Package ‘abseqR’

May 17, 2024

Type Package

Title Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Version 1.22.0

Description AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, gg缘分o, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics

VignetteBuilder knitr

RoxygenNote 6.1.0

SystemRequirements pandoc (>= 1.19.2.1)

URL https://github.com/malhamdoosh/abseqR

BugReports https://github.com/malhamdoosh/abseqR/issues
Contents

biocViews Sequencing, Visualization, ReportWriting, QualityControl, MultipleComparison

Suggests testthat
git_url https://git.bioconductor.org/packages/abseqR
git_branch RELEASE_3_19
git_last_commit 1d43107
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-17
Author JiaHong Fong [cre, aut], Monther Alhamdoosh [aut]
Maintainer JiaHong Fong <jiahfong@gmail.com>

Contents

+AbSeqCRep,AbSeqCRep-method .. 4
+AbSeqCRep,AbSeqRep-method .. 5
+AbSeqRep,AbSeqCRep-method .. 6
+AbSeqRep,AbSeqRep-method .. 7
.abundanceAnalysis ... 8
.abundancePlot ... 8
.alignQualityHeatMaps .. 9
.allPrimerNames .. 9
.aminoAcidBar ... 10
.aminoAcidPlot .. 10
.analyzeUpstreamValidity ... 11
.annotAnalysis ... 11
.asRepertoireAlignLen .. 12
.asRepertoireBitscore ... 13
.asRepertoireChain ... 13
.asRepertoireDir .. 14
.asRepertoireList .. 14
.asRepertoireName ... 15
.asRepertoirePrimer3 .. 15
.asRepertoirePrimer5 .. 16
.asRepertoireQueryStart .. 16
.asRepertoireSubjectStart .. 17
.asRepertoireUpstream .. 17
.boxPlot ... 18
.calculateDInd .. 18
.calculateDiversityEstimates ... 19
.canonicalizeTitle ... 19
.capitalize ... 20
.checkVert .. 20
.cloneDistHist ... 21
Combines 2 AbSeqCRep objects together for comparison

Description

Combines 2 AbSeqCRep objects together for comparison

Usage

```r
## S4 method for signature 'AbSeqCRep,AbSeqCRep'
e1 + e2
```

Arguments

- `e1`: AbSeqCRep.
- `e2`: AbSeqCRep.

Value

AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also

- abseqReport returns a list of AbSeqReps

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]].seq + samples[["PCR2"]].seq
pcr13 <- samples[["PCR1"]].seq + samples[["PCR3"]].seq
```
all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13

you can now call the report function on this object
report(all_S) # uncomment this line to execute report

S4 method for signature 'AbSeqCRep,AbSeqRep'
e1 + e2

Arguments

- **e1**: AbSeqCRep.
- **e2**: AbSeqRep.

Value

AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also

abseqReport returns a list of AbSeqReps

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr12 is an instance of AbSeqCRep
pcr12 <- samples[['PCR1']] + samples[['PCR2']]
pcr3 is instance of AbSeqRep
pcr3 <- samples[['PCR3']]

pcr123 is an instance of AbSeqCRep
pcr123 <- pcr12 + pcr3
you can now call the report function on this object
report(pcr123) # uncomment this line to execute report

S4 method for signature 'AbSeqRep,AbSeqCRep'
e1 + e2

Arguments

e1 AbSeqRep.
e2 AbSeqCRep.

Value

AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also

abseqReport returns a list of AbSeqReps

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr1 is an instance of AbSeqRep
pcr1 <- samples["PCR1"]
pcr23 is instance of AbSeqCRep
pcr23 <- samples["PCR2"] + samples["PCR3"]

pcr123 is an instance of AbSeqCRep
pcr123 <- pcr1 + pcr23

you can now call the report function on this object
report(pcr123) # uncomment this line to execute report
Description

Combines 2 AbSeqRep objects together for comparison

Usage

S4 method for signature 'AbSeqRep,AbSeqRep'
e1 + e2

Arguments

e1 AbSeqRep object.
e2 AbSeqRep object.

Value

AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also

abseqReport returns a list of AbSeqReps

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr1 and pcr2 are instances of AbSeqRep
pcr1 <- samples["PCR1"]
pcr2 <- samples["PCR2"]

pcr12 is an instance of AbSeqCRep
pcr12 <- pcr1 + pcr2

you can now call the report function on this object
report(pcr12) # uncomment this line to execute report
.abundanceAnalysis conducts abundance analysis

Description
Conducts abundance analysis

Usage
.abundanceAnalysis(abundanceDirectories, abunOut, sampleNames,
 combinedNames, mashedNames, skipDgene = FALSE, .save = TRUE)

Arguments

abundanceDirectories
 list type. List of sample directories
abunOut
 string type. Output directory
sampleNames
 vector type. 1-1 correspondence with abundanceDirectories
combinedNames
 string type. Title "combined" sample names
mashedNames
 string type. File "mashed" names - avoid special chars
skipDgene
 logical type. Skip D gene plots?
.save
 logical type. Save ggplot as Rdata

Value
None

.abundancePlot abundance distribution

Description
Abundance distribution

Usage
.abundancePlot(files, sampleNames, outputDir, skipDgene = FALSE,
 .save = TRUE)

Arguments

files
 list type. list of files in abundance directory
sampleNames
 vector type. 1-1 correspondance to files
outputDir
 string type.
skipDgene
 logical type. Skip D germline abundance plot if TRUE.
.save
 logical type. Save Rdata ggplot item
Value

None

.alignQualityHeatMaps Plots all 5 alignment quality heatmaps

Description

Plots alignment quality vs:

• mismatches
• gaps
• bitscore
• percent identity
• subject start

Usage

.alignQualityHeatMaps(abundanceDirectory, sampleName)

Arguments

abundanceDirectory character type. fully qualified path to abundance directory
sampleName character type. sample name

Value

list of ggplotly heatmaps

.allPrimerNames Collect primer names from FASTA

Description

Collect primer names from FASTA

Usage

.allPrimerNames(primerFile)

Arguments

primerFile string type. Path to primer file

Value

vector of primer names as seen in primerFile
.aminoAcidBar
Plots amino acid composition logo

Description
Plots amino acid composition logo

Usage
.aminoAcidBar(df, scale, region, germ = "")

Arguments
- df: dataframe
- scale: logical. scale to proportion?
- region: string. which region is this
- germ: string. V germline family

Value
ggplot2 object

.aminoAcidPlot Composition logo plot

Description
Plots 2 kinds: scaled and unscaled composition logos

Usage
.aminoAcidPlot(compositionDirectory, outdir, sampleName, regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"), .save = TRUE)

Arguments
- outdir: string type.
- sampleName: string type.
- regions: logical type. vector of FR/CDR regions to plot
- .save: logical type. save ggplot object

Value
none
.analyzeUpstreamValidity

Plots the validity of upstream sequences

Description

Plots the distribution of valid, faulty, and missing start codon in IGV germlines (repeated for gene and family levels).

Usage

.analyzeUpstreamValidity(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

upstreamDirectories
 list type. List of sample directories
upstreamOut
 string type. Output directory
expectedLength
 int type. Expected length of upstream sequences. (i.e. upstream_end - upstream_start + 1). If this is infinite, no plots will be generated.
upstreamLengthRange
 string type. start_end format
sampleNames
 vector type. 1-1 with upstream directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata?

Value

None

.annotAnalysis

Annotation analysis

Description

Annotation analysis

Usage

.annotAnalysis(annotDirectories, annotOut, sampleNames, mashedNames, .save = TRUE)
Arguments

- **annotDirectories**: list type. List of sample directories
- **annotOut**: string type. Output directory
- **sampleNames**: vector type. 1-1 with annotDirectories
- **mashedNames**: string type. File output "mashed" sample names
- **.save**: logical type. Saves ggplot object

Value

