary_bases ... 9
 \item compl_dict .. 9
 \item concatDict .. 10
 \item conjugate3 ... 11
 \item conjugate5 .. 12
 \item default_backbone .. 14
 \item default_sugar ... 15
 \item dictionary .. 16
 \item dinucleotideFrequency .. 17
 \item dt2Set .. 19
 \item duplex_structure .. 20
 \item helm2String .. 21
 \item instanceOf .. 22
 \item listOflists2Dt ... 23
 \item mimir2XnaDict ... 23
 \item name .. 24
 \item objects ... 26
 \item parseRnaHelmComponent .. 27
 \item predictDuplexStructure ... 28
 \item predictMfeStructure ... 29
 \item reverseComplementFun ... 29
 \item secondary_structure ... 30
 \item seqAlphabetFrequency ... 31
 \item seqDinucleotideFrequency 32
\end{itemize}
alphabetFrequency

XNAAlphabetFrequency returns letters frequency for a given object in base, sugar or backbone slot

Description

XNAAlphabetFrequency returns letters frequency for a given object in base, sugar or backbone slot. XNAAlphabetFrequency method returns alphabet frequency for a given object. It works for 3 slots: base, sugar and backbone. If matrix_nbr equals 1, alphabet frequency for the first elements in the slot is returned. Letters can be given as argument, otherwise unique letters in object's dictionary are in use.

Usage

XNAAlphabetFrequencyFun(
 obj,
 slot,
 letters = NA,
 matrix_nbr = 1,
 as.prob = FALSE,
 base_only = FALSE
)
XNAAlphabetFrequency(
 obj,
 slot,
 letters = NA,
 matrix_nbr = 1,
 as.prob = FALSE,
 base_only = FALSE,
 ...
)

S4 method for signature 'XNAString'
XNAAlphabetFrequency(
 obj,
 slot,
 letters = NA,
 matrix_nbr = 1,
 as.prob = FALSE,
 base_only = FALSE
)

S4 method for signature 'XNAStringSet'
XNAAlphabetFrequency(
 obj,
 slot,
 letters = NA,
 matrix_nbr = 1,
 as.prob = FALSE,
 base_only = FALSE
)

Arguments

obj XNAString or XNAStringSet class
slot string (slot name: base, sugar or backbone)
letters character (or character vector)
matrix_nbr numeric (1 or 2, if 1 - first slot's element is use, if 2 - 2nd element in slot)
as.prob logical - if TRUE frequency returned as probability of occurrence
base_only logical - if TRUE, frequency checked for 'A', 'C', 'G', 'T', other
...

Value

matrix (frequency matrix for a given slot)
backbone

Examples

```r
xnastring_obj <- XNAString(
  name = "b",
  base = c("AACC", "GGE"),
  sugar = c("FFOO", "OODD")
)
XNAAlphabetFrequency(obj = xnastring_obj,
  slot = "base")
XNAAlphabetFrequency(obj = xnastring_obj,
  slot = "base",
  as.prob = TRUE)
XNAAlphabetFrequency(obj = xnastring_obj,
  slot = "base",
  base_only = TRUE)
XNAAlphabetFrequency(obj = xnastring_obj,
  slot = "base",
  letters = c("A", "C"))
XNAAlphabetFrequency(obj = xnastring_obj,
  slot = "base",
  matrix_nbr = 2)

xnastring_obj_2 <- XNAString(
  base = c("ATCG"),
  sugar = c("FOOD"),
  backbone = c("SBB")
)
XNAStringSet_obj <- XNAStringSet(objects = list(
  xnastring_obj,
  xnastring_obj_2
))
XNAAlphabetFrequency(XNAStringSet_obj, "sugar")
```

backbone

Backbone setter/getter method

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

```r
backbone(x, ...)
```

S4 method for signature 'XNAString'
backbone(x)

S4 method for signature 'XNAStringSet'
backbone(x, i = 1)

backbone(x, ...) <- value

S4 replacement method for signature 'XNAString'
backbone(x) <- value

S4 replacement method for signature 'XNAStringSet'
backbone(x, i = 1) <- value

Arguments

x XNAString/XNAStringSet object

... optional arguments to generic function to support additional methods

i numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.

value character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

```r
g <- data.table::data.table(
  type = c(rep("base", 3),
           rep("sugar", 2),
           rep("backbone", 3)
  ),
)

my_dic <- g
dic <- data.table::data.table(
  type = "base",
)

dic <- XNAString(  
namex <- "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)

backbone(dic)
```
Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

base(x, ...)

S4 method for signature 'XNAString'
base(x)

S4 method for signature 'XNAStringSet'
base(x, i = 1)

base(x, ...) <- value

S4 replacement method for signature 'XNAString'
base(x) <- value

S4 replacement method for signature 'XNAStringSet'
base(x, i = 1) <- value

Arguments

 x XNAString/XNAStringSet object

 ... optional arguments to generic function to support additional methods

 i numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.

 value character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

 vector in getter method, XNAStringSet object (with replaced name slot) in setter method
Examples

```r
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj <- XNASTring(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
base(obj)
```

`changeBase`
Translate base slot based on complementary bases dictionary. Base sequence in transformed using compl_target column.

Description

Translate base slot based on complementary bases dictionary. Base sequence in transformed using compl_target column.

Usage

`changeBase(compl_dict, bases)`

Arguments

- `compl_dict`: complementary bases dictionary
- `bases`: string, one or two-elements vector

Value

string
complementary_bases

Default XNAString complementarity dictionary

Description

A dataset containing default internal XNAString dictionary with base complementary.

Usage

`data(complementary_bases)`

Format

A data.table with 6 rows and 3 variables:

- **base**: base symbol
- **target**: complementary base
- **compl_target**: complementary target

Source

RMR internal bioinformatics database (Mimir)

compl_dictionary

Compl_dictionary setter/getter method

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g.

name method extracts name slot from XNAString/XNAStringSet object.

Usage

`compl_dictionary(x, ...)`

```r
## S4 method for signature 'XNAString'
compl_dictionary(x)

compl_dictionary(x, ...) <- value
```

```r
## S4 replacement method for signature 'XNAString'
compl_dictionary(x) <- value
```
Arguments

- \(x \): XNAMString/XNAMStringSet object
- \(...\): optional arguments to generic function to support additional methods
- \(\text{value} \): character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAMString and XNAMStringSet objects. E.g. name<- method overwrites existing name slot.

Value

vector in getter method, XNAMStringSet object (with replaced name slot) in setter method

Examples

```r
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj <- XNAMString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
compl_dictionary(obj)
```

concatDict

Concatenate HELM-symbol custom dictionary with built-in HELM-symbol dictionary (xna_dictionary)

Description

Concatenate HELM-symbol custom dictionary with built-in HELM-symbol dictionary (xna_dictionary)

Usage

```r
concatDict(
  custom_dict,
  default_dict = xna_dictionary,
  helm_colname = "HELM",
  type_colname = "type",
  symbol_colname = "symbol"
)
```
The document contains a description of the `conjugate3` function. The arguments and their descriptions are as follows:

Arguments
- `custom_dict`: custom HELM-symbol dictionary
- `default_dict`: built-in HELM-symbol dictionary (xna_dictionary)
- `helm_colname`: helm column name in custom dictionary
- `type_colname`: type column name in custom dictionary
- `symbol_colname`: symbol column name in custom dictionary

Value
- `data.table`

Examples
```r
my_dict <- data.table::data.table(
  HELM = c("[[B]]"),
  type = c("base"),
  symbol = c("B")
)
concatDict(my_dict)
```

Description
Getter methods enable extraction of single slots from XNASTring and XNASTringSet objects. E.g. `name` method extracts name slot from XNASTring/XNASTringSet object.

