Package ‘Xeva’

April 4, 2024

Type Package
Title Analysis of patient-derived xenograft (PDX) data
Version 1.18.0
Date 2023-05-19
Maintainer Benjamin Haibe-Kains <benjamin.haibe.kains@utoronto.ca>
Description The Xeva package provides efficient and powerful functions for patient-
driven xenograft (PDX) based pharmacogenomic data analysis.
This package contains a set of functions to perform analysis of patient-
derived xenograft data. This package was developed by the BHKLab, for further informa-
tion please see our documentation.
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown
Imports methods, stats, utils, BBmisc, Biobase, grDevices, ggplot2,
scales, ComplexHeatmap, parallel, doParallel, Rmisc, grid,
nlme, PharmacoGx, downloader
Depends R (>= 3.6)
biocViews GeneExpression, Pharmacogenetics, Pharmacogenomics,
Software, Classification
BugReports https://github.com/bhklab/Xeva/issues
git_url https://git.bioconductor.org/packages/Xeva
git_branch RELEASE_3_18
git_last_commit 203e568
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
Author Arvind Mer [aut],
Benjamin Haibe-Kains [aut, cre]
R topics documented:

ABC ... 2
addExperimentalDesign 3
angle ... 4
AUC .. 5
batchInfo .. 6
brca ... 7
createXevaSet .. 8
dosePlot ... 9
downloadXevaSet .. 10
drugInform .. 11
drugSensitivitySig .. 12
getExperiment .. 13
getMolecularProfiles 15
lmm ... 16
modelInfo .. 16
mRECIST ... 17
PDXMI ... 18
plotmRECIST .. 18
plotPDX .. 19
print.batchResponse 21
print.modelResponse 22
print.pdxBatch ... 22
repdx .. 23
response .. 23
selectModelIds ... 25
sensitivity ... 25
setResponse .. 26
slope .. 27
subsetXeva ... 28
summarizeMolecularProfiles 29
summarizeResponse .. 30
TGI .. 31
waterfall ... 32

Index ... 34

area between curves Computes the area between two time-volume curves.
addExperimentalDesign

Usage

ABC(
 contr.time = NULL,
 contr.volume = NULL,
 treat.time = NULL,
 treat.volume = NULL
)

Arguments

contr.time Time vector for control.
contr.volume Volume vector for control.
treat.time Time vector for treatment.
treat.volume Volume vector for treatment.

Value

Returns batch response object.

Examples

contr.time <- treat.time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
contr.volume <- contr.time * tan(60*pi/180)
treat.volume <- treat.time * tan(15*pi/180)
abc <- ABC(contr.time, contr.volume, treat.time, treat.volume)
par(pty="s")
xylimit <- range(c(contr.time, contr.volume, treat.time, treat.volume))
plot(contr.time, contr.volume, type = "b", xlim = xylim, ylim = xylim)
lines(treat.time, treat.volume, type = "b")
polygon(c(treat.time, rev(treat.time)), c(contr.volume, rev(contr.volume)),
 col = "#fa9fb5", border = NA)
S4 method for signature 'XevaSet'
addExperimentalDesign(
 object,
 treatment = NULL,
 control = NULL,
 batch.id = NULL,
 replace = FALSE
)

Arguments

- **object**: The Xeva dataset.
- **treatment**: The model.id of treatment.
- **control**: The model.id of control.
- **batch.id**: The batch.id for a new batch.
- **replace**: If TRUE, replace an old batch with new values.

Value

Returns Xeva dataset with new experimental design added.

Examples

```r
data(brca)
brca <- addExperimentalDesign(object=brca, treatment=c("X.6047.LL71"),
control=c("X.6047.uned"), batch.id="new.batch", replace=FALSE)
```

angle

compute angle Computes the angle between two time-volume curves.

Description

compute angle Computes the angle between two time-volume curves.

Usage

```r
angle(
  contr.time = NULL,
  contr.volume = NULL,
  treat.time = NULL,
  treat.volume = NULL,
  degree = TRUE
)
```
AUC

Arguments

contr.time Time vector for control.
contr.volume Volume vector for control.
treat.time Time vector for treatment.
treat.volume Volume vector for treatment.
degree Default TRUE will give angle in degrees and FALSE will return in radians.

Value

Returns batch response object.