```
none
```

Description

Accessor for alignlen slot

Usage

```
.asRepertoireAlignLen(object, collapse = " - ")
```

Arguments

- **object**: AbSeqRep object
- **collapse**: character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
.asRepertoireBitscore

Accessor for bitscore slot

Description

Accessor for bitscore slot

Usage

.asRepertoireBitscore(object, collapse = " - ")

Arguments

 object AbSeqRep object
 collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as ‘start - end’ in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

.asRepertoireChain

Accessor for chain slot

Description

Accessor for chain slot

Usage

.asRepertoireChain(object)

Arguments

 object AbSeqRep object

Value

character type, the chain type of this sample
.asRepertoireDir
Accessory for the outdir slot

Description

Accessory for the `outdir` slot

Usage

`.asRepertoireDir(object)`

Arguments

- `object`
 AbSeqRep object

Value

character type, the output directory of this object

.asRepertoireList
Accessory for `AbSeqCRep`’s list of `AbSeqRep` objects

Description

Accessory for `AbSeqCRep`’s list of `AbSeqRep` objects

Usage

`.asRepertoireList(object)`

Arguments

- `object`
 AbSeqCRep object

Value

list type, list of `AbSeqRep` objects that together, compose this `AbSeqCRep` object.
.asRepertoireName

Accessor for the name slot

Description
Accessor for the name slot

Usage
.asRepertoireName(object)

Arguments

object AbSeqRep object

Value
character type, the sample name of this object.

.asRepertoirePrimer3

Accessor for the primer3end slot

Description
Accessor for the primer3end slot

Usage
.asRepertoirePrimer3(object)

Arguments

object AbSeqRep object

Value
character type, the FASTA file name for primer 3’ end sequences
.asRepertoirePrimer5
Accessor for the primer5end slot

Description

Accessor for the primer5end slot

Usage

.asRepertoirePrimer5(object)

Arguments

object AbSeqRep object

Value

character type, the FASTA file name for primer 5' end sequences

.asRepertoireQueryStart

Accessor for qstart slot

Description

Accessor for qstart slot

Usage

.asRepertoireQueryStart(object, collapse = " - ")

Arguments

object AbSeqRep object

collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
.asRepertoireSubjectStart

Description

Accessor for sstart slot

Usage

`.asRepertoireSubjectStart(object, collapse = " - ")`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>AbSeqRep object</td>
</tr>
<tr>
<td>collapse</td>
<td>character type, collapse the range using this string.</td>
</tr>
</tbody>
</table>

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

.asRepertoireUpstream

Description

Accessor for the upstream slot

Usage

`.asRepertoireUpstream(object)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>AbSeqRep object</td>
</tr>
</tbody>
</table>

Value

character type
.boxPlot

Creates a box plot

Description

Creates a box plot

Usage

`.boxPlot(dataframes, sampleNames, plotTitle, xlabel = "", ylabel = "", subs = "")`

Arguments

- `dataframes` : list type. List of sample dataframes
- `sampleNames` : vector type. 1-1 with dataframes
- `plotTitle` : string type
- `xlabel` : string type
- `ylabel` : string type
- `subs` : string type

Value

ggplot2 object

..calculateDInd

Calculates the "standard" diversity indices

Description

Calculates the "standard" diversity indices

Usage

`.calculateDInd(df)`

Arguments

- `df` : clonotype dataframe. Vegan format: +———+ | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) +———+ | v1| v2| v3 | ... | (each species’ count values are placed in the corresponding column) +———+
.calculateDiversityEstimates

Calculates Lower Bound Estimates for unseen species and Common Diversity Indices from clonotype tables.

Description

Employ common techniques to calculate LBE for unseen species and commonly used diversity indices.

Usage

.calculateDiversityEstimates(diversityDirectories, diversityOut, sampleNames)

Arguments

diversityDirectories
 list type. List of directories to diversity dir

diversityOut
 string type. Output directory

sampleNames
 vector type. 1-1 with diversityDirectories sample names

Value

None

.canonicalizeTitle

Convert file names to human friendly text

Description

Convert file names to human friendly text

Usage

.canonicalizeTitle(str)
.capitalize

Helper function to capitalize the first letter of str

Description

Helper function to capitalize the first letter of str

Usage

```python
 capitalists(str)
```

.checkVert

Checks if absegPy has a metadata line that suggests the orientation

Description

Checks if absegPy has a metadata line that suggests the orientation

Usage