Usage
```r
conjugate3(x, ...)

## S4 method for signature 'XNASTring'
conjugate3(x)

## S4 method for signature 'XNASTringSet'
conjugate3(x, i = 1)

conjugate3(x, ...) <- value

## S4 replacement method for signature 'XNASTring'
conjugate3(x) <- value

## S4 replacement method for signature 'XNASTringSet'
conjugate3(x, i = 1) <- value
```
conjugate5

Arguments

x XNAString/XNAStringSet object

... optional arguments to generic function to support additional methods

i numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.

value character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)
obj <- XNAString(
 name = "b",
 base = "GGE",
 sugar = "FFO",
 dictionary = my_dic
)
conjugate3(obj)

calibrate5 Conjugate5 setter/getter method

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.
conjugate5

Usage

conjugate5(x, ...)

S4 method for signature 'XNAString'
conjugate5(x)

S4 method for signature 'XNAStringSet'
conjugate5(x, i = 1)

conjugate5(x, ...) <- value

S4 replacement method for signature 'XNAString'
conjugate5(x) <- value

S4 replacement method for signature 'XNAStringSet'
conjugate5(x, i = 1) <- value

Arguments

x
XNAString/XNAStringSet object

... optional arguments to generic function to support additional methods

i numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.

c-value character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g.
name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)

obj <- XNAString(
 name = "b",
 base = "GGE",
 sugar = "FFO",
 burial = " graphene",
 backbone = "linear"
)
dictionary = my_dic
)
conjugate5(obj)

default_backbone (Default_backbone setter/getter method)

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

default_backbone(x, ...)

S4 method for signature 'XNAString'
default_backbone(x)

S4 method for signature 'XNAStringSet'
default_backbone(x)

default_backbone(x, ...) <- value

S4 replacement method for signature 'XNAString'
default_backbone(x) <- value

Arguments

x XNAString/XNAStringSet object

... optional arguments to generic function to support additional methods

value character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method
default_sugar

Examples

```r
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
  symbol = c("G", "E", "A", "F", "Q", "S", "B", "X")
)

obj <- XNAString(
  name = "b",
  base = "GGE",
  default_sugar = 'F',
  default_backbone = 'X',
  dictionary = my_dic
)

default_backbone(obj)
```

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

```r
default_sugar(x, ...)

## S4 method for signature 'XNAString'
default_sugar(x)

## S4 method for signature 'XNAStringSet'
default_sugar(x)

default_sugar(x, ...) <- value

## S4 replacement method for signature 'XNAString'
default_sugar(x) <- value
```

Arguments

- **x**: XNAString/XNAStringSet object
- **...**: optional arguments to generic function to support additional methods
- **value**: character vector applied only for setter method
Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)
obj <- XNAString(
 name = "b",
 base = "GGE",
 default_sugar = 'F',
 default_backbone = 'X',
 dictionary = my_dic)

default_sugar(obj)

dictionary
Dictionary setter/getter method

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

dictionary(x, ...)

S4 method for signature 'XNAString'
dictionary(x)

dictionary(x, ...) <- value

S4 replacement method for signature 'XNAString'
dictionary(x) <- value
Arguments

- **x**
 XNASTring/XNASTringSet object
- **...**
 optional arguments to generic function to support additional methods
- **value**
 character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNASTring and XNASTringSet objects. For example:

- `name<-` method overwrites existing name slot

Value

vector in getter method, XNASTringSet object (with replaced name slot) in setter method

Examples

```r
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj <- XNASTring(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
dictionary(obj)
```

Description

XNADinucleotideFrequencyFun returns double letters frequency for a given object in base, sugar or backbone slot.

XNADinucleotideFrequency method returns dinucleotide frequency for a given object. It works for 3 slots: base, sugar and backbone. If matrix_nbr equals 1, dinucleotide frequency for the first elements in the slot is returned. Double letters can be given as argument, otherwise unique double letters in object’s dictionary are in use.
Usage

\[
\text{XNADinucleotideFrequencyFun(}
\text{ obj,}
\text{ slot,}
\text{ double_letters = NA,}
\text{ matrix_nbr = 1,}
\text{ as.prob = FALSE,}
\text{ base_only = FALSE}
\text{ })
\]

\[
\text{XNADinucleotideFrequency(}
\text{ obj,}
\text{ slot,}
\text{ double_letters = NA,}
\text{ matrix_nbr = 1,}
\text{ as.prob = FALSE,}
\text{ base_only = FALSE,}
\text{ ...}
\text{ })
\]

S4 method for signature 'XNAString'

\[
\text{XNADinucleotideFrequency(}
\text{ obj,}
\text{ slot,}
\text{ double_letters = NA,}
\text{ matrix_nbr = 1,}
\text{ as.prob = FALSE,}
\text{ base_only = FALSE}
\text{ })
\]

S4 method for signature 'XNAStringSet'

\[
\text{XNADinucleotideFrequency(}
\text{ obj,}
\text{ slot,}
\text{ double_letters = NA,}
\text{ matrix_nbr = 1,}
\text{ as.prob = FALSE,}
\text{ base_only = FALSE}
\text{ })
\]

Arguments

- **obj**: XNAString or XNAStringSet class
- **slot**: string (slot name: base, sugar or backbone)
- **double_letters**: string (or string vector) - double letters
- **matrix_nbr**: numeric (1 or 2, if 1 - first slot’s element is use, if 2 - 2nd element in slot)
- **as.prob**: logical - if TRUE frequency returned as probability of occurrence
Function which creates XNAstringSet object from table with base, sugar and backbone columns.

Usage

dt2Set(
 table,
 col.base = "base",
 col.sugar = "sugar",
 col.backbone = "backbone",
 col.target = "target",
 default.sugar = NA,
 default.backbone = NA,
 compl_dict = complementary_bases
)
duplex_structure

Arguments

- **table**: data.table or data.frame (must incluse base, sugar and backbone columns)
- **col.base**: character (name of base column)
- **col.sugar**: character (name of sugar column)
- **col.backbone**: character (name of backbone column)
- **col.target**: character (name of target column)
- **default_sugar**: character - only one letter. Will be replicated nchar(base) times
- **default_backbone**: character - only one letter. Will be replicated nchar(base)-1 times
- **compl_dict**: data.table with following columns: "base", "target". By default internal XNAString dictionary is used

Value

XNAStringSet object

Examples

```r
dt <- data.table::data.table(
  base = c("TT", "GG"),
  sugar = c("FF", "FO"),
  backbone = c("S", "S")
)
dt2Set(dt)
```

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

```r
duplex_structure(x, ...)
```

```r
## S4 method for signature 'XNAString'
duplex_structure(x)
```

```r
## S4 method for signature 'XNAStringSet'
duplex_structure(x)
```

```r
duplex_structure(x, ...) <- value
```

```r
## S4 replacement method for signature 'XNAString'
duplex_structure(x) <- value
```
helm2String

Arguments

- **x**: XNAString/XNAStringSet object
- **...**: optional arguments to generic function to support additional methods
- **value**: character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

```r
my_dic <- data.table::data.table(
  type = c(rep("base", 3), rep("sugar", 2), rep("backbone", 3)),
)
obj <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
duplex_structure(obj)
```

helm2String

Translate RNA from HELM notation to multi-string notation

Description

This function translates RNA molecules encoded in HELM notation into multi-string notation. It uses dictionary which links HELM code for base, sugar and backbone elements with symbols used in multi-string notation.

