Package ‘abseqR’

May 29, 2024

Type Package

Title Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Version 1.22.0

Description AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, gg dendro, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics

VignetteBuilder knitr

RoxygenNote 6.1.0

SystemRequirements pandoc (>= 1.19.2.1)

URL https://github.com/malhamdoosh/abseqR

BugReports https://github.com/malhamdoosh/abseqR/issues
biocViews Sequencing, Visualization, ReportWriting, QualityControl, MultipleComparison

Suggests testthat

git_url https://git.bioconductor.org/packages/abseqR

git_branch RELEASE_3_19

git_last_commit 1d43107

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author JiaHong Fong [cre, aut], Monther Alhamdoosh [aut]

Maintainer JiaHong Fong <jiahfong@gmail.com>

Contents

+-AbSeqCRep,AbSeqCRep-method ... 4
+-AbSeqCRep,AbSeqRep-method .. 5
+-AbSeqRep,AbSeqCRep-method .. 6
+-AbSeqRep,AbSeqRep-method .. 7
..abundanceAnalysis ... 8
..abundancePlot .. 9
..alignQualityHeatMaps ... 9
..allPrimerNames ... 10
..aminoAcidBar ... 10
..aminoAcidPlot .. 10
..analyzeUpstreamValidity ... 11
..annotAnalysis ... 11
..asRepertoireAlignLen .. 12
..asRepertoireBitscore .. 13
..asRepertoireChain .. 13
..asRepertoireDir .. 14
..asRepertoireList .. 14
..asRepertoireName .. 15
..asRepertoirePrimer3 ... 15
..asRepertoirePrimer5 ... 16
..asRepertoireQueryStart ... 16
..asRepertoireSubjectStart .. 17
..asRepertoireUpstream .. 17
..boxPlot ... 18
..calculateDInd .. 18
..calculateDiversityEstimates .. 19
..canonicalizeTitle .. 19
..capitalize .. 20
..checkVert .. 20
..cloneDistHist ... 21
.cloneDistMarginal .. 21
.clonotypeAnalysis .. 22
.collateReports ... 22
.commonPrimerNames .. 23
.correlationTest .. 23
.distanceMeasure ... 24
.diversityAnalysis .. 24
.emptyPlot .. 25
.findRepertoires .. 25
.generateAllSpectratypes ... 26
.generateDelayedReport ... 26
.generateReport ... 27
.getLineTypes ... 27
.getTotal ... 28
.hmFromMatrix ... 28
.inferAnalyzed ... 29
.loadMatrixFromDF .. 29
.loadSamplesFromString .. 30
.pairwiseComparison ... 30
.plotCirclize .. 31
.plotDist ... 31
.plotDiversityCurves .. 32
.plotDuplication .. 33
.plotErrorDist ... 33
.plotIGVErrors .. 34
.plotIGVUpstreamLenDist .. 34
.plotIGVUpstreamLenDistDetailed 35
.plotPrimerIGVStatus ... 36
.plotPrimerIntegrity ... 37
.plotRarefaction ... 37
.plotRecapture ... 38
.plotSamples .. 39
.plotSpectratype .. 39
.plotUpstreamLength ... 40
.plotUpstreamLengthDist .. 41
.primerAnalysis ... 42
.prodDistPlot .. 42
.productivityAnalysis .. 43
.productivityPlot .. 44
.readSummary ... 44
.regionAnalysis ... 45
.reportLBE .. 45
.saveAs ... 46
.scatterPlot .. 46
.scatterPlotComplex ... 47
.secretionSignalAnalysis ... 47
.substituteStringInFile .. 48
.summarySE .. 49
Description

Combines 2 AbSeqCRep objects together for comparison

Usage

```r
## S4 method for signature 'AbSeqCRep,AbSeqCRep'
e1 + e2
```

Arguments

- `e1`: AbSeqCRep.
- `e2`: AbSeqCRep.

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

abseqReport returns a list of AbSeqReps

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]]+samples[["PCR2"]]
pcr13 <- samples[["PCR1"]]+samples[["PCR3"]]
```
all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13

you can now call the report function on this object
report(all_S) # uncomment this line to execute report

Description
Combines a AbSeqCRep object with a AbSeqRep object together for comparison

Usage
S4 method for signature 'AbSeqCRep,AbSeqRep'
e1 + e2

Arguments
e1 AbSeqCRep.
e2 AbSeqRep.

Value
AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also
abseqReport returns a list of AbSeqReps

Examples
Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr12 is an instance of AbSeqCRep
pcr12 <- samples[["PCR1"]]+samples[["PCR2"]]
pcr3 is instance of AbSeqRep
pcr3 <- samples[["PCR3"]]

pcr123 is an instance of AbSeqCRep
pcr123 <- pcr12 + pcr3
you can now call the report function on this object
report(pcr123) # uncomment this line to execute report

S4 method for signature 'AbSeqRep,AbSeqCRep'
e1 + e2

Arguments

- **e1**: AbSeqRep.
- **e2**: AbSeqCRep.

Value

AbSeqCRep object. Calling `abseqR`'s functions on this object will always result in a comparison.

See Also

`abseqReport` returns a list of AbSeqReps

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr1 is an instance of AbSeqRep
pcr1 <- samples[["PCR1"]]
# pcr23 is instance of AbSeqCRep
pcr23 <- samples[["PCR2"]]+samples[["PCR3"]]

# pcr123 is an instance of AbSeqCRep
pcr123 <- pcr1 + pcr23

# you can now call the report function on this object
# report(pcr123)  # uncomment this line to execute report
```
Description

Combines 2 AbSeqRep objects together for comparison

Usage

```r
## S4 method for signature 'AbSeqRep, AbSeqRep'
e1 + e2
```

Arguments

- `e1`: AbSeqRep object.
- `e2`: AbSeqRep object.