Examples

contr.time <- treat.time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
contr.volume <- contr.time * tan(60*pi/180)
treat.volume <- treat.time * tan(15*pi/180)
ang <- angle(contr.time, contr.volume, treat.time, treat.volume)
print(ang)
par(pty="s")
xlim <- range(c(contr.time, contr.volume, treat.time, treat.volume))
plot(contr.time, contr.volume, type = "b", xlab = xylimit, ylab = xylimit)
lines(treat.time, treat.volume, type = "b")
abline(lm(contr.volume~contr.time))
abline(lm(treat.volume~treat.time))

Description

area under the curve AUC Returns area under the curve

Usage

AUC(time, volume)

Arguments

time A vector of time points recorded for the experiment.
volume First vector of volume.

Value

Returns angle and slope object.
Examples

time <- c(0, 3, 7, 11, 18, 26, 30, 32, 35)
volume1 <- time * tan(30*pi/180)
volume2 <- time * tan(45*pi/180)
auc1 <- AUC(time, volume1)
auc2 <- AUC(time, volume2)
par(pty="s")
xlim <- range(c(time, volume1, volume2))
plot(time, volume1, type = "b", xlab = xlim, ylab = xlim)
lines(time, volume2, type = "b")
abline(lm(volume1~time))
abline(lm(volume2~time))

batchInfo

Get batch information

Description

Get batch information from a Xeva dataset.

Usage

batchInfo(
 object,
 batch = NULL,
 model.id = NULL,
 model.id.type = c("any", "control", "treatment")
)

S4 method for signature 'XevaSet'
batchInfo(
 object,
 batch = NULL,
 model.id = NULL,
 model.id.type = c("any", "control", "treatment")
)

Arguments

object The Xeva object from which batch information is obtained.
batch Name of the batch. Default NULL.
model.id Model ID for which need to be searched in the batches. Default NULL.
model.id.type Type of the model ID in a batch. See the Details section below.
Details

By default this function will return the names of all the batches present in the dataset. If a batch specified, it will return the experiment design (control and treatment model IDs) of that particular batch. If model.id is specified, it will return the names of all the batches where this particular model.id is present. If both batch and model.id are specified, batch will take precedent.

For model.id.type, the default value 'any' will return all the batch IDs where the given model ID is present in any arm (i.e. control or treatment) of the batch. It can also be restricted to look only for treatment (or control) arm by specifying the type.

Value

A Vector with batch names.

Examples

```r
data(brca)
##to get all the batch names
batch.name <- batchInfo(brca)

##to get a specific batch
batch.design <- batchInfo(brca, batch=batch.name[1])

##to get all the batches where a model.id is present
batchInfo(brca, model.id="X.6047.uned")
```

Description

Usage

```r
data(brca)
```

Format

An object of class XevaSet of length 1.

Source

https://www.nature.com/articles/nm.3954?draft=journal
createXevaSet XevaSet constructor

Description

A constructor to create XevaSet. Only objects returned by this constructor are expected to work with the XevaSet methods.

Usage

createXevaSet(
 name,
 model = data.frame(),
 drug = data.frame(),
 experiment = data.frame(),
 expDesign = list(),
 modelSensitivity = data.frame(),
 batchSensitivity = data.frame(),
 molecularProfiles = list(),
 modToBiobaseMap = data.frame()
)

Arguments

name A character string detailing the name of the dataset.
model A data.frame containing the annotations for all the models used in the experiment.
drug A data.frame containing the annotations for all the drugs profiled in the dataset, across all data types.
experiment A data.frame containing all experiment information.
expDesign A list containing name of the batch, control and treatment model.id
modelSensitivity A data.frame containing sensitivity for each model
batchSensitivity A data.frame containing sensitivity for each batch
molecularProfiles A list of ExpressionSet objects containing different molecular profiles.
modToBiobaseMap A data.frame containing model.id corresponding Biobase object id and name of the molecularProfiles

Details

This function creates a XevaSet object. It takes different model information and genomic data as input. For detailed discription of all varaibles please see Xeva vignette section "Creating new Xeva object"
dosePlot

Value

Returns Xeva object

Examples

```r
## read raw data files containing PDX experiment information and genomic data
model = read.csv(system.file("extdata", "model.csv", package = "Xeva"))
drug = read.csv(system.file("extdata", "drug.csv", package = "Xeva"))
extperiment = read.csv(system.file("extdata", "experiments.csv", package = "Xeva"))
expDesign = readRDS(system.file("extdata", "batch_list.rds", package = "Xeva"))
RNASeq = readRDS(system.file("extdata", "rnaseq.rds", package = "Xeva"))
modToBiobaseMap = read.csv(system.file("extdata", "modelToExpressionMap.csv", package = "Xeva"))

## create Xeva object
xeva.set = createXevaSet(name="example xevaSet", model=model, drug=drug,
                         experiment=experiment, expDesign=expDesign,
                         molecularProfiles=list(RNASeq = RNASeq),
                         modToBiobaseMap = modToBiobaseMap)
print(xeva.set)
```