Usage

`helm2String(helm, dictionary = xna_dictionary, remove_linker = TRUE)`
Arguments

- helm: string with HELM sequence, which contains one RNA polymer and optionally CHEM element
- dictionary: data.table with following columns: "HELM", "type", "symbol". By default internal XNAString dictionary is used.
- remove_linker: logical defines if linker should be clipped from RNA

Value

named list of strings with following elements: base, sugar, backbone, conjugate5, conjugate3

Author(s)

Marianna Plucinska

Examples

helm2String("RNA1\{[dR](A)P.[dR](A)P.[dR](A)\}\\$$V2.0")

instanceOf

Check on an object type

Description

Check on an object type

Usage

instanceOf(object, type)

Arguments

- object: an object of any class
- type: class of an object

Value

logical information. TRUE if object class equals type

Examples

instanceOf(1, "numeric")
listOflists2Dt

Save list of lists as data.table

Description
Save list of lists as data.table

Usage
listOflists2Dt(list_of_lists)

Arguments
list_of_lists list of lists that will be saved as data.table.

Value
data.table

Examples

nested_list <- list(
 list(base = c("T"), sugar = c("G")),
 list(base = c("U"), sugar = c("G"))
)
listOflists2Dt(nested_list)

mimir2XnaDict
Reformat mimir table to XNA dictionary standards

Description
Reformat mimir table to XNA dictionary standards

Usage
mimir2XnaDict(table, base.col, sugar.col, backbone.col)

Arguments
table data.table or data.frame (must include "HELM", "TS_BASE_SEQ", "TS_SUGAR_SEQ" and "TS_BACKBONE_SEQ" columns)
base.col character (base column name)
sugar.col character (sugar column name)
backbone.col character (backbone column name)
Value

data.table (written in the xna_dictionary format)

Examples

dt <- data.table::data.table(HELM = c("([PPG])", "[fR]", ";srP]"),
 TS_BASE_SEQ = c("F", NA, NA),
 TS_SUGAR_SEQ = c(NA, NA, "F"),
 TS_BACKBONE_SEQ = c(NA, "S", NA))
mimir2XnaDict(dt, 'TS_BASE_SEQ', 'TS_SUGAR_SEQ', 'TS_BACKBONE_SEQ')

<table>
<thead>
<tr>
<th>name</th>
<th>Name setter/getter method</th>
</tr>
</thead>
</table>

Description

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage

```r
name(x, ...)

# S4 method for signature 'XNAString'
name(x)

# S4 method for signature 'XNAStringSet'
name(x, i = 1)

name(x, ...) <- value

# S4 replacement method for signature 'XNAString'
name(x) <- value

# S4 replacement method for signature 'XNAStringSet'
name(x, i = 1) <- value
```

Arguments

- x: XNAString/XNAStringSet object
- ...: optional arguments to generic function to support additional methods
- i: numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.
- value: character vector applied only for setter method
Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. `name<-` method overwrites existing name slot.

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

```r
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
name(obj)
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj1 <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
obj2 <- XNAString(
  name = "b",
  base = c("GGE", "EEE"),
  sugar = c("FFO", "OOO"),
  dictionary = my_dic
)
XNAStringSetObj <- XNAStringSet(objects = list(obj1, obj2))
name(XNAStringSetObj)
my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  )
)
}
obj <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
name(obj) <- "new_name"
my_dic <- data.table::data.table(
  type = c(rep("base", 3),
           rep("sugar", 2),
           rep("backbone", 3)
  ),
)
ob1 <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
ob2 <- XNAString(
  name = "b",
  base = c("GGE", "EEE"),
  sugar = c("FFO", "OOO"),
  dictionary = my_dic
)
XNAStringSetObj <- XNAStringSet(objects = list(obj1, obj2))
name(XNAStringSetObj, 1) <- c("new1", "new2")

---

**objects**  
*Objects getter method for XNAStringSet class*

**Description**

Getter methods enable extraction of single slots from XNAStringSet objects. E.g. objects method extracts objects slot from XNAStringSet object. It is a list of XNAString objects.

**Usage**

```r
objects(x, ...)
```

## S4 method for signature 'XNAStringSet'

```r
objects(x)
```
parseRnaHelmComponent

Arguments

x XNAStringSet object

... optional arguments to generic function to support additional methods

Value

list of XNAString objects

Examples

my_dic <- data.table::data.table(type = c(rep('base',3),
    rep('sugar',2),
    rep('backbone',3)),
    symbol = c('G', 'E', 'A', 'F',
        '0', 'S', 'B', 'X'))

obj2 <- XNAString(name = 'b',
    base = 'GGE',
    sugar = 'FFO',
    dictionary = my_dic)

obj3 <- XNAString(name = 'b',
    base = c('GGE','EEE'),
    sugar = c('FFO', 'OOO'),
    dictionary = my_dic)

XNAStringSetObj <- XNAStringSet(objects=list(obj2, obj3))

objects(XNAStringSetObj)
predictDuplexStructure

Author(s)
Marianna Plucinska

Examples
parseRnaHelmComponent(c("[dR](A)P", "[dR](A)P", "[dR](A)"))

predictDuplexStructure
Compute Minimum Free Energy (MFE), and a corresponding secondary structure for two dimerized RNA sequences.

Description
This function is a wrapper for RNAcofold from ViennaRNA package.

Usage
predictDuplexStructureFun(obj)
predictDuplexStructure(obj, ...)

## S4 method for signature 'XNAString'
predictDuplexStructure(obj)

Arguments
obj          XNAString object
...
optional arguments to generic function to support additional methods

Value
list (structure and mfe)

Examples
obj1 <- XNAString(
  base = "ATCG",
  sugar = "FODD",
  conjugate3 = "TAG"
)
predictDuplexStructure(obj1)
**predictMfeStructure**  
*Prediction of MFE structure with ViennaRNA package*

**Description**
This function is a wrapper for RNAfold from ViennaRNA package.

**Usage**
```r
predictMfeStructureFun(obj)
predictMfeStructure(obj, ...)
S4 method for signature 'XNAString'
predictMfeStructure(obj)
```

**Arguments**
- `obj`  
  XNAString object
- `...`  
  optional arguments to generic function to support additional methods

**Value**
character, secondary structure in dot-bracket notation

**Examples**
```r
obj1 <- XNAString(
 base = "ATCG",
 sugar = "FODD",
 conjugate3 = "TAG"
)
predictMfeStructure(obj1)
```

---

**reverseComplementFun**  
*Reverse complement sequence based on dictionary*

**Description**
Reverse complement sequence based on dictionary

**Usage**
```r
reverseComplementFun(obj)
```
Arguments

- obj: XNAString object

Value

- string with reverse complement sequence

---

**secondary_structure**  
*Secondary_structure setter/getter method*

**Description**

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

**Usage**

```r
secondary_structure(x, ...)
```

```r
S4 method for signature 'XNAString'
secondary_structure(x)
```

```r
S4 method for signature 'XNAStringSet'
secondary_structure(x)
```

```r
secondary_structure(x, ...) <- value
```

```r
S4 replacement method for signature 'XNAString'
secondary_structure(x) <- value
```

**Arguments**

- x: XNAString/XNAStringSet object
- ...: optional arguments to generic function to support additional methods
- value: character vector applied only for setter method

**Details**

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot.

**Value**

- vector in getter method, XNAStringSet object (with replaced name slot) in setter method
Examples