Value

AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also

abseqReport returns a list of AbSeqReps

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive = TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr1 and pcr2 are instances of AbSeqRep
pcr1 <- samples[["PCR1"]]
pcr2 <- samples[["PCR2"]]

# pcr12 is an instance of AbSeqCRep
pcr12 <- pcr1 + pcr2

# you can now call the report function on this object
# report(pcr12) # uncomment this line to execute report
```
.abundanceAnalysis

Description

Conducts abundance analysis

Usage

```r
.abundanceAnalysis(abundanceDirectories, abunOut, sampleNames, 
combinedNames, mashedNames, skipDgene = FALSE, .save = TRUE)
```

Arguments

- `abundanceDirectories`: list type. List of sample directories
- `abunOut`: string type. Output directory
- `sampleNames`: vector type. 1-1 correspondence with abundanceDirectories
- `combinedNames`: string type. Title "combined" sample names
- `mashedNames`: string type. File "mashed" names - avoid special chars
- `skipDgene`: logical type. Skip D gene plots?
- `.save`: logical type. Save ggplot as Rdata

Value

None

.abundancePlot

Description

Abundance distribution

Usage

```r
.abundancePlot(files, sampleNames, outputDir, skipDgene = FALSE, 
.save = TRUE)
```

Arguments

- `files`: list type. list of files in abundance directory
- `sampleNames`: vector type. 1-1 correspondance to files
- `outputDir`: string type.
- `skipDgene`: logical type. Skip D germline abundance plot if TRUE.
- `.save`: logical type. Save Rdata ggplot item
Value

None

.alignQualityHeatMaps

Plots all 5 alignment quality heatmaps

Description

Plots alignment quality vs:
- mismatches
- gaps
- bitscore
- percent identity
- subject start

Usage

```
.alignQualityHeatMaps(abundanceDirectory, sampleName)
```

Arguments

- `abundanceDirectory` character type. fully qualified path to abundance directory
- `sampleName` character type. sample name

Value

list of ggplotly heatmaps

.allPrimerNames

Collect primer names from FASTA

Description

Collect primer names from FASTA

Usage

```
.allPrimerNames(primerFile)
```

Arguments

- `primerFile` string type. Path to primer file

Value

vector of primer names as seen in primerFile
.aminoAcidBar

Plots amino acid composition logo

Description
Plots amino acid composition logo

Usage
.aminoAcidBar(df, scale, region, germ = "")

Arguments

df dataframe
scale logical. scale to proportion?
region string. which region is this
germ string. V germline family

Value
ggplot2 object

.aminoAcidPlot

Composition logo plot

Description
Plots 2 kinds: scaled and unscaled composition logos

Usage
.aminoAcidPlot(compositionDirectory, outdir, sampleName, regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"), .save = TRUE)

Arguments

compositionDirectory string type.
outdir string type.
sampleName string type.
regions logical type. vector of FR/CDR regions to plot
.save logical type. save ggplot object

Value
none
.analyzeUpstreamValidity

Plots the validity of upstream sequences

Description

Plots the distribution of valid, faulty, and missing start codon in IGV germlines (repeated for gene and family levels).

Usage

```r
.analyzeUpstreamValidity(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `upstreamDirectories`: list type. List of sample directories
- `upstreamOut`: string type. Output directory
- `expectedLength`: int type. Expected length of upstream sequences. (i.e. `upstream_end - upstream_start + 1`). If this is infinite, no plots will be generated.
- `upstreamLengthRange`: string type. start_end format
- `sampleNames`: vector type. 1-1 with upstream directories
- `combinedNames`: string type. Title friendly "combined" sample names
- `mashedNames`: string type. File friendly "mashed-up" sample names
- `.save`: logical type. Save Rdata?

Value

None

.annotAnalysis

Annotation analysis

Description

Annotation analysis

Usage

```r
.annotAnalysis(annotDirectories, annotOut, sampleNames, mashedNames, .save = TRUE)
```
Arguments

- **annotDirectories**: list type. List of sample directories
- **annotOut**: string type. Output directory
- **sampleNames**: vector type. 1-1 with annotDirectories
- **mashedNames**: string type. File output "mashed" sample names
- **.save**: logical type. Saves ggplot object

Value

- none

Description

Accessor for `alignlen` slot

Usage

```r
.asRepertoireAlignLen(object, collapse = " - ")
```

Arguments

- **object**: AbSeqRep object
- **collapse**: character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
Description

Accessor for bitscore slot

Usage

.asRepertoireBitscore(object, collapse = " - ")

Arguments

object AbSeqRep object
collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as ‘start - end’ in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

Description

Accessor for chain slot

Usage

.asRepertoireChain(object)

Arguments

object AbSeqRep object

Value

character type, the chain type of this sample
.asRepertoireDir

Description

Accessor for the `outdir` slot

Usage

`.asRepertoireDir(object)`

Arguments

- `object`
 AbSeqRep object

Value

character type, the output directory of this object

.asRepertoireList

Description

Accessor for AbSeqCRep’s list of AbSeqRep objects

Usage

`.asRepertoireList(object)`

Arguments

- `object`
 AbSeqCRep object

Value

list type, list of AbSeqRep objects that together, compose this AbSeqCRep object.
Description

Accessor for the name slot

Usage

.asRepertoireName(object)

Arguments

object AbSeqRep object

Value

character type, the sample name of this object.