```python
.checkVert(filename)
```

Arguments

- `filename` (csv filename)

Value

True if CSV metadata says "plot vertically"
\texttt{.cloneDistHist} \hspace{1cm} \textit{Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by \textit{sqrt} (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)}

\textbf{Description}

Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by \textit{sqrt} (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)

\textbf{Usage}

\texttt{.cloneDistHist(df_original, otherClones, lim_min, flip)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{df_original} \hspace{1cm} dataframe with all clones
 \item \texttt{otherClones} \hspace{1cm} clones from the other dataframe
 \item \texttt{lim_min} \hspace{1cm} x-axis minimum limit
 \item \texttt{flip} \hspace{1cm} logical type
\end{itemize}

\textbf{Value}

\texttt{ggplot2 object}

\texttt{.cloneDistMarginal} \hspace{1cm} \textit{Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)}

\textbf{Description}

Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

\textbf{Usage}

\texttt{.cloneDistMarginal(df_original, otherClones, lim_min, flip)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{df_original} \hspace{1cm} dataframe with all clones
 \item \texttt{otherClones} \hspace{1cm} clones from the other dataframe
 \item \texttt{lim_min} \hspace{1cm} x-axis minimum limit
 \item \texttt{flip} \hspace{1cm} logical type
\end{itemize}

\textbf{Value}

\texttt{ggplot2 object}
.. clonotypeAnalysis

Comprehensive clonotype analyses

Description

Comprehensive clonotype analyses

Usage

.. clonotypeAnalysis(diversityDirectories, clonotypeOut, sampleNames, mashedNames, .save = TRUE)

Arguments

diversityDirectories list type. List of directories to diversity dir
clonotypeOut string type. Output directory
sampleNames vector type. 1-1 with diversityDirectories
mashedNames string type. Prefix for output files using "mashed-up"
.save logical type. Save ggplot object?

Value

Nothing

.. collateReports

Collate all HTML reports into a single directory and create an entry index.html file that redirects to all collated HTML files

Description

Collate all HTML reports into a single directory and create an entry index.html file that redirects to all collated HTML files

Usage

.. collateReports(reports, individualSamples, outputDirectory)

Arguments

reports list/vector type. Collection of strings that are path(s) to <sample>_report.html
individualSamples list type. list of AbSeqRep objects. Used to extract filtering information and % read counts.
outputDirectory string type. Where should the report be placed.
.commonPrimerNames

Value

Nothing

.commonPrimerNames

Collect the intersection of all primer names within a collection of primer files

Description

Collect the intersection of all primer names within a collection of primer files

Usage

`.commonPrimerNames(primerFiles)`

Arguments

- `primerFiles` list / vector type. Collection of primer files

Value

vector type. Vector of primerNames that are present in ALL primerFiles. NULL if there’s no intersection at all

.correlationTest

Conducts pearson and spearman correlation analysis on dataframe

Description

Conducts pearson and spearman correlation analysis on dataframe

Usage

`.correlationTest(df)`

Arguments

- `df` dataframe with at least the following 2 columns: +---------+ | prop.x | prop.y | +---------+ |..... | | +---------+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones. They may contain 0 in a column to denote it being missing from sample x or y.

Value

named list of pearson, pearson.p, spearman, spearman.p
.distanceMeasure

Computes the distance between pairwise samples

Description

Computes the distance between pairwise samples

Usage

`.distanceMeasure(df)`

Arguments

- `df`: dataframe with at least the following 2 columns: +_________+ | prop.x | prop.y | +_________+ l.... l.... +_________+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones. They may contain 0 in a column to denote it being missing from sample x or y.

Value

named list of bray.curtis, jaccard, and morisita.horn

.diversityAnalysis

Title Diversity analysis

Description

Title Diversity analysis

Usage

`.diversityAnalysis(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)`

Arguments

- `diversityDirectories`: list type. List of directories to diversity dir
- `diversityOut`: string type. Output directory
- `sampleNames`: vector type. 1-1 with diversityDirectories
- `mashedNames`: string type. Prefix for output files using "mashed-up" sample names
- `.save`: logical type. Save ggplot object?

Value

None
.emptyPlot

Description

Creates and returns an empty plot

Usage

```r
.emptyPlot()
```

Value

empty ggplot2 object

.findReperitoires

Description

Given a directory = `<abseqPy_outputdir>/RESULT_DIR/`, returns the directories (repositories) in 'directory'. That is, will not return any sample_vs_sample directories. This is done by asserting that a 'repository' must have an (analysis.params) file, and a summary.txt file.

Usage

```r
.findReperitoires(directory)
```

Arguments

- `directory` string. Path up until `<abseqPy_outputdir>/RESULT_DIR/`

Value

vector of strings that are samples in 'directory', note, this is NOT a full path, but just the sample/reperitoire name itself
.generateAllSpectratypes

Generates all FR/CDR spectratypes

Description
Generates all FR/CDR spectratypes

Usage
.generateAllSpectratypes(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)

Arguments

diversityDirectories list type. List of directories to diversity dir

diversityOut string type. Output directory

sampleNames vector type. 1-1 with diversityDirectories

mashedNames string type. Prefix for output files using "mashed-up" sample names

.save logical type. Save ggplot object?

Value
Nothing

.generateDelayedReport

Generates report for all samples in 'compare'

Description
This function is needed because we are delaying the generation of reports until after all threads/processes
have joined. There's currently an issue with rmarkdown::render() in parallel execution, see: https://github.com/rstudio/rmarkdown

Usage
.generateDelayedReport(root, compare, interactivePlot)

Arguments

root string, project root directory.

compare vector of strings, each string is a comparison defined by the user (assumes that
this value has been checked).

interactivePlot logical, whether or not to plot interactive plotly plots.
Value

a named list of samples, each an AbSeqRep object found in "root"

.generateReport

Generates HTML report from AbSeqRep and AbSeqCRep objects

Description

Generates HTML report from AbSeqRep and AbSeqCRep objects

Usage

```r
.generateReport(object, root, outputDir, interactivePlot = TRUE, 
.indexHTML = "#")
```

Arguments

- **object**: AbSeqCRep type.
- **root**: string type. Root directory of the sample(s)
- **outputDir**: string type. The path where the HTML will be generated
- **interactivePlot**: logical type. Interactive or not
- **.indexHTML**: character type. The back button will redirect to this link. This is typically used to redirect users back to index.html page

Value

path (including HTML name) where the report (HTML file) was saved to

.getLineTypes

Helper function to return line types by importance based on provided CD/Fs regions

Description

In the aesthetics of diversity plots (rarefaction, recapture, and duplication), the line types should emphasise the most important antibody region, they're ranked in ascending order of: "FR4", "FR1", "FR2", "FR3", "CDR1", "CDR2", "CDR3", "V".

Usage

```r
.getLineTypes(regions)
```
.hmFromMatrix

Description

Plots a plotly heatmap from provided matrix

Usage

```r
.hmFromMatrix(m, title, xlabel = "", ylabel = "")
```

Arguments

- `m` : matrix type
- `title` : character type
- `xlabel` : character type
- `ylabel` : character type

Value

list with keys: static and interactive (ggplot2 object and plotly object respectively)

.getTotal

Get total number of samples (n)

Description

Often enough, the CSV values supplied do not contain raw counts but percentages (so this value will let us know exactly the sample size).

Usage