```r
my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
 symbol = c("G", "E", "A", "F", "Q", "S", "B", "X")
)
obj <- XNAString(
 name = "b",
 base = "GGE",
 sugar = "FFO",
 dictionary = my_dic
)
secondary_structure(obj)
```

Description

Create set of functions and methods to calculate alphabet frequency in base, sugar and backbone slots

Usage

```r
seqAlphabetFrequency(unique_letters, seq, as.prob)
```

Arguments

- `unique_letters`: string (or character) - these letters pose column names
- `seq`: string (or character) - frequency is calculated for this string
- `as.prob`: logical - if TRUE frequency returned as probability of occurrence

Value

numeric - named numeric vector

Examples

```r
seqAlphabetFrequency(c("A", "B", "C"), c("AABA"), as.prob = FALSE)
```
seqDinucleotideFrequency

Create set of functions and methods to calculate dinucleotide frequency in base, sugar and backbone slots

Description

Create set of functions and methods to calculate dinucleotide frequency in base, sugar and backbone slots

Usage

seqDinucleotideFrequency(unique_sets, seq, as.prob)

Arguments

unique_sets string vector of double letters - these letters pose column names
seq string (or character) - frequency is calculated for this string
as.prob logical - if TRUE frequency returned as probability of occurrence

Value

numeric - named numeric vector

Examples

seqDinucleotideFrequency(c("AB", "BA", "CD"),
"ABABAB",
as.prob = FALSE)
seqDinucleotideFrequency(c("GC", "CG", "CC"),
"GCCG",
as.prob = FALSE)

seqVectorAlphabetFrequency

seqVectorAlphabetFrequency function calculates frequency for strings vector

Description

seqVectorAlphabetFrequency function calculates frequency for strings vector

Usage

seqVectorAlphabetFrequency(unique_letters, seq_vec, as.prob)
seqVectorDinucleotideFrequency

Arguments

unique_letters string (or character) - these letters pose column names
seq_vec vector of strings (or characters) - frequency will be calculated for this vector
as.prob logical - if TRUE frequency returned as probability of occurrence

Value

matrix - each row denotes frequency for a specific string of vector

Examples

seqVectorAlphabetFrequency(c("A", "B", "C"),
c("AABA", "BBBCCC"),
as.prob = FALSE)

seqVectorDinucleotideFrequency(c("AB", "BA", "CD"),
c("ABABAB", "ABABCD"),
as.prob = FALSE)
**Description**

set2Dt function - changes XNAStringSet object to data.table

**Usage**

```
set2Dt(obj, slots)
```

**Arguments**

- `obj` : XNAStringSet object
- `slots` : slots that are saved as column names (possibilities: "name", "base", "sugar", "backbone", "target", "conjugate5", "conjugate3" and "dictionary")

**Value**

data.table

**Examples**

```r
my_dic <- data.table::data.table(type = c(rep("base", 3),
 rep("sugar", 2),
 rep("backbone",3)),
 symbol = c("G", "E", "A", "F",
 "O", "S", "B", "X"))

obj2 <- XNAString(name = "b",
based = "GGE",
sugar = "FFO",
dictionary = my_dic)

obj3 <- XNAString(name = "b",
based = c("GGE", "EEE"),
sugar = c("FFO", "OOO"),
dictionary = my_dic)

XNAStringSetObj <- XNAStringSet(objects=list(obj2, obj3))

set2Dt(XNAStringSetObj, c("base", "sugar"))

my_dic <- data.table::data.table(
 type = c(,
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)

obj2 <- XNAString(name = "b",
 base = c("GGE", "EEE"),
 sugar = c("FFO", "OOO"),
 dictionary = my_dic)
```

set2List

Define method to save XNAStringSet object as a list of XNAString objects

Description

Define method to save XNAStringSet object as a list of XNAString objects

Usage

set2List(obj)

## S4 method for signature 'XNAStringSet'
set2List(obj)

Arguments

obj

XNAStringSet object

Value

list of XNAString objects

Examples

my_dic <- data.table::data.table(type = c(rep('base',3),
                                      rep('sugar',2),
                                      rep('backbone',3)),
                      symbol = c('G', 'E', 'A', 'F',
                                  'O', 'S', 'B', 'X'))

obj2 <- XNAString(name = 'b',
                 base = 'GGE',
                 sugar = 'FFO',
                 dictionary = my_dic)

obj3 <- XNAString(name = 'b',
                 base = c('GGE','EEE'),
                 sugar = c('FFO','OOO'),
                 dictionary = my_dic)

XNAStringSetObj <- XNAStringSet(objects = list(obj2, obj3))
set2Dt(XNAStringSetObj, c("base", "sugar"))

[
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
]
obj3 <- XNAString(
  name = "b",
  base = c("GGE", "EEE"),
  sugar = c("FFO", "OOO"),
  dictionary = my_dic
)
sugar = c('FFO', 'OOO'),
dictionary = my_dic)
XNAStringSetObj <- XNAStringSet(objects=list(obj2, obj3))
set2List(XNAStringSetObj)

siRNA_HELM

siRNA_HELM function takes XNAString object and returns pairing information for base slot. Works only for double stranded molecules.

Description

siRNA_HELM function takes XNAString object and returns pairing information for base slot. Works only for double stranded molecules.

Usage

siRNA_HELM(xnastring_obj)

Arguments

xnastring_obj  XNAString object

Value

string

Examples

obj1 <- XNAString(
  base = c("CCCCUGCCGUGGUUCAUAA", "UUAUGAACCACGGCAGGGGCG"),
  sugar = c("OOFOFOFOFOFOFOFOFOF", "FFOFOFOFOFOFOFOFOFOFOFOFOF"),
  backbone = c("OOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOO"),
  conjugate3 = c(""")
)
siRNA_HELM(obj1)

sugar

Sugar setter/getter method

Description

Sugar setter/getter method

Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.
Usage

sugar(x, ...)

## S4 method for signature 'XNAString'
sugar(x)

## S4 method for signature 'XNAStringSet'
sugar(x, i = 1)

sugar(x, ...) <- value

## S4 replacement method for signature 'XNAString'
sugar(x) <- value

## S4 replacement method for signature 'XNAStringSet'
sugar(x, i = 1) <- value

Arguments

x          XNAString/XNAStringSet object
...
...       optional arguments to generic function to support additional methods
i          numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.
value      character vector applied only for setter method

Details

Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value

vector in getter method, XNAStringSet object (with replaced name slot) in setter method

Examples

my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)

obj <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  ...
target

dictionary = my_dic
)
sugar(obj)

target  Target setter/getter method

Description
 Getter methods enable extraction of single slots from XNAString and XNAStringSet objects. E.g. name method extracts name slot from XNAString/XNAStringSet object.

Usage
 target(x, ...)

## S4 method for signature 'XNAString'
target(x)

## S4 method for signature 'XNAStringSet'
target(x, i = 1)

target(x, ...) <- value

## S4 replacement method for signature 'XNAString'
target(x) <- value

## S4 replacement method for signature 'XNAStringSet'
target(x, i = 1) <- value

Arguments
 x XNAString/XNAStringSet object
... optional arguments to generic function to support additional methods
i numeric - possibilities: 1 or 2. If 1 - 1st slots elements printed out, 2nd otherwise. In case the second element is not in the object, empty char created. This parameter is only available for XNAStringSet objects.
value character vector applied only for setter method

Details
 Setter methods enable overwriting single slots from XNAString and XNAStringSet objects. E.g. name<- method overwrites existing name slot

Value
 vector in getter method, XNAStringSet object (with replaced name slot) in setter method
**Examples**