Description

Plot data for dose in model.id

Usage

```r
dosePlot(
  object,
  model.id,
  max.time = NULL,
  treatment.only = FALSE,
  vol.normal = FALSE,
  concurrent.time = FALSE,
  point.shape = 21,
  point.size = 3,
  line.size = 4,
  point.color = "#878787",
  line.color = "#bababa",
  fill.col = c("#f5f5f5", "#E55100"),
  modify.x.axis = FALSE
)
```
Arguments

object
model.id
max.time
treatment.only
vol.normal
concurrent.time
point.shape
point.size
line.size
point.color
line.color
fill.col
modify.x.axis

Arguments

object Xeva object.
model.id one or multiple model.id
max.time Maximum time point of the plot. Default NULL will plot complete data
treatment.only Default FALSE. Given full data treatment.only=TRUE will plot data only during treatment
vol.normal Default FALSE. If TRUE, volume will be normalized
concurrent.time Default FALSE. If TRUE, cut the batch data such that control and treatment will end at the same time point
point.shape shape of the point
point.size size of the point
line.size size of the line
point.color color for point
line.color color for line
fill.col a vector with color to fill
modify.x.axis Default FALSE

Value

A ggplot2 plot

Examples

data(brca)
dosePlot(brca, model.id=c("X.6047.LJ16","X.6047.LJ16.trab"), fill.col=c("#f5f5f5", "#993404"))

Description

This function allows you to see the available XevaSet object and download them for use with this package. The XevaSet have been extensively curated and organised within a XevaSet class, enabling use with all the analysis tools provided in Xeva.

Usage

downloadXevaSet(
 name = NULL,
 saveDir = file.path(".", "XevaSet"),
 XevaSetFileName = NULL,
 verbose = TRUE
)
Arguments

- **name**: Character string, the name of the XevaSet to download.
- **saveDir**: Character string with the folder path where the XevaSet should be saved. Defaults to `./XevaSet/`. Will create directory if it does not exist.
- **XevaSetFileName**: character string, the file name to save the dataset under
- **verbose**: bool Should status messages be printed during download. Defaults to TRUE.

Value

A data.frame if name is NULL, showing all the available XevaSet objects. If name is specified, it will download the dataset from our server.

Examples

```r
downloadXevaSet()
## to download a dataset
library(Xeva)
PDXE_BRCA = downloadXevaSet(name="PDXE_BRCA", saveDir="XevaSet")
```

drugInform

Get drug information Get the drug information slot from a XevaSet object.

Description

Get drug information Get the drug information slot from a XevaSet object.

Usage

```r
drugInform(object)
```

Arguments

- **object**: The XevaSet to retrieve drug information from.

Value

A data.frame with the drug annotations.

Examples

```r
data(brca)
head(drugInform(brca))
```
drugSensitivitySig

get drug sensitivity values

Description

Given a Xeva object and drug name, this function will return sensitivity values for all the genes/features.

Usage

```
drugSensitivitySig(
  object,
  drug,
  mDataType = NULL,
  molData = NULL,
  features = NULL,
  model.ids = NULL,
  model2bidMap = NULL,
  sensitivity.measure = "slope",
  fit = c("lm", "CI", "pearson", "spearman", NA),
  standardize = c("SD", "rescale", "none"),
  nthread = 1,
  tissue = NULL,
  verbose = TRUE
)
```

Arguments

- `object`: The Xeva dataset.
- `drug`: Name of the drug.
- `mDataType`: Molecular data type.
- `molData`: External data matrix. Rows as features and columns as samples.
- `features`: Set which molecular data features to use. Default NULL will use all features.
- `model.ids`: Set which model.id to use from the dataset. Default NULL will use all model.ids.
- `model2bidMap`: A data.frame with model.id and biobase.id. Default NULL will use internal mapping.
- `sensitivity.measure`: Name of the sensitivity measure.
- `fit`: Association method to use, can be 'lm', 'CI', 'pearson' or 'spearman'. If 'NA' only the data will be return. Default lm.
- `standardize`: Default SD. Name of the method to use for data standardization before fitting.
- `nthread`: number of threads
- `tissue`: tissue type. Default NULL uses 'tissue' from object.
- `verbose`: Default TRUE will show information.
Details

Method to compute association can be specified by `fit`. It can be one of the:

- "lm" for linear models
- "CI" for concordance index
- "pearson" for Pearson correlation
- "spearman" for Spearman correlation

If `fit` is set to NA, processed data (an ExpressionSet) will be returned.