Description

Accessor for the primer3end slot

Usage

.asRepertoirePrimer3(object)

Arguments

object AbSeqRep object

Value

character type, the FASTA file name for primer 3’ end sequences
.asRepertoirePrimer5

Accessor for the primer5end slot

Description

Accessor for the primer5end slot

Usage

.asRepertoirePrimer5(object)

Arguments

object
AbSeqRep object

Value

character type, the FASTA file name for primer 5' end sequences

.asRepertoireQueryStart

Accessor for qstart slot

Description

Accessor for qstart slot

Usage

.asRepertoireQueryStart(object, collapse = " - ")

Arguments

object
AbSeqRep object

collapse
character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
asRepertoireSubjectStart

Accessor for `sstart` slot

Description

Accessor for `sstart` slot

Usage

```r
.asRepertoireSubjectStart(object, collapse = " - ")
```

Arguments

- `object` AbSeqRep object
- `collapse` character type, collapse the range using this string.

Value

character type. If `collapse` is a string, then the ranges are represented as ‘start - end’ in a string, if `collapse` is NULL, returns a character vector of length two, denoting the start and end value respectively.

asRepertoireUpstream
Accessor for the upstream slot

Description

Accessor for the upstream slot

Usage

```r
.asRepertoireUpstream(object)
```

Arguments

- `object` AbSeqRep object

Value

character type
.boxPlot

Creates a box plot

Description

Creates a box plot

Usage

.boxPlot(dataframes, sampleNames, plotTitle, xlabel = "", ylabel = ", subs = ""

Arguments

dataframes list type. List of sample dataframes
sampleNames vector type. 1-1 with dataframes
plotTitle string type
xlabel string type
ylabel string type
subs string type

Value

ggplot2 object

..calculateDInd

Calculates the "standard" diversity indices

Description

Calculates the "standard" diversity indices

Usage

.calculateDInd(df)

Arguments

df clonotype dataframe. Vegan format: +———+ | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) +———+ | v1 | v2 | v3 | ... | (each species' count values are placed in the corresponding column) +———+
.calculateDiversityEstimates

Calculates Lower Bound Estimates for unseen species and Common Diversity Indices from clonotype tables

Description

Employ common techniques to calculate LBE for unseen species and commonly used diversity indices

Usage

.calculateDiversityEstimates(diversityDirectories, diversityOut, sampleNames)

Arguments

diversityDirectories
 list type. List of directories to diversity dir

diversityOut
 string type. Output directory

sampleNames
 vector type. 1-1 with diversityDirectories sample names

Value

None

canonicalizeTitle

Convert file names to human friendly text

Description

Convert file names to human friendly text

Usage

.canonicalizeTitle(str)
.capitalize

Helper function to capitalize the first letter of str

Description

Helper function to capitalize the first letter of str

Usage

```
capitalize(str)
```

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>str</td>
<td>string type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>str</td>
<td>string, str capitalized</td>
</tr>
</tbody>
</table>

.checkVert

Checks if abseqPy has a metadata line that suggests the orientation

Description

Checks if abseqPy has a metadata line that suggests the orientation

Usage

```
.checkVert(filename)
```

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>csv filename</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>True if CSV metadata says "plot vertically"</td>
</tr>
</tbody>
</table>
.cloneDistHist

Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)

Description
Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)

Usage
.cloneDistHist(df.original, otherClones, lim.min, flip)

Arguments
- df.original: dataframe with all clones
- otherClones: clones from the other dataframe
- lim.min: x-axis minimum limit
- flip: logical type

Value
ggplot2 object

.cloneDistMarginal

Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

Description
Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

Usage
.cloneDistMarginal(df.original, otherClones, lim.min, flip)

Arguments
- df.original: dataframe with all clones
- otherClones: clones from the other dataframe
- lim.min: x-axis minimum limit
- flip: logical type

Value
ggplot2 object
.clonotypeAnalysis *Comprehensive clonotype analyses*

Description

Comprehensive clonotype analyses

Usage

```
.clonotypeAnalysis(diversityDirectories, clonotypeOut, sampleNames, mashedNames, .save = TRUE)
```

Arguments

- **diversityDirectories**
 list type. List of directories to diversity dir
- **clonotypeOut**
 string type. Output directory
- **sampleNames**
 vector type. 1-1 with diversityDirectories
- **mashedNames**
 string type. Prefix for output files using "mashed-up"
- **.save**
 logical type. Save ggplot object?