```r
.getTotal(filename)
```

Arguments

- `filename` : csv filename

Value

String, sample size.

Comments

Arguments

- regions : a list/vector of strings (regions)

Value

vector of strings, each corresponding to the appropriate line type for regions.
.inferAnalyzed

Returns all samples found under sampleDirectory

Description

Returns all samples found under sampleDirectory

Usage

`.inferAnalyzed(sampleDirectory)`

Arguments

- **sampleDirectory**
 - string, path to sample directory.

Value

un-normalized path to all samples under sampleDirectory

.loadMatrixFromDF

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Description

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Usage

`.loadMatrixFromDF(dataframe, value.var, diag, unidirectional = TRUE)`

Arguments

- **dataframe**
 - dataframe with 3 required columns, namely:
 - `from`
 - `to`
 - `value.var`
 - where value.var is the string provided in the function parameter

- **value.var**
 - the column to use as the matrix value

- **diag**
 - what should the diagonal values be if the dataframe doesn’t provide them

- **unidirectional**
 - logical type. If the dataframe provided has the reverse pairs (i.e. a from-to pair AND a to-from pair with the save values in the value.var column), then this should be FALSE. Otherwise, this function will flip the from-to columns to generate a symmetric dataframe (and hence, a symmetric matrix).
.pairwiseComparison

Description

Conduct all vs all pairwise comparison analyses

Usage

.pairwiseComparison(dataframes, sampleNames, outputPath, .save = TRUE)

Arguments

dataframes list of dataframes
sampleNames 1-1 vector corresponding to dataframes
outputPath string
.save logical

Value

AbSeqRep or AbSeqCRep object depending on sampleNames
.plotCirclize

Value
nothing

Description
V-J association plot

Usage
.plotCirclize(sampleName, path, outputdir)

Arguments

sampleName string type
path string type. Path to _vjassoc.csv
outputdir string type

Value
None

.plotDist

Bar plotter

Description
Plots barplot for all sample in dataframes. If length(sampleNames) == 1, then the bars will also have y-values (or x if horizontal plot) labels on them. Use 'perc' to control if the values are percentages.

Usage
.plotDist(dataframes, sampleNames, plotTitle, vert = TRUE, xlabel = "", ylabel = "", perc = TRUE, subs = "", sorted = TRUE, cutoff = 15, legendPos = "right")
.plotDiversityCurves

Arguments

- dataframes: list type. List of dataframes.
- sampleNames: vector type. 1-1 correspondence to dataframes.
- plotTitle: string type.
- vert: boolean type. True if the plot should be vertical.
- xlabel: string type.
- ylabel: string type.
- perc: boolean type. True if data's axis is a percentage proportion (instead of 0-1) only used if length(sampleNames) == 1.
- subs: string type.
- sorted: boolean type. True if bar plot should be sorted in descending order.
- cutoff: int type. Number of maximum ticks to show (x on vert plots, y on hori plots).
- legendPos: string type. Where to position legend (see ggplot's theme()).

Value

- ggplot2 object

Description

Plots rarefaction, recapture, and de-dup plots for specified region.

Usage

.plotDiversityCurves(region, diversityDirectories, sampleNames, mashedNames, diversityOut, .save = TRUE)

Arguments

- region: string type. One of: "cdr", "cdr_v", and "fr". "cdr" means CDR1-3, "cdr_v" means CDR3 and V only, and finally "fr" means FR1-4.
- diversityDirectories: list type. List of directories to diversity dir.
- sampleNames: vector type. 1-1 with diversityDirectories.
- mashedNames: string type. Prefix for output files using "mashed-up".
- diversityOut: string type. Output directory sample names.
- .save: logical type. Save ggplot object?

Value

- Nothing
.plotDuplication Duplication level plot

Description
bins singletons, doubletons, and higher order clonotypes into a line plot

Usage
.plotDuplication(files, sampleNames, regions = c("CDR3", "V"))

Arguments
files list type. List of strings to _cdr_v_duplication.csv pathname
sampleNames vector type. Vector of strings each representing sample names
regions vector type. Which regions to include in the plot. Default = c("CDR3", "V")

Value
ggplot2 object

.plotErrorDist Plots the error distribution for each region: CDRs, FRs, IGV, IGD, and IGJ

Description
Plots the distribution of indels (gaps), indels in out-of-frame sequences, and the distribution of mismatches for CDRs, FRs, IGV, IGD, and IGJ.

Usage
.plotErrorDist(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments
productivityDirectories list type. List of directories
prodOut string type. Output directory
sampleNames vector type. 1-1 with productivity directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?
Value

None

.plotIGVErrors

Plots the error distribution for IGV germlines

Description

Plots the distribution of in-frame unproductive, out-of-frame unproductive, and productive IGV germlines.

Usage

```
.plotIGVErrors(productivityDirectories, prodOut, sampleNames, 
combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `productivityDirectories` list type. List of directories
- `prodOut` string type. Output directory
- `sampleNames` vector type. 1-1 with productivity directories
- `combinedNames` string type. Title friendly "combined" sample names
- `mashedNames` string type. File friendly "mashed-up" sample names
- `.save` logical type, save Rdata?

Value

None

.plotIGVUpstreamLenDist

Plot IGV family distribution for a given upstreamLengthRange

Description

Given an upstream length range, plot the distributions of IGV family without showing their actual lengths. If their actual lengths matter, refer to `.plotIGVUpstreamLenDistDetailed`.

Usage

```
.plotIGVUpstreamLenDist(upstreamDirectories, upstreamOut, 
upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, 
.save = TRUE)
```
.plotIGVUpstreamLenDistDetailed

Plots the detailed length distribution for IGV families

Description
A boxplot for each IGV families showing the IQR of upstream lengths. In contrast to .plotIGVUpstreamLenDist, which only shows the distribution of IGV families over upstreamLengthRange.

Usage
.plotIGVUpstreamLenDistDetailed(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments
upstreamDirectories
 list type. List of sample directories
upstreamOut
 string type. Output directory
upstreamLengthRange
 The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
lengthType
 string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it’s used for locating the files.
sampleNames
 vector type. 1-1 with upstream directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata?

Value
None
`plotPrimerIGVStatus` Plots, for a given category and pend, the primer IGV indelled distribution in a bar plot