A matrix of values can be directly passed to `molData`. In case where a `model.id` maps to multiple `biobase.id`s, the first `biobase.id` in the `data.frame` will be used.

Value

A `data.frame` with features and values.

Examples

```r
data(brca)
senSig <- drugSensitivitySig(object=brca, drug="tamoxifen",
                           mDataType="RNASeq", features=c(1,2,3,4,5),
                           sensitivity.measure="slope", fit = "lm")
```

```r
## example to compute the Pearson correlation between gene expression and PDX response
senSig <- drugSensitivitySig(object=brca, drug="tamoxifen",
                           mDataType="RNASeq", features=c(1,2,3,4,5),
                           sensitivity.measure="slope", fit = "pearson")
```

getExperiment

Get PDX experiment data

Description

For a given `model.id`, `getExperiment` will

Usage

```r
getExperiment(
  object,
  model.id = NULL,
  batch = NULL,
  patient.id = NULL,
  drug = NULL,
  control.name = NULL,
  treatment.only = FALSE,
  max.time = NULL,
```
getExperiment

```r
doxygen

vo.normal = FALSE,
log.volume = FALSE,
return.list = FALSE,
impute.value = FALSE,
concurrent.time = FALSE
)

## S4 method for signature 'XevaSet'
getExperiment(
  object,
  model.id = NULL,
  batch = NULL,
  patient.id = NULL,
  drug = NULL,
  control.name = NULL,
  treatment.only = FALSE,
  max.time = NULL,
  vo.normal = FALSE,
  log.volume = FALSE,
  return.list = FALSE,
  impute.value = FALSE,
  concurrent.time = FALSE
)
```

Arguments

- **object**
 - The XevaSet object.
- **model.id**
 - The model.id for which data is required, multiple IDs are allowed.
- **batch**
 - Batch name from the XevaSet or experiment design.
- **patient.id**
 - Patient id from the XevaSet. Default NULL.
- **drug**
 - Name of the drug.
- **control.name**
 - Name of drug used as control. Default NULL.
- **treatment.only**
 - Default FALSE. If TRUE, give data for non-zero dose periods only (if dose data are available).
- **max.time**
 - Maximum time for data.
- **vo.normal**
 - If TRUE it will normalize the volume. Default FALSE.
- **log.volume**
 - If TRUE log of the volume will be used. Default FALSE.
- **return.list**
 - Default FALSE will return a data.frame.
- **impute.value**
 - Default FALSE. If TRUE, impute the missing values.
- **concurrent.time**
 - Default FALSE. If TRUE, cut the batch data such that control and treatment will end at same time point.

Value

A data.frame will all the the values stored in experiment slot.
getMolecularProfiles

Examples

 data(brca)

 getExperiment(brca, model.id="X.6047.uned", treatment.only=TRUE)
 getExperiment(brca, model.id=c("X.6047.uned", "X.6047.paclitaxel"),
 treatment.only=TRUE)
 getExperiment(brca, batch="X-6047.paclitaxel", treatment.only=TRUE)
 ed <- list(batch.name="myBatch", treatment=c("X.6047.LJ16","X.6047.LJ16.trab"),
 control=c("X.6047.uned"))
 getExperiment(brca, batch=ed)

getMolecularProfiles Get molecular profiles from a XevaSet object

Description

This function serves to get molecular profiles from a XevaSet object.

Usage

 getMolecularProfiles(object, data.type)

Arguments

 object The XevaSet.
 data.type character, where one of the molecular data types is needed.

Value

An ExpressionSet where sample names are the biobase.id of the model.

Examples

 data(brca)
 brca.RNA <- getMolecularProfiles(brca, data.type="RNASeq")
Description

Comput the linear mixed model (lmm) statistics for a PDX batch.

Usage

`lmm(data)`

Arguments

- `data` - a data.frame containing a batch data

Details

The input data.frame (data) must contain these columns: model.id, volume, time, exp.type.

Value

Returns a fit object.

Examples

```r
data(repdx)
data <- getExperiment(repdx, batch = "P1")$model
lmm(data)
```

modelInfo

modelInfo Generic Generic for modelInfo method

Description

modellInfo Generic Generic for modelInfo method.

Usage

`modelInfo(object, mDataType = NULL)`

```r
## S4 method for signature 'XevaSet'
modelInfo(object, mDataType = NULL)
```
mRECIST

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>Xeva object</th>
</tr>
</thead>
<tbody>
<tr>
<td>mDataType</td>
<td>Molecular data type.</td>
</tr>
</tbody>
</table>

Value

A `data.frame` with the model annotations.

