Package ‘a4Core’

May 29, 2024

Type Package
Title Automated Affymetrix Array Analysis Core Package
Version 1.52.0
Date 2020-10-14
Description Utility functions for the Automated Affymetrix Array Analysis set of packages.
Imports Biobase, glmnet, methods, stats
Suggests knitr, rmarkdown
License GPL-3
biocViews Microarray, Classification
RoxygenNote 7.1.1
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/a4Core
git_branch RELEASE_3_19
git_last_commit 13a748d
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Willem Talloen [aut],
 Tobias Verbeke [aut],
 Laure Cougnaud [cre]
Maintainer Laure Cougnaud <laure.cougnaud@openanalytics.eu>

Contents

confusionMatrix ... 2
simulateData .. 2
topTable .. 3
topTable-methods ... 4

Index .. 5
confusionMatrix

Generic function to produce a confusion matrix (related to a classification problem)

Description

Generic function to produce a confusion matrix (related to a classification problem)

Usage

confusionMatrix(x, ...)

Arguments

x object (usually a model fit object) that contains all information needed to produce the confusion matrix.

... further arguments for a specific method

Value

A confusion matrix

Author(s)

Tobias Verbeke

simulateData

Simulate Data for Package Testing and Demonstration Purposes

Description

Simulate Data for Package Testing and Demonstration Purposes

Usage

simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5, betweenClassDifference = 1, withinClassSd = 0.5)
Arguments

nCols
number of samples; currently this should be an even number
nRows
number of features (genes)
nEffectRows
number of differentially expressed features
nNoEffectCols
number of samples for which the profile of a differentially expressed feature will be set similar to the other class
betweenClassDifference
Average mean difference between the two classes to simulate a certain signal in the features for which an effect was introduced; the default is set to 1
withinClassSd
Within class standard deviation used to add a certain noise level to the features for which an effect was introduced; the default standard deviation is set to 0.5

Value

object of class ExpressionSet with the characteristics specified

Note

The simulation assumes the variances are equal between the two classes. Heterogeneity could easily be introduced in the simulation if this would be requested by the users.

Author(s)

W. Talloen and T. Verbeke

Examples

someEset <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5)
someEset

Description

a top table is a rectangular object (e.g. data frame) which lists the top n most relevant variables

Usage

topTable(fit, n, ...)

Arguments

fit
object for which to obtain a top table, generally a fit object for a given model class
n
number of features (variables) to list in the top table, ranked by importance
...
further arguments for specific methods
Value

Top table with top n relevant variable.

Author(s)

Tobias Verbeke

Description

Methods for topTable. topTable extracts the top n most important features for a given classification or regression procedure.

Arguments

- **fit**: object resulting from a classification or regression procedure
- **n**: number of features that one wants to extract from a table that ranks all features according to their importance in the classification or regression model; defaults to 10 for limma objects

Methods

- glmnet and lognet
 - fit = "glmnet", n = "numeric" glmnet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)
 - fit = "lognet", n = "numeric" lognet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)
 - fit = "elnet", n = "numeric" elnet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)
Index

* manip
 simulateData.2
 topTable-methods.4
* methods
 topTable-methods.4
* models
 confusionMatrix.2
 simulateData.2
 topTable.3
 topTable.elnet-method
 (topTable-methods).4
 topTable.glmnet-method
 (topTable-methods).4
 topTable.lognet-method
 (topTable-methods).4
 topTable-methods.4