Description

Plots the abundance of indelled primers relative to IGV germlines

Usage

```r
.plotPrimerIGVStatus(primer, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `primer` string, primer name
- `pend` string, either 3 or 5 (primer end)
- `category` string, either "all", "productive", or "outframe"
- `primerDirectories` string type. Path to primer analysis directory
- `sampleNames` vector type. 1-1 with primerDirectories
- `primerOut` string type. output directory
- `combinedNames` string type. Title friendly "combined" sample names
- `mashedNames` string type. File friendly "mashed-up" sample names
- `.save` logical type. Save Rdata?

Value

None
.plotPrimerIntegrity

Description
Plots the distribution of primer integrity for a given category and 5' or 3' pend

Usage
.plotPrimerIntegrity(primerIntegrity, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)

Arguments
- primerIntegrity: string. One of "stopcodon", "integrity", "indelled", "indel_pos"
- pend: string, either 3 or 5 (primer end)
- category: string, either "all", "productive", or "outframe"
- primerDirectories: string type. Path to primer analysis directory
- sampleNames: vector type. 1-1 with primerDirectories
- primerOut: string type. output directory
- combinedNames: string type. Title friendly "combined" sample names
- mashedNames: string type. File friendly "mashed-up" sample names
- .save: logical type. Save Rdata?

Value
None

.plotRarefaction

Description
Plots the number of unique clonotypes (on the y-axis) drawn from a sample size on the x axis. The number of unique clonotypes is averaged over 5 repeated rounds.

Usage
.plotRarefaction(files, sampleNames, regions = c("CDR3", "V"))
.plotRecapture

Arguments

files list type. A list of files consisting of path to samples
sampleNames vector type. A vector of strings, each being the name of samples in files
regions vector type. A vector of strings, regions to be included. Defaults to c("CDR3", "V")

Value
ggplot2 object

Description

Plots the percent of recapture clonotypes (on the y-axis) drawn from a repeated (with replacement) sample size on the x axis. The percentage of recaptured clonotypes is averaged over 5 recapture rounds.

Usage

.plotRecapture(files, sampleNames, regions = c("CDR3", "V"))

Arguments

files list type. List of _cdr_v_recapture.csv.gz files.
sampleNames vector type. A vector of strings each representing the name of samples in files.
regions vector type. A vector of strings, regions to be included in the plot. defaults to c("CDR3", "V")

Value

ggplot2 object
.plotSamples

Monolith AbSeq Plot function - the "driver" program

Description

Monolith AbSeq Plot function - the "driver" program

Usage

.plotSamples(sampleNames, directories, analysis, outputDir, primer5Files, primer3Files, upstreamRanges, skipDgene = FALSE)

Arguments

sampleNames vector type. Vector of sample names in strings
directories vector type. Vector of directories in strings, must be 1-1 with sampleNames
analysis vector / list type. What analysis to plot for. If sampleNames or directories is > 1 (i.e. AbSeqCRep), then make sure that it's an intersection of all analysis conducted by the repertoires, otherwise, it wouldn't make sense
outputDir string type. Where to dump the output
primer5Files vector / list type. Collection of strings that the sample used for primer5 analysis. If sample N doesn’t have a primer 5 file, leave it as anything but a valid file path.
primer3Files vector / list type. Collection of strings that the sample used for primer 3 analysis. If sample N doesn’t have a primer 3 file, leave it as anything but a valid file path.
upstreamRanges list type. Collection of "None"s or vector denoting upstreamStart and upstreamEnd for each sample.
skipDgene logical type. Whether or not to skip D gene distribution plot

Value

none

.plotSpectratype Spectratype plotter

Description

Plots length distribution

Usage

.plotSpectratype(dataframes, sampleNames, region, title = "Spectratype", subtitle = "", xlabel = "Length(AA)", ylabel = "Distribution", showLabel = FALSE)
Arguments

dataframes list type. List of dataframes.
sampleNames vector type. 1-1 correspondance with dataframes
region string type. Region that will be displayed in the plot title. This specifies which
 region this spectratype belongs to. If not supplied, a default (start, end) range
 will be displayed instead

Value

Value

Description

Plot upstream distribution

Usage

.plotUpstreamLength(upstreamDirectories, upstreamOut, expectedLength,
upstreamLengthRange, sampleNames, combinedNames, mashedNames,
.save = TRUE)

Arguments

upstreamDirectories list type. List of sample directories
upstreamOut string type. Output directory
expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up-
 stream_start + 1).
upstreamLengthRange string type. start_end format
sampleNames vector type. 1-1 with upstream directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value

None
Description

Given an upstream length range, plot the distribution of upstream sequence lengths.

Usage

.plotUpstreamLengthDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save)

Arguments

upstreamDirectories
 list type. List of sample directories
upstreamOut
 string type. Output directory
upstreamLengthRange
 The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
lengthType
 string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files.
sampleNames
 vector type. 1-1 with upstream directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata?

Value

None
.primerAnalysis

Conducts primer specificity analysis

Usage

.primerAnalysis(primerDirectories, primer5Files, primer3Files, primerOut,
sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

primerDirectories
 string type. Path to primer analysis directory
primer5Files
 vector / list type. 5' end primer files
primer3Files
 vector / list type. 3' end primer files
primerOut
 string type. output directory
sampleNames
 vector type. 1-1 with primerDirectories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata?

Value

None

.prodDistPlot

Plots a distribution plot for different productivity analysis files

Description

A wrapper for plotDist

Usage

.prodDistPlot(productivityDirectories, sampleNames, title, reg,
outputFileName, region, .save = TRUE)
Arguments

productivityDirectories
 vector type. directories where all productivity csv files lives (usually <sample-name>/productivity/)
sampleNames
 vector type.
title
 string type.
reg
 string type. Regular expression to find the right files for this particular distribution plot
outputFileName
 string type. Vector of file names to save in the order of regions
region
 string type. Most of the dist plots are regional based. use "" if no regions are involved
.save
 logical type. Save Rdata?

Value

None

.productivityAnalysis Conducts productivity analysis

Description

Conducts productivity analysis

Usage

.productivityAnalysis(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

productivityDirectories
 list type. List of directories
prodOut
 string type. Output directory
sampleNames
 vector type. 1-1 with productivity directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata

Value

None
.productivityPlot

Summary of productivity

Description

Shows the percentage of 1. productivity, 2. non-functional + reason for being unproductive, i.e. "Stop Codon" or "Out of frame" or "Stop & Out".

Usage

```r
.productivityPlot(dataframes, sampleNames)
```

Arguments

- **dataframes** list type. List of sample dataframes
- **sampleNames** vector type. 1-1 with dataframes

Value

ggplot2 object

.readSummary

Return value specified by key from AbSeq’s summary file

Description

Return value specified by key from AbSeq’s summary file.

Usage