Examples

```r
data(brca)
mid <- modelInfo(brca)
head(mid)
```

mRECIST

Computes the mRECIST

Description

mRECIST Returns the mRECIST for given volume response.

Usage

```r
mRECIST(time, volume, min.time = 10, return.detail = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>time</th>
<th>Value of best response.</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>Value of best average response.</td>
</tr>
<tr>
<td>min.time</td>
<td>Minimum time after which tumor volume will be considered.</td>
</tr>
<tr>
<td>return.detail</td>
<td>Default FALSE. If TRUE, return all intermediate values.</td>
</tr>
</tbody>
</table>

Value

Returns the mRECIST.

Examples

```r
time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
volume <- c(250.8, 320.4, 402.3, 382.6, 384, 445.9, 460.2, 546.8, 554.3, 617.9)
mRECIST(time, volume, min.time=10, return.detail=FALSE)
```
PDXMI
PDX-MI data

Description

A dataset containing PDX models minimal information (PDX-MI) standard and corresponding Xeva variable.

Usage

```r
data(PDXMI)
```

Format

An object of class `data.frame` with 45 rows and 4 columns.

Details

For details about PDX-MI, see:

Source

http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-17-0582

plotmRECIST
To plot mRECIST values

Description

`plotmRECIST` plots the mRECIST matrix obtained from `summarizeResponse`.

Usage

```r
plotmRECIST(
  mat,
  control.name = NA,
  control.col = "#238b45",
  drug.col = "black",
  colPalette = NULL,
  name = "Drug & Models",
  sort = TRUE,
  row_fontsize = 12,
  col_fontsize = 12,
  draw_plot = TRUE
)
```
Arguments

mat The mRECIST matrix where rows are drugs and columns are patients.
control.name Name of the control.
control.col Color of the control.
drug.col Color of the drug names.
colPalette Color palette for mRECIST values.
name Title of the plot.
sort If matrix should be sorted before plotting.
row_fontsize Size of the row name font.
col_fontsize Size of the column name font.
draw_plot Default TRUE will plot the figure. If FALSE, return an object.

Value

mRECIST plot.

Examples

data(brca)
brca.mr <- summarizeResponse(brca, response.measure = "mRECIST", group.by="patient.id")
plotmRECIST(as.matrix(brca.mr), control.name = "untreated")

plotPDX

Plot batch data

Description

Plot data for a batch.id, experiment design or model.id

Usage

plotPDX(
 object,
 batch = NULL,
 patient.id = NULL,
 drug = NULL,
 model.id = NULL,
 model.color = NULL,
 control.name = NULL,
 max.time = NULL,
 treatment.only = FALSE,
 vol.normal = FALSE,
 impute.value = TRUE,
 concurrent.time = FALSE,
)
control.col = "#e41a1c",
treatment.col = "#377eb8",
title = "",
xlab = "Time",
ylab = "Volume",
log.y = FALSE,
SE.plot = c("all", "none", "errorbar", "ribbon"),
aspect.ratio = c(1, NULL),
minor.line.size = 0.5,
major.line.size = 0.7
)

plotBatch(
 object,
 batch = NULL,
 patient.id = NULL,
 drug = NULL,
 control.name = NULL,
 max.time = NULL,
 treatment.only = FALSE,
 vol.normal = FALSE,
impute.value = TRUE,
concurren.time = FALSE,
control.col = "#6baed6",
treatment.col = "#fc8d59",
title = "",
xlab = "Time",
ylab = "Volume",
log.y = FALSE,
SE.plot = c("all", "none", "errorbar", "ribbon"),
aspect.ratio = c(1, NULL),
minor.line.size = 0.5,
major.line.size = 0.7
)

Arguments

- **object**: Xeva object.
- **batch**: Batch name or experiment design list.
- **patient.id**: Patient id from the XevaSet. Default NULL.
- **drug**: Name of the drug. Default NULL.
- **model.id**: One or multiple model.id. Default NULL.
- **model.color**: Color for model.id. Default NULL.
- **control.name**: Name of the control sample.
- **max.time**: Maximum time point of the plot. Default NULL will plot complete data.
- **treatment.only**: Default FALSE. Given full data treatment.only=TRUE will plot data only during treatment.
Description

Print the batch response

Usage

S3 method for class 'batchResponse'
print(x, ...)

Examples

data(brca)
plotPDX(brca, model.id=c("X.6047.LJ16","X.6047.LJ16.trab"))

plotPDX(brca, batch="X-1004.BGJ398", vol.normal=TRUE)
expDesign <- list(batch.name="myBatch", treatment=c("X.6047.LJ16","X.6047.LJ16.trab"),
 control=c("X.6047.uned"))
plotBatch(brca, batch=expDesign, vol.normal=TRUE)
plotBatch(brca, batch=expDesign, vol.normal=FALSE, SE.plot = "errorbar")
print.pdxBatch

Arguments

 x batchResponse object
 ... Other arguments

Value

 prints the batchResponse

print.modelResponse Print the model response

Description

 Print the model response

Usage

 ## S3 method for class 'modelResponse'
 print(x, ...)

Arguments

 x modelResponse object
 ... Other arguments

Value

 prints the modelResponse

print.pdxBatch Print the pdx batch

Description

 Print the pdx batch

Usage

 ## S3 method for class 'pdxBatch'
 print(x, ...)

Arguments

 x pdxBatch object
 ... Other arguments
repdx

Value

prints pdxBatch

Description

A Xeva object containing anonymous PDX data with replicates. Each batch has 5 replicates.

Usage

data(repdx)

Format

An object of class XevaSet of length 1.

response

compute PDX response

Description

response Computes the drug response of an individual PDX model or batch.

Usage

response(
 object,
 model.id = NULL,
 batch = NULL,
 res.measure = c("mRECIST", "slope", "AUC", "angle", "abc", "TGI", "lmm"),
 treatment.only = FALSE,
 max.time = NULL,
 impute.value = TRUE,
 min.time = 10,
 concurrent.time = TRUE,
 vol.normal = FALSE,
 log.volume = FALSE,
 verbose = TRUE
)

Arguments

- **object**: Xeva object.
- **model.id**: model.id for which the drug response is to be computed.
- **batch**: batch.id or experiment design for which the drug response is to be computed.
- **res.measure**: Drug response measure. See Details below
- **treatment.only**: Default FALSE. If TRUE, give data for non-zero dose periods only (if dose data are available).
- **max.time**: Maximum time for data.
- **impute.value**: Default FALSE. If TRUE, impute the missing values.
- **min.time**: Default 10 days. Used for mRECIST computation.
- **concurrent.time**: Default FALSE. If TRUE, cut the batch data such that control and treatment will end at same time point.
- **vol.normal**: If TRUE it will normalize the volume. Default FALSE.
- **log.volume**: If TRUE log of the volume will be used for response calculation. Default FALSE
- **verbose**: Default TRUE will print information.

Details

At present the following response measures are implemented

- **mRECIST** Computes mRECIST for individual PDX models
- **slope** Computes slope of the fitted individual PDX curves
- **AUC** Computes area under a PDX curve for individual PDX models
- **angle** Computes angle between treatment and control PDX curves
- **abc** Computes area between the treatment and control PDX curves
- **TGI** Computes tumor growth inhibition using treatment and control PDX curves
- **lmm** Computes linear mixed model (lmm) statistics for a PDX batch

Value

Returns model or batch drug response object.

Examples