```r
my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)
obj <- XNAString(
 name = "b",
 base = "GGE",
 sugar = "FFO",
 dictionary = my_dic
)
target(obj)
```

**Description**

Check if all objects are of XNAString class and dictionaries are the same.

**Usage**

```r
typedListCheck(object)
```

**Arguments**

- `object`:
  An object of any class. An object must contain 'objects' (list type) slot.

**Value**

Logical information. Checks the whole list of objects, TRUE if class of all objects equals 'XNAString' and their dictionaries are the same.

**Examples**

```r
my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)
obj2 <- XNAString(
```
name = "b",
base = "GGE",
sugar = "FFO",
dictionary = my_dic
)
obj3 <- XNAString(
  name = "b",
  base = c("GGE", "EEE"),
  sugar = c("FFO", "OOO"),
  dictionary = my_dic
)
XNAStringSetObj <- XNAStringSet(objects = list(obj2, obj3))
typedListCheck(XNAStringSetObj)

## uniqueChars

Utility functions useful when programming and developing XNAString class

### Description

Utility functions useful when programming and developing XNAString class

### Usage

uniqueChars(x)

### Arguments

- **x** A string vector

### Value

A list of vectors with unique characters found in x string

### Examples

uniqueChars("TRGFFTR")
uniqueChars(c("TRGFFTR", "AATGRC"))
XNAMatchPattern

Finds pattern in reference sequence

Description

This is a function finding all the occurrences of a given pattern (typically short) in a (typically long) reference sequence.

Usage

XNAMatchPattern(
  pattern,
  subject,
  target.number = 1,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto"
)

## S4 method for signature 'XNAString,character'
XNAMatchPattern(
  pattern,
  subject,
  target.number = 1,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto"
)

## S4 method for signature 'XNAString,XString'
XNAMatchPattern(
  pattern,
  subject,
  target.number = 1,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto"
)

Arguments

pattern XNAString object with non-empty target slot
subject string or DNAString object
target.number numeric - if target is a multi-element vector, then specify which element in use. 1 is the default
max.mismatch The maximum number of mismatching letters allowed. If non-zero, an algorithm that supports inexact matching is used.
min.mismatch The minimum number of mismatching letters allowed. If non-zero, an algorithm that supports inexact matching is used.
with.indels If TRUE then indels are allowed. In that case, min.mismatch must be 0 and max.mismatch is interpreted as the maximum "edit distance" allowed between the pattern and a match. Note that in order to avoid pollution by redundant matches, only the "best local matches" are returned. Roughly speaking, a "best local match" is a match that is locally both the closest (to the pattern P) and the shortest.
fixed If TRUE (the default), an IUPAC ambiguity code in the pattern can only match the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity code in the pattern can match any letter in the subject that is associated with the code, and vice versa.
algorithm One of the following: "auto", "naive-exact", "naive-inexact", "boyer-moore", "shift-or" or "indels".

Value

an XStringViews object for matchPattern.

Examples

s1 <-
XNAString::XNAString(
  base = Biostrings::DNAString("GCGGAGAGAGCACAGATACA"),
  sugar = "FODDDDDDDDDDDDDDDDDDDDD",
  target = Biostrings::DNAStringSet("GGCGGAGAGAGCACAGATACA")
)
XNAString::XNAMatchPattern(
  s1,
  "GCGGAGAGAGCACAGATACA"
)

XNAMatchPDict Find set of patterns in reference sequence

Description

This is function finding all the occurrences of a given set of patterns (typically short) in a (typically long) reference sequence
Usage

XNAMatchPDict(
  pdict,
  subject,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto",
  verbose = FALSE
)

## S4 method for signature 'XNAString,character'
XNAMatchPDict(
  pdict,
  subject,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto",
  verbose = FALSE
)

## S4 method for signature 'XNAString,XString'
XNAMatchPDict(
  pdict,
  subject,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto",
  verbose = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdict</td>
<td>XNAString object, target slot taken as pdict object from Biostrings</td>
</tr>
<tr>
<td>subject</td>
<td>string containing sequence</td>
</tr>
<tr>
<td>max.mismatch</td>
<td>The maximum number of mismatching letters allowed. If non-zero, an algorithm supports inexact matching is used.</td>
</tr>
<tr>
<td>min.mismatch</td>
<td>The minimum number of mismatching letters allowed. If non-zero, an algorithm supports inexact matching is used.</td>
</tr>
<tr>
<td>with.indels</td>
<td>If TRUE then indels are allowed. In that case, min.mismatch must be 0 and max.mismatch is interpreted as the maximum &quot;edit distance&quot; allowed between the pattern and a match. Note that in order to avoid pollution by redundant</td>
</tr>
</tbody>
</table>
matches, only the "best local matches" are returned. Roughly speaking, a "best local match" is a match that is locally both the closest (to the pattern P) and the shortest.

fixed
If TRUE (the default), an IUPAC ambiguity code in the pattern can only match the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity code in the pattern can match any letter in the subject that is associated with the code, and vice versa.

algorithm
One of the following: "auto", "naive-exact", "naive-inexact", "boyer-moore", "shift-or" or "indels".

verbose
TRUE or FALSE.

Value
an MIndex object of length M, and countPDict an integer vector of length M.

Examples
s2 <- XNAString::XNAString(
  base = "GCCGAGAGACAGATACA",
  sugar = "FODDDDDDDDDDDDDDDDDDDDD",
  target = Biostrings::DNAStringSet(c("GCCGAGAGACAGATACA", "GCCGAGAGACACAGATACA"))
)
o <- XNAString::XNAMatchPDict(
  s2,  
  "GCCGAGAGACACAGATACAGGGGCCGAGAGACACAGATACACGGAGAGACAGATACA"
)

xnaObj2Dt

xnaObj2Dt function - changes XNASTring object to data.table

Description
xnaObj2Dt function - changes XNASTring object to data.table

Usage
xnaObj2Dt(obj, slots)

Arguments

obj
XNASTring object

slots
slots that are saved as column names (possibilities: "name", "base", "sugar", "backbone", "target", "conjugate5", "conjugate3" and "dictionary")
XNAPairwiseAlignment

Pairwise alignment methods for XNAMatch object

Description

This function performs pairwise alignment for sequences stored in target slot of XNAMatch object with subject

Usage

XNAPairwiseAlignment(pattern, subject, ...

## S4 method for signature 'XNAMatch,character'
XNAPairwiseAlignment(
  pattern,
  subject,
  type = "global",
  substitutionMatrix = NULL,
  fuzzyMatrix = NULL,
  gapOpening = 10,
  gapExtension = 4,
  scoreOnly = FALSE
)

Arguments

pattern XNAMatch object, pattern taken from target slot.
subject a character vector of length 1, an XString, or an XStringSet object of length 1.
... optional arguments to generic function to support additional methods
type type of alignment. One of "global", "local", "overlap", "global-local", and "local-global" where "global" = align whole strings with end gap penalties, "local" = align string fragments, "overlap" = align whole strings without end gap penalties, "global-local" = align whole strings in pattern with consecutive subsequence of subject, "local-global" = align consecutive subsequence of pattern with whole strings in subject.
substitutionMatrix substitution matrix representing the fixed substitution scores for an alignment. It cannot be used in conjunction with patternQuality and subjectQuality arguments.
fuzzyMatrix fuzzy match matrix for quality-based alignments. It takes values between 0 and 1; where 0 is an unambiguous mismatch, 1 is an unambiguous match, and values in between represent a fraction of "matchiness".
XNAReverseComplement

Reverse complement sequence based on dictionary

Description
Reverse complement sequence based on dictionary

Usage
XNAReverseComplement(obj, ...)

## S4 method for signature 'XNAString'
XNAReverseComplement(obj)

Arguments

obj XNAString object

... optional arguments to generic function to support additional methods
XNAString-class

Value

string with reverse complement sequence

Examples

my_dic <- data.table::data.table(
  type = c(
    rep("base", 3),
    rep("sugar", 2),
    rep("backbone", 3)
  ),
)
obj <- XNAString(
  name = "b",
  base = "GGE",
  sugar = "FFO",
  dictionary = my_dic
)
XNAReverseComplement(obj)

XNAString-class

Development of XNAString class aims at enabling efficient manipulation of modified oligonucleotide sequences. The class consists of the following slots: name, base, sugar, backbone, target, conjugate5, conjugate3, secondary_structure, duplex_structure, dictionary (HELM-string dictionary), compl_dictionary.

Description

The package inherits some of the functionalities from Biostrings package. In contrary to Biostrings sequences, XNAString classes allow for description of base sequence, sugar and backbone in a single object. XNAString is able to capture single stranded oligonucleotides, siRNAs, PNAs, shRNAs, gRNAs and synthetic mRNAs, and enable users to apply sequence-manipulating Bioconductor packages to their analysis. XNAString can read and write a HELM notation, compute alphabet frequency, align and match targets.

Usage

XNAString(
  name,
  base,
  sugar,
  backbone,
  target,
  conjugate5,
  conjugate3,
  secondary_structure,
duplex_structure,
dictionary,
compl_dictionary,
default_sugar,
default_backbone
)

## S4 method for signature 'XNAString'
show(object)

## S4 method for signature 'XNAString'
initialize(
  .Object,
  name,
  base,
  sugar,
  backbone,
  target,
  conjugate5,
  conjugate3,
  secondary_structure,
  duplex_structure,
  dictionary,
  compl_dictionary,
  default_sugar,
  default_backbone
)

seqtype(x)

## S4 method for signature 'XNAString'
seqtype(x)

### Arguments

- **name**: string (or character)
- **base**: string (or character), RNAString, RNAStringSet, DNAString or DNAStringSet
- **sugar**: string (or character)
- **backbone**: string (or character)
- **target**: DNAStringSet, DNAString or character
- **conjugate5**: string (or character)
- **conjugate3**: string (or character)
- **secondary_structure**: list
- **duplex_structure**: list
dictionary data.table with following columns: "HELM", "type", "symbol". By default internal XNAString dictionary is used.
compl_dictionary data.table with following columns: "base", "target". By default internal XNAString dictionary is used
default_sugar character, a single letter which will be replicated in sugar slot as default value
default_backbone character, a single letter which will be replicated in backbone slot as default value
object XNAString object
.Object XNAString object
x A single string specifying the type of sequences

Value
Object which consists of name, base, sugar, backbone, target, conjugate5, conjugate3, secondary_structure, duplex_structure, dictionary, compl_dictionary.

Author(s)
Anna Gorska

Examples
obj1 <- XNAString(
  base = "ATCG",
  sugar = "FODD",
  conjugate3 = "TAG"
)
obj2 <- XNAString(
  base = "ATCG",
  sugar = "FODD",
  backbone = "SBB"
)
str(obj2)
name(obj2) <- 'a'
base(obj2) <- 'ATTT'
sugar(obj2) <- 'LMFF'
backbone(obj2) <- 'BAB'
conjugate5(obj2) <- 'TFJSJG'
conjugate3(obj2) <- 'ARTSS'
my_dic <- data.table::data.table(type = c(rep('base',3),
  rep('sugar',2),
  rep('backbone',3)),
symbol = c('G', 'E', 'A', 'F',
  'O', 'S', 'B', 'X'))
obj1 <- XNAString(base = 'AAE',
sugar = 'FFO',
backbone= 'SB',
dictionary = my_dic)
obj2 <- XNAString(base = c('EAA', 'AAAA'),
                 sugar = c('FFO', 'OOOO'),
                 name = c('a'),
                 conjugate5 = c('TTT'),
                 dictionary = my_dic)

my_dic <- data.table::data.table(
  type = c(rep("base", 3),
           rep("sugar", 2),
           rep("backbone", 3)),
)

obj1 <- XNAString(
  base = "AAE",
  sugar = "FFO",
  backbone = "SB",
  dictionary = my_dic)

obj2 <- XNAString(
  base = c("EAA", "AAAA"),
  sugar = c("FFO", "OOOO"),
  name = c("a"),
  conjugate5 = c("TTT"),
  dictionary = my_dic)

XNAString2XNAStringSet

XNAString2XNAStringSet function - changes XNAString object to XNAStringSet

Description

XNAString2XNAStringSet function - changes XNAString object to XNAStringSet

Usage

XNAString2XNAStringSet(XNAString_obj)

Arguments

XNAString_obj  XNAString object

Value

XNAStringSet object
**setClassUnion definitions**

setClassUnion definitions used in XNAString class. charOrDNAOrRNA consists of character, DNAString, RNAString, DNAStringSet, RNAStringSet. charOrDNA consists of character, DNAString, DNAStringSet

**xnastringElementsNumber**

*Function which checks if XNAString object satisfies predefined slots length*

**Description**

Function which checks if XNAString object satisfies predefined slots length

**Usage**