```r
.readSummary(sampleRoot, key)
```

Arguments

- **sampleRoot** sample’s root directory. For example, `/path/to/<outputdir>/reports/<sample_name>`.
- **key** character type. Possible values are (though they might change):
 - RawReads
 - AnnotatedReads
 - FilteredReads
 - ProductiveReads

Value

Value associated with key from summary file. "NA" (in string) if the field is not available refer to `util.R` for the key values.
.regionAnalysis

Title Shows varying regions for a given clonotype defined by its CDR3

Description
Title Shows varying regions for a given clonotype defined by its CDR3

Usage
.regionAnalysis(path, sampleName, top = 15)

Arguments
path string type. Path to diversity folder where <sampleName>_clonotype_diversity_region_analysis.csv.gz is located
sampleName string type
top int type. Top N number of clones to analyze

Value
ggplot2 object

.reportLBE

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Description
Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Usage
.reportLBE(df)

Arguments
df clonotype dataframe. Vegan format: +--------------------------+ | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) +--------------------------+
| v1 | v2 | v3 | ... | (each species’ count values are placed in the corresponding column) +--------------------------+

Value
dataframe with the format: +--+ | S.obs | S.chao1 | se.chao1 | S.ACE | se.ACE | s.jack1 | s.jack2 | +--+
| v1 | v2 | ... | +--+
.saveAs

Saves ggplot object as a Rdata file.

Description
It's a convinient function that does the check and saves at the same time, for brevity within other areas of the code (to eliminate repeated if checks).

Usage
.saveAs(.save, filename, plot)

Arguments
.save logical type. Whether or not we should save.
filename string.
plot ggplot object.

Value
nothing

.scatterPlot

Title Creates a scatter plot

Description
Title Creates a scatter plot

Usage
.scatterPlot(df1, df2, name1, name2, cloneClass)

Arguments
df1 dataframe for sample 1
df2 dataframe for sample 2
name1 string type, Sample 1 name
name2 string type. Sample 2 name
cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

Value
ggplot2 object
.scatterPlotComplex

Description

Creates a complex scatter plot

Usage

.scatterPlotComplex(df.union, df1, df2, name1, name2, cloneClass)

Arguments

df.union: a 'lossless' dataframe created by intersecting sample1 and sample2's dataframes. It should contain NAs where clones that appear in one sample doesn't appear in the other. For example:

+---------------------------------+ | Clonotype | prop.x | prop.y | Count.x |
| Count.y | +---------------------------------|+|ABCDEF|NA|0.01|NA|
210 | | | +---------------------------------|

df1: dataframe for sample 1
df2: dataframe for sample 2
name1: string type, Sample 1 name
name2: string type, Sample 2 name
cloneClass: string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

Value

ggplot2 object

.secretionSignalAnalysis

Description

Generates all the required plots for Secretion signal analysis. This includes upstream length distributions and upstream sequence validity.

Usage

.secretionSignalAnalysis(secDirectories, secOut, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE)
Arguments

secDirectories list type. Secretion signal directories where files are located
secOut string type. Where to dump output
sampleNames vector type. 1-1 with secDirectories
combinedNames string type. Title friendly string
mashedNames string type. File name friendly string
upstreamRanges list type. Upstream ranges for each sample. If length(secDirectories) > 1, the plots will only be generated for upstream ranges that are present in ALL samples. (i.e. the intersection)
.save logical type, save Rdata?

Value

None

.substituteStringInFile

Substitutes the first occurrence of 'key' with 'value' in 'filename'

Description

Substitutes the first occurrence of 'key' with 'value' in 'filename'

Usage

.substituteStringInFile(filename, key, value, fixed = FALSE)

Arguments

filename character type
key character type
value character type
fixed logical type

Value

None
summarySE

Summary of dataframe

Description

Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).

adapted from http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/#Helper functions

Usage

```
.summarySE(data = NULL, measurevar, groupvars = NULL, na.rm = FALSE, conf.interval = 0.95, .drop = TRUE)
```

Arguments

- `data`: a data frame.
- `measurevar`: the name of a column that contains the variable to be summarized.
- `groupvars`: a vector containing names of columns that contain grouping variables.
- `na.rm`: a boolean that indicates whether to ignore NA’s.
- `conf.interval`: the percent range of the confidence interval (default is 95%).
- `drop`: logical.

Value

dataframe

topNDist

Title Clonotype table

Description

Title Clonotype table

Usage

```
.topNDist(dataframes, sampleNames, top = 10)
```

Arguments

- `dataframes`: list type. List of dataframes.
- `sampleNames`: vector type. Vector of strings representing sample names should have one-to-one correspondence with dataframes.
- `top`: int type. Top N clonotypes to plot.
.UTR5Analysis

Value

None

Description

Generates all the required plots for 5' UTR analysis. This includes upstream length distributions and upstream sequence validity.

Usage

`.UTR5Analysis(utr5Directories, utr5Out, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE)`

Arguments

- `utr5Directories` list type. 5UTR directories where files are located
- `utr5Out` string type. Where to dump output
- `sampleNames` vector type. 1-1 with `utr5Directories`
- `combinedNames` string type. Title friendly string
- `mashedNames` string type. File name friendly string
- `upstreamRanges` list type. Upstream ranges for each sample. If length(`utr5Directories`) > 1, the plots will only be generated for upstream ranges that are present in ALL samples. (i.e the intersection)
- `.save` logical type, save Rdata?

Value

none
Description

Title Creates Venn diagram for clonotype intersection

Usage

.vennIntersection(dataframes, sampleNames, outFile, top = Inf)

Arguments

dataframes list type. List of sample dataframes. Only accepts 2 - 5 samples. Warning message will be generated for anything outside of the range

sampleNames vector type. 1-1 with dataframes

outFile string type. Filename to be saved as

top int type. Top N cutoff, defaults to ALL clones if not specified

Value

Nothing

AbSeqCRep-class S4 class - AbSeqCompositeRepertoire analysis object

Description

AbSeqCRep is a collection of AbSeqRep S4 objects. This S4 class contains multiple samples(repertoires) and it can be "combined" with other samples by using the + operator to create an extended AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the + operation between two AbSeqRep objects, which are in turn, obtained indirectly from abseqReport and report functions. It is also possible to obtain this class object by + (adding) AbSeqCRep objects.

Value

AbSeqCRep

Slots

repertoires list of AbSeqRep objects.
AbSeqRep-class

S4 class - AbSeqRepertoire analysis object

Description

The AbSeqRep object contains all metadata associated with the AbSeq (python backend) run conducted on it. This S4 class represents a single sample(repertoire) and it can be "combined" with other samples by using the + operator to create an AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the abseqReport and report functions.

Value

AbSeqRep

Slots

f1 character. Path to FASTA/FASTQ file 1.
f2 character. Path to FASTA/FASTQ file 2.
chain character. Type of chain, possible values:
 • hv
 • lv
 • kv
 • klv

each representing Heavy, Lambda and Kappa respectively.
task character. Type of analysis conducted, possible values:

- all
- annotate
- abundance
- diversity
- productivity
- fastqc
- primer
- 5utr
- rsasimple
- seqlen
- secretion
- seqlenclass

name character. Name of analysis.

bitscore numeric. Part of filtering criteria: V gene bitscore filter value.

qstart numeric. Part of filtering criteria: V gene query start filter value.

sstart numeric. Part of filtering criteria: V gene subject start filter value.

alignlen numeric. Part of filtering criteria: V gene alignment length filter value.

clonelimit numeric. Number of clones to export into csv file. This is only relevant in -t all or -t diversity where clonotypes are exported into <outdir>/<name>/diversity/clonotypes

detailedComposition logical. Plots composition logo by IGHV families if set to true, otherwise, plots logos by FR/CDRs.

log character. Path to log file.

merger character. Merger used to merge paired-end reads.

fmt character. File format of file1 and (if present) file2. Possible values are FASTA or FASTQ.

sites character. Path to restriction sites txt file. This option is only used if -t rsasimple

primer5end ANY. Path to 5’ end primer FASTA file.

primer3end ANY. Path to 3’ end primer FASTA file.

trim5 numeric. Number of nucleotides to trim at the 5’ end;

trim3 numeric. Number of nucleotides to trim at the 3’ end;

outdir character. Path to output directory

primer5endoffset numeric. Number of nucleotides to offset before aligning 5’ end primers in primer5end FASTA file.

threads numeric. Number of threads to run.

upstream character. Index (range) of upstream nucleotides to analyze. This option is only used if -t 5utr or -t secretion.

seqtype character. Sequence type, possible values are either dna or protein.

database character. Path to IgBLAST database.

actualqstart numeric. Query sequence’s starting index (indexing starts from 1). This value overrides the inferred query start position by AbSeq.
fr4cut logical. The end of FR4 is marked as the end of the sequence if set to TRUE, otherwise the end of the sequence is either the end of the read itself, or trimmed to --trim3 <num>.

domainSystem character. Domain system to use in IgBLAST, possible values are either imgt or kabat.

See Also

abseqReport returns a list of AbSeqRep objects.

Examples

this class is not directly constructed by users, but as a return
value from the abseqReport method.

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

Description

Plots all samples in the output directory supplied to abseqPy's --outdir or -o argument. Users can optionally specify which samples in directory should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

Calling this function with a valid directory will always return a named list of objects; these individual objects can be combined using the + operator to form a new comparison, in which the report function accepts as its first parameter.

Usage

abseqReport(directory, report, compare, BPPARAM)

Arguments

directory string type. directory as specified in -o or --outdir in abseqPy. This tells AbSeq where to look for abseqPy's output.

report (optional) integer type. The possible values are:

• 0 - does nothing (returns named list of AbSeqRep objects)
• 1 - generates plots for csv files
• 2 - generates a report that collates all plots
• 3 - generates interactive plots in report (default)
each higher value also does what the previous values do. For example, `report = 2` will return a named list of `AbSeqRep` objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together.

compare (optional) vector of strings. From the samples in found in directory directory, they can be selected and compared against each other. For example, to compare "sample1" with "sample2" and "sample3" with "sample4", `compare` should be c("sample1,sample2", "sample3,sample4"). An error will be thrown if the samples specified in this parameter are not found in directory.

BPPARAM (optional) BiocParallel backend. Configures the parallel implementation. Refer to `BiocParallel` for more information. By default, use all available cores.

Value

named list. List of `AbSeqRep` objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of `report`.

See Also

`AbSeqRep`
`report`. Analogous function, but takes input from an `AbSeqRep` or `AbSeqCRep` object instead.

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)

### 1. The `report` parameter usage example:

# report = 0; don't plot, don't collate a HTML report, don't show anything interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# samples is now a named list of AbSeqRep objects

# report = 1; just plot pngs; don't collate a HTML report; nothing interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 1)
# samples is now a named list of AbSeqRep objects

# report = 2; plot pngs; collate a HTML report; HTML report will NOT be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 2)
# samples is now a named list of AbSeqRep objects

# report = 3 (default); plot pngs; collate a HTML report; HTML report will be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 3)
# samples is now a named list of AbSeqRep objects

### 2. Using the return value of abseqReport:

# NOTE, often, this is used to load multiple samples from different directories
# using abseqReport (with report = 0), then the samples are added together
# before calling the report function. This is most useful when the samples
```
live in different abseqPy output directory.