```r
data(brca)
response(brca, model.id="X.1004.BG98", res.measure="mRECIST")
response(brca, batch="X-6047.paclitaxel", res.measure="angle")
ed <- list(batch.name="myBatch", treatment=c("X.6047.LJ16","X.6047.LJ16.trab"),
           control=c("X.6047.uned"))
response(brca, batch=ed, res.measure="angle")
```
selectModelIds

To select model IDs based on drug name and/or tissue type.

Description
To select model IDs based on drug name and/or tissue type.

Usage

```
selectModelIds(object, drug = NULL, drug.match.exact = TRUE, tissue = NULL)
```

S4 method for signature 'XevaSet'

```
selectModelIds(object, drug = NULL, drug.match.exact = TRUE, tissue = NULL)
```

Arguments

- **object**: The XevaSet.
- **drug**: Name of the drug.
- **drug.match.exact**: Default TRUE.
- **tissue**: Tumor type. Default NULL.

Value
A vector with the matched model.ids.

Examples

```r
data(brca)
df = selectModelIds(brca, drug="trastuzumab", drug.match.exact=TRUE, tissue="BRCA")
head(df)
df2 = selectModelIds(brca, drug="trastuzumab", drug.match.exact=FALSE)
head(df2)
```

sensitivity

Get sensitivity for an Xeva object

Description
Given a Xeva object, it will return a data.frame detailing sensitivity information.

Usage