Value

Nothing

.collateReports *Collate all HTML reports into a single directory and create an entry index.html file that redirects to all collated HTML files*

Description

Collate all HTML reports into a single directory and create an entry index.html file that redirects to all collated HTML files

Usage

```
.collateReports(reports, individualSamples, outputDirectory)
```

Arguments

- **reports**
 list/vector type. Collection of strings that are path(s) to <sample>_report.html
- **individualSamples**
 list type. list of AbSeqRep objects. Used to extract filtering information and % read counts.
- **outputDirectory**
 string type. Where should the report be placed.
.commonPrimerNames

Value

Nothing

.commonPrimerNames Collect the intersection of all primer names within a collection of primer files

Description

Collect the intersection of all primer names within a collection of primer files

Usage

.commonPrimerNames(primerFiles)

Arguments

primerFiles list / vector type. Collection of primer files

Value

vector type. Vector of primerNames that are present in ALL primerFiles. NULL if there’s no intersection at all

.correlationTest Conducts pearson and spearman correlation analysis on dataframe

Description

Conducts pearson and spearman correlation analysis on dataframe

Usage

.correlationTest(df)

Arguments

df dataframe with at least the following 2 columns:
 prop.x | prop.y | | |
 +-------+-------+

Value

named list of pearson, pearson.p, spearman, spearman.p
.distanceMeasure

Computes the distance between pairwise samples

Description

Computes the distance between pairwise samples

Usage

.distanceMeasure(df)

Arguments

df dataframe with at least the following 2 columns: +———–+ | prop.x | prop.y | +———–+ |..... | | +———–+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones They may contain 0 in a column to denote it being missing from sample x or y.

Value

named list of bray.curtis, jaccard, and morisita.horn

diversityAnalysis

Title Diversity analysis

Description

Title Diversity analysis

Usage

.diversityAnalysis(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)

Arguments

diversityDirectories list type. List of directories to diversity dir
diversityOut string type. Output directory
sampleNames vector type. 1-1 with diversityDirectories
mashedNames string type. Prefix for output files using "mashed-up" sample names
.save logical type. Save ggplot object?

Value

None
emptyPlot

Creates and returns an empty plot

Description

Creates and returns an empty plot

Usage

`.emptyPlot()`

Value

empty ggplot2 object

findRepertoires

Given a directory = `<abseqPy_outputdir>/RESULT_DIR/`, returns the directories (repositories) in 'directory'. That is, will not return any sample_vs_sample directories. This is done by asserting that a 'repository' must have an (analysis.params) file, and a summary.txt file.

Description

A sample_vs_sample directory will not have these files.

Usage

`.findRepertoires(directory)`

Arguments

- `directory` string. Path up until `<abseqPy_outputdir>/RESULT_DIR/`

Value

vector of strings that are samples in 'directory', note, this is NOT a full path, but just the sample/reertoire name itself
.generateAllSpectratypes

Generates all FR/CDR spectratypes

Description
Generates all FR/CDR spectratypes

Usage
.generatAllSpectratypes(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)

Arguments
- diversityDirectories: list type. List of directories to diversity dir
- diversityOut: string type. Output directory
- sampleNames: vector type. 1-1 with diversityDirectories
- mashedNames: string type. Prefix for output files using "mashed-up" sample names
- .save: logical type. Save ggplot object?

Value
Nothing

.generateDelayedReport

Generates report for all samples in `compare`

Description
This function is needed because we are delaying the generation of reports until after all threads/processes have joined. There’s currently an issue with rmarkdown::render() in parallel execution, see: https://github.com/rstudio/rmarkdown/issues/499

Usage
.generateDelayedReport(root, compare, interactivePlot)

Arguments
- root: string, project root directory.
- compare: vector of strings, each string is a comparison defined by the user (assumes that this value has been checked).
- interactivePlot: logical, whether or not to plot interactive plotly plots.
`.generateReport` Generates HTML report from `AbSeqRep` and `AbSeqCRep` objects

Description

Generates HTML report from `AbSeqRep` and `AbSeqCRep` objects

Usage

```
.generateReport(object, root, outputDir, interactivePlot = TRUE, 
.indexHTML = "#")
```

Arguments

- `object` : AbSeqCRep type.
- `root` : string type. Root directory of the sample(s)
- `outputDir` : string type. The path where the HTML will be generated
- `interactivePlot` : logical type. Interactive or not
- `.indexHTML` : character type. The back button will redirect to this link. This is typically used to redirect users back to index.html page

Value

path (including HTML name) where the report (HTML file) was saved to

`.getLineTypes` Helper function to return line types by importance based on provided CD/Fs regions

Description

In the aesthetics of diversity plots (rarefaction, recapture, and duplication), the line types should emphasise the most important antibody region, they're ranked in ascending order of: "FR4", "FR1", "FR2", "FR3", "CDR1", "CDR2", "CDR3", "V".

Usage

```
.getLineTypes(regions)
```
Arguments

regions

a list/vector of strings (regions)

Value

vector of strings, each corresponding to the appropriate line type for regions.

getTotal

Get total number of samples (n)

Description

Often enough, the CSV values supplied do not contain raw counts but percentages (so this value will let us know exactly the sample size).