Note that the provided example data has PCR1, PCR2, and PCR3
samples contained within the directory
stopifnot(names(samples) == c("PCR1", "PCR2", "PCR3"))

as a hypothetical example, say we found something
interesting in PCR1 and PCR3, and we want to isolate them:
we want to explicitly compare PCR1 with PCR3
pcr13 <- samples[["PCR1"]]+samples[["PCR3"]]

see abseqR::report for more information.
abseqR::report(pcr13) # uncomment this line to run

BPPARAM usage:

4 core machine, use all cores - use whatever value that suits you
nproc <- 4
samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::MulticoreParam(nproc))

run sequentially - no multiprocessing
samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::SerialParam())

see https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
for more information about how to use BPPARAM and BiocParallel in general.

report
Plots AbSeqRep or AbSeqCRep object to the specified directory

Description

Plots all samples in the object argument and saves the analysis in outputDir. Users can optionally specify which samples in object should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

This method is analogous to `abseqReport`. The only difference is that this method accepts AbSeqRep or AbSeqCRep objects as its first parameter, and the outputDir specifies where to store the result.

Usage

```r
report(object, outputDir, report = 3)
```

S4 method for signature 'AbSeqRep'
```r
report(object, outputDir, report = 3)
```
S4 method for signature 'AbSeqCRep'

```
report(object, outputDir, report = 3)
```

Arguments

- **object**
 - AbSeqRep or AbSeqCRep object to plot.
- **outputDir**
 - string type. Directory where analysis will be saved to.
- **report** (optional)
 - integer type. The possible values are:
 - 0 - does nothing (returns named list of AbSeqRep objects)
 - 1 - generates plots for csv files
 - 2 - generates a report that collates all plots
 - 3 - generates interactive plots in report (default)

 Each value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive) HTML report that collates all the plots together.

Value

named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of `abseqReport`.

See Also

- `abseqReport`. Analogous function, but takes input from a string that signifies the output directory of abseqPy as the first argument instead.
- AbSeqRep
- AbSeqCRep

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# We can use the + operator to combine samples, thus requesting the
# report function to compare them:
pcr12 <- samples[["PCR1"]]
+ samples[["PCR2"]]