```
sensitivity(object, type = c("model", "batch"), sensitivity.measure = NULL)
```
Arguments

object Xeva dataset.
type Sensitivity type (either model or batch).
sensitivity.measure Name of the sensitivity.measure. Default NULL will return all sensitivity measures.

Value

A data.frame with model or batch ID and sensitivity values.

Examples

data(brca)
head(sensitivity(brca, type="batch"))
head(sensitivity(brca, type="model"))

setResponse set PDX response

Description

setResponse sets response of all PDXs in an Xeva object.

Usage

setResponse(
 object,
 res.measure = c("mRECIST", "slope", "AUC", "angle", "abc", "TGI", "lmm"),
 min.time = 10,
 treatment.only = FALSE,
 max.time = NULL,
 vol.normal = FALSE,
 impute.value = TRUE,
 concurrent.time = TRUE,
 log.volume = FALSE,
 verbose = TRUE
)

Arguments

object Xeva object.
res.measure Response measure, multiple measures are allowed. See Details below
min.time Minimum number of days for mRECIST computation. Default 10 days.
treatment.only Default FALSE. If TRUE, give data for non-zero dose periods only (if dose data are available).
slope

max.time Maximum number of days to consider for analysis. Data byond this will be discarded. Default NULL takes full data.

vol.normal If TRUE it will normalize the volume. Default FALSE

impute.value Default FALSE. If TRUE, impute the missing volume values.

concurrent.time Default FALSE. If TRUE, cut the batch data such that control and treatment will end at same time point.

log.volume If TRUE log of the volume will be used for response calculation. Default FALSE

verbose Default TRUE will print information.

Details

At present following response measure are implemented

- mRECIST Computes mRECIST for individual PDX model
- slope Computes slope of the fitted individual PDX curve
- AUC Computes area under a PDX curve for individual PDX model
- angle Computes angle between treatment and control PDX curves
- abc Computes area between the treatment and control PDX curves
- TGI Computes tumor growth inhibition using treatment and control PDX curves
- lmm Computes linear mixed model (lmm) statistics for a PDX batch

Value

Returns updated Xeva object.

Examples

data(brca)
brca <- setResponse(brca, res.measure = c("mRECIST"), verbose=FALSE)

slope Computes slope

Description

slope returns the slope for given time and volume data.

Usage

slope(time, volume, degree = TRUE)
Arguments

time A vector of time.
volume A vector of volume.
degree Default TRUE will give angle in degrees and FALSE will return in radians.

Value

Returns the slope and a fit object.

Examples

time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
volume<- c(250.8, 320.4, 402.3, 382.6, 384, 445.9, 460.2, 546.8, 554.3, 617.9)
sl <- slope(time, volume)
par(pty="s")
xylimit <- range(c(time, volume))
plot(time, volume, type = "b", xlim = xylimit, ylim = xylimit)
abline(lm(volume~time))

subsetXeva

Subset Xeva object.

Description

Subset Xeva object.

Usage

subsetXeva(object, ids, id.name, keep.batch = TRUE)

Arguments

object The XevaSet object.
ids IDs to be selected for.
id.name Names of the IDs.
keep.batch Default TRUE. If FALSE, remove all other model.ids from the experiment design that do not belong to selection.

Value

New Xeva object.

Examples

data(brca)
print(brca)
df <- subsetXeva(brca, ids = c("X-1004", "X-1008", "X-1286"), id.name="patient.id", keep.batch=TRUE)
print(df)
summarizeMolecularProfiles

Summarize molecular profiles

Description

This function serves to get molecular profiles from a XevaSet object.

Usage