```r
xnastringElementsNumber(
 xnastring_obj,
 cond_name = "==1",
 cond_base,
 cond_sugar,
 cond_backbone,
 cond_target = ">0",
 cond_conj5 = "==1",
 cond_conj3 = "==1"
)
```

**Arguments**

- `xnastring_obj` : XNAString object
- `cond_name` : allowed name elements in object
- `cond_base` : allowed base elements in object
- `cond_sugar` : allowed sugar elements in object
- `cond_backbone` : allowed backbone elements in object
- `cond_target` : allowed target elements in object
- `cond_conj5` : allowed conj5 elements in object
- `cond_conj3` : allowed conj3 elements in object
Value

logical

Examples

```r
obj <- XNAString(
 base = c("EAA", "AAA"),
 sugar = c("FFO", "OOO"),
 name = c("a"),
 conjugate5 = c("TTT")
)
xnastringElementsNumber(obj,
 cond_name = "==1",
 cond_base = "%in% c(1,2)",
 cond_sugar = "%in% c(1,2)",
 cond_backbone = "%in% c(1,2)",
 cond_target = ">0",
 cond_conj5 = "==1",
 cond_conj = "==1"
)
```

### XNAStringFromHelm

Create XNAString object from HELM - user interface

#### Description

Create XNAString object from HELM - user interface

#### Usage