Usage

`.getTotal(filename)`

Arguments

filename

csv filename

Value

string, sample size.

hmFromMatrix

Plots a plotly heatmap from provided matrix

Description

Plots a plotly heatmap from provided matrix

Usage

`.hmFromMatrix(m, title, xlabel = '"', ylabel = '")`

Arguments

m

matrix type

title

character type

xlabel

character type

ylabel

character type

Value

list with keys: static and interactive (ggplot2 object and plotly object respectively)
.inferAnalyzed
returns all samples found under sampleDirectory

Description
Returns all samples found under sampleDirectory

Usage
```
.inferAnalyzed(sampleDirectory)
```

Arguments
- **sampleDirectory**
 string, path to sample directory.

Value
un-normalized path to all samples under sampleDirectory

.loadMatrixFromDF

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Description
Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Usage
```
.loadMatrixFromDF(dataframe, value.var, diag, unidirectional = TRUE)
```

Arguments
- **dataframe**
 dataframe with 3 required columns, namely:
 +———————————
 + | from | to | value.var | ... | +———————————+
 +——— ——————+
 where value.var is the string provided in the function parameter
- **value.var**
 the column to use as the matrix value
- **diag**
 what should the diagonal values be if the dataframe doesn’t provide them
- **unidirectional**
 logical type. If the dataframe provided has the reverse pairs (i.e. a from-to pair AND a to-from pair with the same values in the value.var column), then this should be FALSE. Otherwise, this function will flip the from-to columns to generate a symmetric dataframe (and hence, a symmetric matrix).
.pairwiseComparison

Description

Conduct all vs all pairwise comparison analyses

Usage

.pairwiseComparison(dataframes, sampleNames, outputPath, .save = TRUE)

Arguments

dataframes list of dataframes
sampleNames 1-1 vector corresponding to dataframes
outputPath string
.save logical

.pairwiseComparison

Value

a symmetric matrix with rownames(mat) == colnames(mat) The diagonal values are filled with diag if the dataframe itself doesn’t have diagonal data

.loadSamplesFromString

 Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Description

Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Usage

.loadSamplesFromString(sampleNames, root, warnMove = TRUE)

Arguments

typesampleNames vector, singleton or otherwise
root string type. root directory
warnMove logical type. Warning message ("message" level, not "warning" level) if the directory has been moved?

Value

AbSeqRep or AbSeqCRep object depending on sampleNames
.plotCirclize

V-J association plot

Description

V-J association plot

Usage

.plotCirclize(sampleName, path, outputdir)

Arguments

sampleName string type
path string type. Path to _vjassoc.csv
outputdir string type

Value

None

.plotDist

Bar plotter

Description

Plots barplot for all sample in dataframes. If length(sampleNames) == 1, then the bars will also have y-values (or x if horizontal plot) labels on them. Use 'perc' to control if the values are percentages.

Usage

.plotDist(dataframes, sampleNames, plotTitle, vert = TRUE, xlabel = "", ylabel = "", perc = TRUE, subs = "", sorted = TRUE, cutoff = 15, legendPos = "right")
.plotDiversityCurves

Arguments

dataframes list type. List of dataframes
sampleNames vector type. 1-1 correspondence to dataframes.
plotTitle string type.
vert boolean type. True if the plot should be vertical
xlabel string type
ylabel string type
perc boolean type. True if data's axis is a percentage proportion (instead of 0-1) only used if length(sampleNames) == 1
subs string type
sorted boolean type. True if bar plot should be sorted in descending order
cutoff int type. Number of maximum ticks to show (x on vert plots, y on hori plots).
legendPos string type. Where to position legend (see ggplot's theme())

Value
ggplot2 object

.plotDiversityCurves Plots rarefaction, recapture, and de-dup plots for specified region

Description
Plots rarefaction, recapture, and de-dup plots for specified region

Usage
.plotDiversityCurves(region, diversityDirectories, sampleNames, mashedNames, diversityOut, .save = TRUE)

Arguments
region string type. One of: "cdr", "cdr_v", and "fr". "cdr" means CDR1-3, "cdr_v" means CDR3 and V only, and finally "fr" means FR1-4.
diversityDirectories list type. List of directories to diversity dir
sampleNames vector type. 1-1 with diversityDirectories
mashedNames string type. Prefix for output files using "mashed-up"
diversityOut string type. Output directory sample names
.save logical type. Save ggplot object?

Value
Nothing
.plotDuplication

Duplication level plot

Description

bins singletons, doubletons, and higher order clonotypes into a line plot

Usage

.plotDuplication(files, sampleNames, regions = c("CDR3", "V"))

Arguments

files list type. List of strings to _cdr_v_duplication.csv pathname
sampleNames vector type. Vector of strings each representing sample names
regions vector type. Which regions to include in the plot. Default = c("CDR3", "V")

Value

ggplot2 object

.plotErrorDist

Plots the error distribution for each region: CDRs, FRs, IGV, IGD, and IGJ

Description

Plots the distribution of indels (gaps), indels in out-of-frame sequences, and the distribution of mismatches for CDRs, FRs, IGV, IGD, and IGJ.

Usage

.plotErrorDist(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

productivityDirectories list type. List of directories
prodOut string type. Output directory
sampleNames vector type. 1-1 with productivity directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?
.plotIGVErrors

Plots the error distribution for IGV germlines

Description

Plots the distribution of in-frame unproductive, out-of-frame unproductive, and productive IGV germlines.

Usage

.plotIGVErrors(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

productivityDirectories
 list type. List of directories
prodOut
 string type. Output directory
sampleNames
 vector type. 1-1 with productivity directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. save Rdata?