```r
summarizeMolecularProfiles(
  object, 
  drug, 
  mDataType, 
  tissue = NULL, 
  sensitivity.measure = NULL, 
  unique.model = TRUE, 
  batch = NULL
)
```

Arguments

- **object** The XevaSet.
- **drug** Name of the drug.
- **mDataType** character, where one of the molecular data types is needed.
- **tissue** Default NULL will return all tissue types.
- **sensitivity.measure** Default NULL will return all sensitivity measures.
- **unique.model** Default TRUE will return only one sequencing ID, in the case where one model ID maps to several sequencing IDs.
- **batch** Name of the batch. Default NULL.

Details

- If a sequencing sample belongs to multiple models, `summarizeMolecularProfiles` will create a separate column for each model.
- All models without molecular data will be removed from the output ExpressionSet.

Value

An ExpressionSet where sample names are model.id and sensitivity measures will be presented in pData.
summarizeResponse

Examples

data(brca)
pacRNA <- summarizeMolecularProfiles(brca, drug="paclitaxel", mDataType="RNASeq",
tissue = "BRCA", sensitivity.measure="mRECIST")
print(pacRNA)

summarizeResponse Summarize Response of PDXs

Description

This function summarizes the drug response information of PDXs.

Usage

summarizeResponse(
 object,
 response.measure = "mRECIST",
 model.id = NULL,
 batch.id = NULL,
 group.by = "patient.id",
 summary.stat = c(";", "mean", "median"),
 tissue = NULL
)

Arguments

object The XevaSet object.
response.measure character indicating which response measure to use. Use the responseMeasures function to find out what measures are available for each XevaSet.
model.id The model.id for which data is required.
batch.id A vector of batch names. Default NULL will return all batches.
group.by Default patient.id. Dictates how the models should be grouped together. See details below.
summary.stat Dictates which summary method to use if multiple IDs are found.
tissue Name of the tissue. Default NULL

Details

There can be two types of drug response measure.

- Per model response: One response value for each Model, eg. mRECIST_recomputed for each model.
- Per batch response: One response value for each Batch, eg. angle between treatment and control groups.

For the per model response output, columns will be model.id (or group.by). For the per batch response output, the group.by value can be “batch.name”.
Value

A matrix with rows as drug names, column as group.by. Each cell contains response.measure for the pair.

Examples

data(brca)
brca.mR <- summarizeResponse(brca, response.measure = "mRECIST", group.by="patient.id")

TGI

Tumor growth inhibition (TGI) Computes the tumor growth inhibition (TGI) between two time-volume curves

Description

Tumor growth inhibition (TGI) Computes the tumor growth inhibition (TGI) between two time-volume curves

Usage

TGI(contr.volume, treat.volume)

Arguments

contr.volume Volume vector for control
treat.volume Volume vector for treatment

Value

Returns batch response object

Examples

contr.volume <- c(1.35, 6.57, 13.94, 20.39, 32.2, 39.26, 46.9, 53.91)
treat.volume <- c(0.4, 1.26, 2.59, 3.62, 5.77, 6.67, 7.47, 8.98, 9.29, 9.44)
TGI(contr.volume, treat.volume)
waterfall plot Creates waterfall plot for a given drug.

Description

waterfall plot Creates waterfall plot for a given drug.

Usage

```r
waterfall(
  object,
  res.measure,
  drug = NULL,
  group.by = NULL,
  summary.stat = c(";", "mean", "median"),
  tissue = NULL,
  model.id = NULL,
  model.type = NULL,
  type.color = "#cc4c02",
  legend.name = NULL,
  yname = NULL,
  title = NULL,
  sort = TRUE
)
```

Arguments

- **object**: The XevaSet object
- **res.measure**: PDX model drug response measure
- **drug**: Name of the drug
- **group.by**: Group drug response data
- **summary.stat**: How to summarize multiple values
- **tissue**: Tissue type
- **model.id**: Indicates which model.id to plot. Default NULL will plot all models
- **model.type**: Type of model, such as mutated or wild type
- **type.color**: A list with colors used for each type in the legend
- **legend.name**: Name of the legend
- **yname**: Name for the y-axis
- **title**: Title of the plot
- **sort**: Default TRUE will sort the data

Value

waterfall plot in ggplot2
Examples

data(brca)
waterfall(brca, drug="binimetinib", res.measure="best.avg.response_published")
example with model.type where we color the models by TP53 mutation type
mut <- summarizeMolecularProfiles(brca, drug = "binimetinib", mDataType="mutation")
model.type <- Biobase::exprs(mut)["TP53",]
waterfall(brca, drug="binimetinib", res.measure="best.avg.response_published",
 tissue="BRCA", model.id=names(model.type), model.type= model.type)
Index

* datasets
 brca, 7
 PDXMI, 18
 repdx, 23

 ABC, 2
 addExperimentalDesign, 3
 addExperimentalDesign,XevaSet-method
 (addExperimentalDesign), 3
 angle, 4
 AUC, 5

 batchInfo, 6
 batchInfo,XevaSet-method (batchInfo), 6
 brca, 7
 createXevaSet, 8

 dosePlot, 9
 downloadXevaSet, 10
 drugInform, 11
 drugInform,XevaSet-method (drugInform), 11
 drugSensitivitySig, 12

 getExperiment, 13
 getExperiment,XevaSet-method
 (getExperiment), 13
 getMolecularProfiles, 15

 lmm, 16
 modelInfo, 16
 modelInfo,XevaSet-method (modelInfo), 16
 mRECIST, 17

 PDXMI, 18
 plotBatch (plotPDX), 19
 plotmRECIST, 18
 plotPDX, 19
 print.batchResponse, 21
 print.modelResponse, 22
 print.pdxBatch, 22
 repdx, 23
 response, 23
 selectModelIds, 25
 selectModelIds,XevaSet-method
 (selectModelIds), 25
 sensitivity, 25
 setResponse, 26
 slope, 27
 subsetXeva, 28
 summarizeMolecularProfiles, 29
 summarizeResponse, 30
 TGI, 31
 waterfall, 32