```r
XNAStringFromHelm(
 helm,
 name = NA_character_,
 dictionary = xna_dictionary,
 compl_dictionary = complementary_bases,
 remove_linker = TRUE
)
```

#### Arguments

- **helm**: string (or strings vector) with HELM sequence, which contains one RNA polymer and optionally CHEM element
- **name**: character (or character vector)
- **dictionary**: data.table with following columns: "HELM", "type", "symbol". By default internal XNAString dictionary is used.
- **compl_dictionary**: data.table with following columns: "base", "target". By default internal XNAString dictionary is used
- **remove_linker**: logical defines if linker should be clipped from RNA
Value

XNAString object if single helm, XNAStringSet object otherwise

Author(s)

Marianna Plucinska

Examples

XNAStringFromHelm("RNA1{[dR](A)P.[dR](A)P.[dR](A)}$$$$V2.0")
XNAStringFromHelm("RNA1{[dR](A)P.[dR](A)P.[dR](A)}$$$$V2.0", 'name')
XNAStringFromHelm(c("RNA1{[dR](A)P.[dR](A)P.[dR](A)}$$$$V2.0",

"RNA1{[dR](T)P.[dR](T)P.[dR](A)}$$$$V2.0"),
c('name1', 'name2'))

Description

Create class which consists of XNAString objects given as a list

Create XNAStringSet object

Define show method

Method to extract a row/rows (either by row index or by 'name' slot) XNAStringSet object is returned.

Method to extract a single row (either by row index or by 'name' slot) XNAString object is returned.

Usage

XNAStringSet(
  objects = NA,
  base = NA,
  sugar = NA,
  backbone = NA,
  target = NA,
  col.base = "base",
  col.sugar = "sugar",
  col.backbone = "backbone",
  col.target = "target",
  default_sugar = NA,
  default_backbone = NA,
  compl_dict = complementary_bases
)

## S4 method for signature 'XNAStringSet'
show(object)

## S4 method for signature 'XNAStringSet,ANY,ANY,ANY'
x[i]

## S4 method for signature 'XNAStringSet,ANY,ANY'
x[[i]]

### Arguments

- **objects**: list of XNAString objects
- **base**: string (or character), RNAString, RNAStringSet, DNAString or DNAStringSet. In use only when objects argument is empty.
- **sugar**: string (or character). In use only when objects argument is empty.
- **backbone**: string (or character). In use only when objects argument is empty.
- **target**: DNAStringSet, DNAString or character. In use only when objects argument is empty.
- **col.base**: character (name of base column). In use only when objects argument is empty.
- **col.sugar**: character (name of sugar column). In use only when objects argument is empty.
- **col.backbone**: character (name of backbone column). In use only when objects argument is empty.
- **col.target**: character (name of target column). In use only when objects argument is empty.
- **default_sugar**: character - only one letter. Will be replicated nchar(base) times. In use only when objects argument is empty.
- **default_backbone**: character - only one letter. Will be replicated nchar(base)-1 times. In use only when objects argument is empty.
- **compl_dict**: data.frame with following columns: "base", "target". By default internal XNAString dictionary is used. In use only when objects argument is empty.
- **object**: XNAStringSet object
- **x**: XNAStringSet object
- **i**: numeric, integer, character, logical - filter needed for extraction method

### Value

XNAStringSet object

### Author(s)

Anna Gorska
Examples

```r
my_dic <- data.table::data.table(
 type = c(
 rep("base", 3),
 rep("sugar", 2),
 rep("backbone", 3)
),
)
obj1 <- XNAString(
 name = "a",
 base = "GGE",
 sugar = "FFO",
 backbone = "SB",
 dictionary = my_dic
)
obj2 <- XNAString(
 name = "b",
 base = "GGE",
 sugar = "FFO",
 dictionary = my_dic
)
obj3 <- XNAString(
 name = "b",
 base = c("GGE", "EEE"),
 sugar = c("FFO", "OOO"),
 dictionary = my_dic
)
XNAStringSetObj <- XNAStringSet(objects = list(obj1, obj2, obj3))
```

---

**XNAStringToHelm**

**XNAStringToHelm** function takes XNAString object and translates base, sugar and backbone to HELM notation.

**Description**

XNAStringToHelm function takes XNAString object and translates base, sugar and backbone to HELM notation.

**Usage**

```r
XNAStringToHelm(xnastring_obj, dictionary = xna_dictionary)
```

**Arguments**

- `xnastring_obj` XNAString object
- `dictionary` HELM-symbol dictionary
**Value**

```
string (HELM notation)
```

**Examples**

```
obj <- XNAString(
 base = "AAA",
 sugar = "DDD",
 backbone = "OO"
)
XNAStringToHelm(obj)
```

---

**XNAVmatchPattern**

*This is function finding all the occurrences of a given pattern (typically short) in a (typically long) set of reference sequences.*

---

**Description**

This is function finding all the occurrences of a given pattern (typically short) in a (typically long) set of reference sequences.

Implementation of this method is based on vmatchPattern method from BSgenome

**Usage**

```
XNAVmatchPattern(
 pattern,
 subject,
 target.number = 1,
 max.mismatch = 0,
 min.mismatch = 0,
 with.indels = FALSE,
 fixed = TRUE,
 algorithm = "auto",
 exclude = "",
 maskList = logical(0),
 userMask = IRanges::IRangesList(),
 invertUserMask = FALSE
)
```

```
S4 method for signature 'XNAString,character'
XNAVmatchPattern(
 pattern,
 subject,
 target.number = 1,
 max.mismatch = 0,
 min.mismatch = 0,
 with.indels = FALSE,
 fixed = TRUE,
 algorithm = "auto",
 exclude = "",
 maskList = logical(0),
 userMask = IRanges::IRangesList(),
 invertUserMask = FALSE
)
```
XNAVmatchPattern

```r
XNAVmatchPattern(
 pattern,
 subject,
 target.number = 1,
 max.mismatch = 0,
 min.mismatch = 0,
 with.indels = FALSE,
 fixed = TRUE,
 algorithm = "auto"
)
```

## S4 method for signature 'XNAString,BSgenome'
XNAVmatchPattern(
  pattern,
  subject,
  target.number = 1,
  max.mismatch = 0,
  min.mismatch = 0,
  with.indels = FALSE,
  fixed = TRUE,
  algorithm = "auto",
  exclude = "",
  maskList = logical(0),
  userMask = IRanges::IRangesList(),
  invertUserMask = FALSE
)

### Arguments

- **pattern**: XNAString object with non-empty target slot
- **subject**: string, string vector or DNAString / DNAStringSet / chromosome from BSgenome object
- **target.number**: numeric - if target is a multi-element vector, then specify which element in use. 1 is the default
- **max.mismatch**: The maximum number of mismatching letters allowed. If non-zero, an algorithm that supports inexact matching is used.
- **min.mismatch**: The minimum number of mismatching letters allowed. If non-zero, an algorithm that supports inexact matching is used.
- **with.indels**: If TRUE then indels are allowed. In that case, min.mismatch must be 0 and max.mismatch is interpreted as the maximum "edit distance" allowed between the pattern and a match. Note that in order to avoid pollution by redundant matches, only the "best local matches" are returned. Roughly speaking, a "best
local match” is a match that is locally both the closest (to the pattern P) and the shortest.

**fixed**

If TRUE (the default), an IUPAC ambiguity code in the pattern can only match the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity code in the pattern can match any letter in the subject that is associated with the code, and vice versa.

**algorithm**

One of the following: "auto", "naive-exact", "naive-inexact", "boyer-moore", "shift-or" or "indels".

**exclude**

A character vector with strings that will be used to filter out chromosomes whose names match these strings. Needed for BSParms object if subject is a chromosome object from BSgenome.

**maskList**

A named logical vector of maskStates preferred when used with a BSGenome object. When using the bsapply function, the masks will be set to the states in this vector.

**userMask**

An IntegerRangesList, containing a mask to be applied to each chromosome.

**invertUserMask**

Whether the userMask should be inverted.

**Value**

An MIndex object for vmatchPattern.

**Examples**

```r
s3 <- XNAString::XNAString(
 base = "GCGGAGAGAGCACAGATACA",
 sugar = "FODDDDDDDDDDDDDDDDDD",
 target = Biostrings::DNAStringSet(
 c("AAAAGCTTTACAAAATCCAAGATC", "GGCGGAGAGAGCACAGATACA")
)
)
chrom <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38$chr1
result <- XNAString::XNAMatchPattern(s3, chrom)
```

---

**xna_dictionary**

*Default XNAString dictionary*

**Description**

A dataset containing default internal XNAString dictionary with HELM to string translation.

**Usage**