Value

None

.plotIGVUpstreamLenDist

Plot IGV family distribution for a given upstreamLengthRange

Description

Given an upstream length range, plot the distributions of IGV family without showing their actual lengths. If their actual lengths matter, refer to .plotIGVUpstreamLenDistDetailed.

Usage

.plotIGVUpstreamLenDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE)
Arguments

- **upstreamDirectories**: list type. List of sample directories
- **upstreamOut**: string type. Output directory
- **upstreamLengthRange**: The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
- **lengthType**: string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it’s used for locating the files.
- **sampleNames**: vector type. 1-1 with upstream directories
- **combinedNames**: string type. Title friendly "combined" sample names
- **mashedNames**: string type. File friendly "mashed-up" sample names
- **.save**: logical type. Save Rdata?

Value

None

Description

A boxplot for each IGV families showing the IQR of upstream lengths. In contrast to `.plotIGVUpstreamLenDist`, which only shows the distribution of IGV families over upstreamLengthRange.

Usage

```
.plotIGVUpstreamLenDistDetailed(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- **upstreamDirectories**: list type. List of sample directories
- **upstreamOut**: string type. Output directory
- **upstreamLengthRange**: The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
`plotPrimerIGVStatus`

Plots, for a given category and pend, the primer IGV indelled distribution in a bar plot.

Description

Plots the abundance of indelled primers relative to IGV germlines

Usage

```r
.plotPrimerIGVStatus(primer, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `primer`
 string, primer name
- `pend`
 string, either 3 or 5 (primer end)
- `category`
 string, either "all", "productive", or "outframe"
- `primerDirectories`
 string type. Path to primer analysis directory
- `sampleNames`
 vector type. 1-1 with primerDirectories
- `primerOut`
 string type. output directory
- `combinedNames`
 string type. Title friendly "combined" sample names
- `mashedNames`
 string type. File friendly "mashed-up" sample names
- `.save`
 logical type. Save Rdata?

Value

None
.plotPrimerIntegrity

Plots the distribution of primer integrity for a given category and 5' or 3' pend

Description

Plots the distribution of primer integrity for a given category and 5' or 3' pend

Usage

.plotPrimerIntegrity(primerIntegrity, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)

Arguments

- primerIntegrity: string. One of "stopcodon", "integrity", "indelled", "indel_pos"
- pend: string, either 3 or 5 (primer end)
- category: string, either "all", "productive", or "outframe"
- primerDirectories: string type. Path to primer analysis directory
- sampleNames: vector type. 1-1 with primerDirectories
- primerOut: string type. output directory
- combinedNames: string type. Title friendly "combined" sample names
- mashedNames: string type. File friendly "mashed-up" sample names
- .save: logical type. Save Rdata?

Value

None

.plotRarefaction

Rarefaction plot

Description

Plots the number of unique clonotypes (on the y-axis) drawn from a sample size on the x axis. The number of unique clonotypes is averaged over 5 repeated rounds.

Usage

.plotRarefaction(files, sampleNames, regions = c("CDR3", "V"))
.plotRecapture

Arguments

files list type. A list of files consisting of path to samples
sampleNames vector type. A vector of strings, each being the name of samples in files
regions vector type. A vector of strings, regions to be included. Defaults to c("CDR3", "V")

Value
ggplot2 object

Description

Plots the percent of recapture clonotypes (on the y-axis) drawn from a repeated (with replacement) sample size on the x axis. The percentage of recaptured clonotypes is averaged over 5 recapture rounds.

Usage

.plotRecapture(files, sampleNames, regions = c("CDR3", "V"))

Arguments

files list type. List of _cdr_v_recapture.csv.gz files.
sampleNames vector type. A vector of strings each representing the name of samples in files.
regions vector type. A vector of strings, regions to be included in the plot. defaults to c("CDR3", "V")

Value
ggplot2 object
Monolith AbSeq Plot function - the "driver" program

Description
Monolith AbSeq Plot function - the "driver" program

Usage
.plotSamples(sampleNames, directories, analysis, outputDir, primer5Files,
 primer3Files, upstreamRanges, skipDgene = FALSE)

Arguments

 sampleNames vector type. Vector of sample names in strings
 directories vector type. Vector of directories in strings, must be 1-1 with sampleNames
 analysis vector / list type. What analysis to plot for. If sampleNames or directories is
 > 1 (i.e. AbSeqCRep), then make sure that it’s an intersection of all analysis
 conducted by the repertoires, otherwise, it wouldn’t make sense
 outputDir string type. Where to dump the output
 primer5Files vector / list type. Collection of strings that the sample used for primer5 analysis.
 If sample N doesn’t have a primer 5 file, leave it as anything but a valid file path.
 primer3Files vector / list type. Collection of strings that the sample used for primer 3 analysis.
 If sample N doesn’t have a primer 3 file, leave it as anything but a valid file path.
 upstreamRanges list type. Collection of "None"s or vector denoting upstreamStart and upstreamEnd for each sample.
 skipDgene logical type. Whether or not to skip D gene distribution plot