# generate plots and report for this new comparison
# report(pcr12, "PCR1_vs_PCR2")

# generate plots only
# report(pcr12, "PCR1_vs_PCR2", report = 1)

# generate plots, and a non-interactive report
```
report(pcr12, "PCR1_vs_PCR2", report = 2)
generate plots, and an interactive report
report(pcr12, "PCR1_vs_PCR2", report = 3) # this is the default
Index

<table>
<thead>
<tr>
<th>Method/Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>+, AbSeqCRep, AbSeqCRep-method</td>
<td>4</td>
</tr>
<tr>
<td>+, AbSeqCRep, AbSeqRep-method</td>
<td>5</td>
</tr>
<tr>
<td>+, AbSeqRep, AbSeqCRep-method</td>
<td>6</td>
</tr>
<tr>
<td>+, AbSeqRep, AbSeqRep-method</td>
<td>7</td>
</tr>
<tr>
<td>. UTR5Analysis</td>
<td>50</td>
</tr>
<tr>
<td>. abundanceAnalysis</td>
<td>8</td>
</tr>
<tr>
<td>. abundancePlot</td>
<td>8</td>
</tr>
<tr>
<td>. alignQualityHeatMaps</td>
<td>9</td>
</tr>
<tr>
<td>. allPrimerNames</td>
<td>9</td>
</tr>
<tr>
<td>. aminoAcidBar</td>
<td>10</td>
</tr>
<tr>
<td>. aminoAcidPlot</td>
<td>10</td>
</tr>
<tr>
<td>. analyzeUpstreamValidity</td>
<td>11</td>
</tr>
<tr>
<td>. annotAnalysis</td>
<td>11</td>
</tr>
<tr>
<td>. asRepertoireAlignLen</td>
<td>12</td>
</tr>
<tr>
<td>. asRepertoireBitscore</td>
<td>13</td>
</tr>
<tr>
<td>. asRepertoireChain</td>
<td>13</td>
</tr>
<tr>
<td>. asRepertoireDir</td>
<td>14</td>
</tr>
<tr>
<td>. asRepertoireList</td>
<td>14</td>
</tr>
<tr>
<td>. asRepertoireName</td>
<td>15</td>
</tr>
<tr>
<td>. asRepertoirePrimer3</td>
<td>15</td>
</tr>
<tr>
<td>. asRepertoirePrimer5</td>
<td>16</td>
</tr>
<tr>
<td>. asRepertoireQueryStart</td>
<td>16</td>
</tr>
<tr>
<td>. asRepertoireSubjectStart</td>
<td>17</td>
</tr>
<tr>
<td>. asRepertoireUpstreamLength</td>
<td>17</td>
</tr>
<tr>
<td>. boxPlot</td>
<td>18</td>
</tr>
<tr>
<td>. calculateDInd</td>
<td>18</td>
</tr>
<tr>
<td>. calculateDiversityEstimates</td>
<td>19</td>
</tr>
<tr>
<td>. canonicalizeTitle</td>
<td>19</td>
</tr>
<tr>
<td>. capitalize</td>
<td>20</td>
</tr>
<tr>
<td>. checkVert</td>
<td>20</td>
</tr>
<tr>
<td>. cloneDistHist</td>
<td>21</td>
</tr>
<tr>
<td>. cloneDistMarginal</td>
<td>21</td>
</tr>
<tr>
<td>. clonotypeAnalysis</td>
<td>22</td>
</tr>
<tr>
<td>. collateReports</td>
<td>22</td>
</tr>
<tr>
<td>. commonPrimerNames</td>
<td>23</td>
</tr>
<tr>
<td>. correlationTest</td>
<td>23</td>
</tr>
<tr>
<td>. distanceMeasure</td>
<td>24</td>
</tr>
<tr>
<td>. diversityAnalysis</td>
<td>24</td>
</tr>
<tr>
<td>. emptyPlot</td>
<td>25</td>
</tr>
<tr>
<td>. findRepertoires</td>
<td>25</td>
</tr>
<tr>
<td>. generateAllSpectratypes</td>
<td>26</td>
</tr>
<tr>
<td>. generateDelayedSpectratypes</td>
<td>26</td>
</tr>
<tr>
<td>. generateReport</td>
<td>27</td>
</tr>
<tr>
<td>. getLineTypes</td>
<td>27</td>
</tr>
<tr>
<td>. getTotal</td>
<td>28</td>
</tr>
<tr>
<td>. hmFromMatrix</td>
<td>28</td>
</tr>
<tr>
<td>. inferAnalyzed</td>
<td>29</td>
</tr>
<tr>
<td>. loadMatrixFromDF</td>
<td>29</td>
</tr>
<tr>
<td>. loadSamplesFromString</td>
<td>30</td>
</tr>
<tr>
<td>. pairwiseComparison</td>
<td>30</td>
</tr>
<tr>
<td>. plotCirclize</td>
<td>31</td>
</tr>
<tr>
<td>. plotDist</td>
<td>31</td>
</tr>
<tr>
<td>. plotDiversityCurves</td>
<td>32</td>
</tr>
<tr>
<td>. plotDuplication</td>
<td>33</td>
</tr>
<tr>
<td>. plotErrorDist</td>
<td>33</td>
</tr>
<tr>
<td>. plotIGVErrors</td>
<td>34</td>
</tr>
<tr>
<td>. plotIGVUpstreamLenDist</td>
<td>34, 35</td>
</tr>
<tr>
<td>. plotIGVUpstreamLenDistDetailed</td>
<td>34, 35</td>
</tr>
<tr>
<td>. plotIGVUpstreamLenDistDetailed</td>
<td>34, 35</td>
</tr>
<tr>
<td>. plotIGVStatus</td>
<td>36</td>
</tr>
<tr>
<td>. plotIGVIntegrity</td>
<td>37</td>
</tr>
<tr>
<td>. plotRarefaction</td>
<td>37</td>
</tr>
<tr>
<td>. plotRecapture</td>
<td>38</td>
</tr>
<tr>
<td>. plotSamples</td>
<td>39</td>
</tr>
<tr>
<td>. plotSpectratype</td>
<td>39</td>
</tr>
<tr>
<td>. plotUpstreamLength</td>
<td>40</td>
</tr>
<tr>
<td>. plotUpstreamLengthDist</td>
<td>41</td>
</tr>
<tr>
<td>. primerAnalysis</td>
<td>42</td>
</tr>
<tr>
<td>. prodDistPlot</td>
<td>42</td>
</tr>
<tr>
<td>. productivityAnalysis</td>
<td>43</td>
</tr>
<tr>
<td>. productivityPlot</td>
<td>44</td>
</tr>
<tr>
<td>. readSummary</td>
<td>44</td>
</tr>
<tr>
<td>. regionAnalysis</td>
<td>45</td>
</tr>
<tr>
<td>. reportLBE</td>
<td>45</td>
</tr>
<tr>
<td>. saveAs</td>
<td>46</td>
</tr>
<tr>
<td>. scatterPlot</td>
<td>46</td>
</tr>
<tr>
<td>. scatterPlotComplex</td>
<td>47</td>
</tr>
<tr>
<td>. secretionSignalAnalysis</td>
<td>47</td>
</tr>
<tr>
<td>. substituteSignalAnalysis</td>
<td>47</td>
</tr>
<tr>
<td>. substituteStringInFile</td>
<td>48</td>
</tr>
</tbody>
</table>
.summarySE, 49
.topNDist, 49
.vennIntersection, 51

AbSeqCRep, 4–7, 14, 27, 51, 52, 55–57
AbSeqCRep (AbSeqCRep-class), 51
AbSeqCRep-class, 51
AbSeqRep, 5–7, 14, 27, 51, 52, 54–57
AbSeqRep (AbSeqRep-class), 52
AbSeqRep-class, 52
abseqReport, 4–7, 51, 52, 54, 55, 56

report, 51, 52, 54, 55, 56
report, AbSeqCRep-method (report), 56
report, AbSeqRep-method (report), 56