```r
data(xna_dictionary)
```
**Format**

A data.table with 20 rows and 3 variables:

- **HELM**  HELM sequence coding monomer
- **type**  if element is coding base, sugar, backbone
- **symbol**  single string translation of HELM

**Source**

RMR internal bioinformatics database (Mimir)
Index

* datasets
  complementary_bases, 9
  xna_dictionary, 58
  [,XNAStringSet,ANY,ANY,ANY-method
    (XNAStringSet-class), 53
  ][,XNAStringSet,ANY,ANY-method
    (XNAStringSet-class), 53
  alphabetFrequency, 3
backbone, 5
backbone,XNAString-method (backbone), 5
backbone,XNAStringSet-method
  (backbone), 5
backbone<-(backbone), 5
backbone<-,XNAString-method (backbone), 5
backbone<-,XNAStringSet-method
  (backbone), 5
changeBase, 8
charOrDNA-class (xnastringClassUnions), 51
compl_dictionary, 9
compl_dictionary,XNAString-method
  (compl_dictionary), 9
compl_dictionary<-(compl_dictionary), 9
compl_dictionary<-,XNAString-method
  (compl_dictionary), 9
complementary_bases, 9
concatDict, 10
conjugate3, 11
conjugate3,XNAString-method
  (conjugate3), 11
conjugate3<-(conjugate3), 11
conjugate3<-,XNAString-method
  (conjugate3), 11
conjugate3<-,XNAStringSet-method
  (conjugate3), 11
conjugate5, 12
conjugate5,XNAString-method
  (conjugate5), 12
conjugate5,XNAStringSet-method
  (conjugate5), 12
conjugate5<-(conjugate5), 12
conjugate5<-,XNAString-method
  (conjugate5), 12
conjugate5<-,XNAStringSet-method
  (conjugate5), 12
default_backbone, 14
default_backbone,XNAString-method
  (default_backbone), 14
default_backbone,XNAStringSet-method
  (default_backbone), 14
default_backbone<-(default_backbone), 14
default_backbone<-,XNAString-method
  (default_backbone), 14
default_backbone<-,XNAStringSet-method
  (default_backbone), 14
default_sugar, 15
default_sugar,XNAString-method
  (default_sugar), 15
default_sugar,XNAStringSet-method
  (default_sugar), 15
default_sugar<-(default_sugar), 15
default_sugar<-,XNAString-method
  (default_sugar), 15
dictionary, 16
dictionary,XNAString-method
  (dictionary), 16
dictionary<-(dictionary), 16
INDEX

dictionary<-,XNAString-method
(dictionary), 16

dinucleotideFrequency, 17
dt2Set, 19
duplex_structure, 20
duplex_structure,XNAString-method
(duplex_structure), 20
duplex_structure,XNAStringSet-method
(duplex_structure), 20
duplex_structure<-(duplex_structure), 20
duplex_structure<-,XNAString-method
(duplex_structure), 20

duplex_structure<XNAString-method
(duplex_structure), 20

duplex_structure<XNAStringSet-method
(duplex_structure), 20

duplex_structure<-(duplex_structure), 20

duplex_structure<-,XNAString-method
(duplex_structure), 20

extractionMethods(XNAStringSet-class), 53

helm2String, 21

initialize(XNAString-class), 47
initialize,XNAString-method
(XNAString-class), 47

instanceOf, 22

listOflists2Dt, 23

mimir2XnaDict, 23
MIndex, 44, 58

name, 24
name,XNAString-method(name), 24
name,XNAStringSet-method(name), 24
name<-(name), 24
name<-,XNAString-method(name), 24
name<-,XNAStringSet-method(name), 24

objects, 26
objects,XNAStringSet-method(objects), 26

PairwiseAlignments, 46

parseRnaHelmComponent, 27

predictDuplexStructure, 28

predictDuplexStructure,XNAString-method
(predictDuplexStructure), 28

predictDuplexStructureFun
(predictDuplexStructure), 28

predictMfeStructure, 29

predictMfeStructure,XNAString-method
(predictMfeStructure), 29

predictMfeStructureFun
(predictMfeStructure), 29

reverseComplementFun, 29

secondary_structure, 30

secondary_structure,XNAString-method
(secondary_structure), 30

secondary_structure,XNAStringSet-method
(secondary_structure), 30

secondary_structure<-(secondary_structure), 30

secondary_structure<-,XNAString-method
(secondary_structure), 30

secondary_structure<-,XNAString-method
(secondary_structure), 30

seqAlphabetFrequency, 31

seqDinucleotideFrequency, 32

seqtype(XNAString-class), 47

seqtype,XNAString-method
(XNAString-class), 47

seqVectorAlphabetFrequency, 32

seqVectorDinucleotideFrequency, 33

set2Dt, 34

set2List, 35

set2List,XNAStringSet-method
(set2List), 35

show,XNAString-method
(XNAString-class), 47

show,XNAStringSet-method
(XNAStringSet-class), 53

showMethod(XNAString-class), 47

siRNA_HELM, 36

sugar, 36

sugar,XNAString-method(sugar), 36

sugar,XNAStringSet-method(sugar), 36

sugar<-(sugar), 36

sugar<-,XNAString-method(sugar), 36

sugar<-,XNAStringSet-method(sugar), 36

target, 38

target,XNAString-method(target), 38

target,XNAStringSet-method(target), 38

target<-(target), 38

target<-,XNAString-method(target), 38

target<-,XNAStringSet-method(target), 38

typedListCheck, 39

uniqueChars, 40

xna_dictionary, 58
XNAAlphabetFrequency
(alphabetFrequency), 3
XNAAlphabetFrequency,XNAString-method
(alphabetFrequency), 3
XNAAlphabetFrequency,XNAStringSet-method
(alphabetFrequency), 3
XNAAlphabetFrequencyFun
(alphabetFrequency), 3
XNADinucleotideFrequency
(dinucleotideFrequency), 17
XNADinucleotideFrequency,XNAString-method
(dinucleotideFrequency), 17
XNADinucleotideFrequency,XNAStringSet-method
(dinucleotideFrequency), 17
XNADinucleotideFrequencyFun
(dinucleotideFrequency), 17
XNAMatchPattern, 41
XNAMatchPattern,XNAString,character-method
(XNAMatchPattern), 41
XNAMatchPattern,XNAString,XString-method
(XNAMatchPattern), 41
XNAMatchPDict, 42
XNAMatchPDict,XNAString,character-method
(XNAMatchPDict), 42
XNAMatchPDict,XNAString,XString-method
(XNAMatchPDict), 42
xnaObj2Dt, 44
XNAPairwiseAlignment, 45
XNAPairwiseAlignment,XNAString,character-method
(XNAPairwiseAlignment), 45
XNAReduceComplement, 46
XNAReduceComplement,XNAString-method
(XNAReduceComplement), 46
XNAString(XNAString-class), 47
XNAString-class, 47
XNAString2XNAStringSet, 50
xnastringClass(XNAString-class), 47
xnastringClassUnions, 51
xnastringElementsNumber, 51
XNAStringFromHelm, 52
XNAStringMethod(XNAString-class), 47
XNAStringSet(XNAStringSet-class), 53
XNAStringSet-class, 53
XNAStringSetMethod
(XNAStringSet-class), 53
XNAStringToHelm, 55
XNAVmatchPattern, 56
XNAVmatchPattern,XNAString,BSgenome-method