Value
none

.plotSpectratype Spectratype plotter

Description
Plots length distribution

Usage
.plotSpectratype(dataframes, sampleNames, region, title = "Spectratype",
 subtitle = "", xlabel = "Length(AA)", ylabel = "Distribution",
 showLabel = FALSE)
Arguments

dataframes list type. List of dataframes.
sampleNames vector type. 1-1 correspondence with dataframes
region string type. Region that will be displayed in the plot title. This specifies which
region this spectratype belongs to. If not supplied, a default (start, end) range
will be displayed instead
title string type. Ignored if region is specified.
subtitle string type
xlabel string type
ylabel string type
showLabel bool type. Show geom_text? - Ignored if samples > 1

Value

ggplot2 object

Description

Plot upstream distribution

Usage

.plotUpstreamLength(upstreamDirectories, upstreamOut, expectedLength,
upstreamLengthRange, sampleNames, combinedNames, mashedNames,
.save = TRUE)

Arguments

upstreamDirectories list type. List of sample directories
upstreamOut string type. Output directory
expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up-
stream_start + 1).
upstreamLengthRange string type. start_end format
sampleNames vector type. 1-1 with upstream directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value

None
.plotUpstreamLengthDist

Plot upstream sequence length distribution for upstream sequences (5'UTR or secretion signal) for a given upstreamLengthRange

Description
Given an upstream length range, plot the distribution of upstream sequence lengths.

Usage
.plotUpstreamLengthDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save)

Arguments

upstreamDirectories
 list type. List of sample directories
upstreamOut
 string type. Output directory
upstreamLengthRange
 The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
lengthType
 string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files.
sampleNames
 vector type. 1-1 with upstream directories
combinedNames
 string type. Title friendly "combined" sample names
mashedNames
 string type. File friendly "mashed-up" sample names
.save
 logical type. Save Rdata?

Value
None
.primerAnalysis
Conducts primer specificity analysis

Description

Conducts primer specificity analysis

Usage

```r
.primerAnalysis(primerDirectories, primer5Files, primer3Files, primerOut,
                sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `primerDirectories`
 string type. Path to primer analysis directory
- `primer5Files`
 vector / list type. 5' end primer files
- `primer3Files`
 vector / list type. 3' end primer files
- `primerOut`
 string type. output directory
- `sampleNames`
 vector type. 1-1 with primerDirectories
- `combinedNames`
 string type. Title friendly "combined" sample names
- `mashedNames`
 string type. File friendly "mashed-up" sample names
- `save`
 logical type. Save Rdata?

Value

None

.prodDistPlot
Plots a distribution plot for different productivity analysis files

Description

A wrapper for plotDist

Usage

```r
.prodDistPlot(productivityDirectories, sampleNames, title, reg,
               outputFileName, region, .save = TRUE)
```
.productivityAnalysis

Arguments

productivityDirectories
 vector type. Directories where all productivity csv files lives (usually <sample-name>/productivity/)

sampleNames
 vector type.

title
 string type.

reg
 string type. Regular expression to find the right files for this particular distribution plot

outputFileName
 string type. Vector of file names to save in the order of regions

region
 string type. Most of the dist plots are regional based. use "" if no regions are involved

.save
 logical type. Save Rdata?

Value

None

Description

Conducts productivity analysis

Usage

.productivityAnalysis(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

productivityDirectories
 list type. List of directories

prodOut
 string type. Output directory

sampleNames
 vector type. 1-1 with productivity directories

combinedNames
 string type. Title friendly "combined" sample names

mashedNames
 string type. File friendly "mashed-up" sample names

.save
 logical type. Save Rdata

Value

None
.productivityPlot | Summary of productivity

Description
Shows the percentage of 1. productivity, 2. non-functional + reason for being unproductive, i.e. "Stop Codon" or "Out of frame" or "Stop & Out"

Usage
.productivityPlot(dataframes, sampleNames)

Arguments
- dataframes: list type. List of sample dataframes
- sampleNames: vector type. 1-1 with dataframes

Value
ggplot2 object

.readSummary | Return value specified by key from AbSeq's summary file

Description
Return value specified by key from AbSeq's summary file

Usage
.readSummary(sampleRoot, key)

Arguments
- sampleRoot: sample's root directory. For example, /path/to/<outputdir>/reports/<sample_name>.
- key: character type. Possible values are (though they might change)
 - RawReads
 - AnnotatedReads
 - FilteredReads
 - ProductiveReads

Value
value associated with key from summary file. "NA" (in string) if the field is not available refer to util.R for the key values
.regionAnalysis

Title Shows varying regions for a given clonotype defined by its CDR3

Description

Title Shows varying regions for a given clonotype defined by its CDR3

Usage

.regionAnalysis(path, sampleName, top = 15)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>string type</td>
<td>Path to diversity folder where <sampleName>_clonotype_diversity_region_analysis.csv.gz is located</td>
</tr>
<tr>
<td>sampleName</td>
<td>string type</td>
<td></td>
</tr>
<tr>
<td>top</td>
<td>int type</td>
<td>Top N number of clones to analyze</td>
</tr>
</tbody>
</table>

Value

ggplot2 object

.reportLBE

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Description

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Usage

.reportLBE(df)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>clonotype dataframe. Vegan format: +---------------------------+</td>
<td>S.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(each species’ count values are placed in the corresponding column) +---------------------------+</td>
</tr>
</tbody>
</table>

Value

dataframe with the format: +---------------------------+ | S.obs | S.chao1 | se.chao1 | S.ACE | se.ACE | s.jack1 | s.jack2 | +---------------------------+ |
| | | | | | | | | +---------------------------+ |
.saveAs Saves ggplot object as a Rdata file.

Description

It's a convenient function that does the check and saves at the same time, for brevity within other areas of the code (to eliminate repeated if checks).

Usage

.saveAs(.save, filename, plot)

Arguments

.save logical type. Whether or not we should save.
filename string.
plot ggplot object.

Value

nothing

.scatterPlot Title Creates a scatter plot

Description

Title Creates a scatter plot

Usage

.scatterPlot(df1, df2, name1, name2, cloneClass)

Arguments

df1 dataframe for sample 1
df2 dataframe for sample 2
name1 string type, Sample 1 name
name2 string type. Sample 2 name
cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

Value

ggplot2 object
.scatterPlotComplex
Creates a complex scatter plot

Description

Creates a complex scatter plot

Usage

`.scatterPlotComplex(df.union, df1, df2, name1, name2, cloneClass)`

Arguments

df.union a 'lossless' dataframe created by intersecting sample1 and sample2's dataframes. It should contain NAs where clones that appear in one sample doesn’t appear in the other. For example:

```
+————————————————-+ | Clonotype | prop.x | prop.y | Count.x | Count.y |
| Clonotype | +-----------------------------------+ | ABCDEF NA 0.01 NA 210 | ...... | +
```

df1 dataframe for sample 1

df2 dataframe for sample 2

name1 string type, Sample 1 name

name2 string type. Sample 2 name

cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

this plotting techique was shamelessly plagarised from https://github.com/mikessh/vdjtools/blob/master/src/main/resources/rscripts/intersect_pair_scatter.r (VDJTools) with minor modifications

Value

`ggplot2` object

.secretionSignalAnalysis

Secretion signal analysis

Description

Generates all the required plots for Secretion signal analysis. This includes upstream length distributions and upstream sequence validity.

Usage

`.secretionSignalAnalysis(secDirectories, secOut, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE)`
Arguments

- `secDirectories` list type. Secretion signal directories where files are located
- `secOut` string type. Where to dump output
- `sampleNames` vector type. 1-1 with `secDirectories`
- `combinedNames` string type. Title friendly string
- `mashedNames` string type. File name friendly string
- `upstreamRanges` list type. Upstream ranges for each sample. If length(`secDirectories`) > 1, the plots will only be generated for upstream ranges that are present in ALL samples. (i.e. the intersection)
- `.save` logical type, save Rdata?

Value

none

`.substituteStringInFile`

Substitutes the first occurrence of ‘key’ with ‘value’ in ‘filename’

Description

Substitutes the first occurrence of ‘key’ with ‘value’ in ‘filename’

Usage

`.substituteStringInFile(filename, key, value, fixed = FALSE)`

Arguments

- `filename` character type
- `key` character type
- `value` character type
- `fixed` logical type

Value

None
.summarySE Summary of dataframe

Description

Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).

adapted from http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/#Helper functions

Usage

.summarySE(data = NULL, measurevar, groupvars = NULL, na.rm = FALSE, conf.interval = 0.95, .drop = TRUE)

Arguments

data a data frame.
measurevar the name of a column that contains the variable to be summarized

groupvars a vector containing names of columns that contain grouping variables
na.rm a boolean that indicates whether to ignore NA's
conf.interval the percent range of the confidence interval (default is 95%)
.drop logical.

Value

dataframe

.topNDist Title Clonotype table

Description

Title Clonotype table

Usage

.topNDist(dataframes, sampleNames, top = 10)

Arguments

dataframes list type. List of dataframes.
sampleNames vector type. vector of strings representing sample names should have one-to-one correspondence with dataframes
top int type. Top N clonotypes to plot
.UTR5Analysis

Description

Generates all the required plots for 5' UTR analysis. This includes upstream length distributions and upstream sequence validity.

Usage

.UTR5Analysis(utr5Directories, utr5Out, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE)

Arguments

- utr5Directories: list type. 5UTR directories where files are located
- utr5Out: string type. Where to dump output
- sampleNames: vector type. 1-1 with utr5Directories
- combinedNames: string type. Title friendly string
- mashedNames: string type. File name friendly string
- upstreamRanges: list type. Upstream ranges for each sample. If length(utr5Directories) > 1, the plots will only be generated for upstream ranges that are present in ALL samples (i.e. the intersection)
- .save: logical type, save Rdata?

Value

None
Description

Title Creates Venn diagram for clonotype intersection

Usage

.vennIntersection(dataframes, sampleNames, outFile, top = Inf)

Arguments

dataframes list type. List of sample dataframes. Only accepts 2 - 5 samples. Warning message will be generated for anything outside of the range
sampleNames vector type. 1-1 with dataframes
outFile string type. Filename to be saved as
top int type. Top N cutoff, defaults to ALL clones if not specified

Value

Nothing

AbSeqCRep-class

S4 class - AbSeqCompositeRepertoire analysis object

Description

AbSeqCRep is a collection of AbSeqRep S4 objects. This S4 class contains multiple samples(repertoires) and it can be "combined" with other samples by using the + operator to create an extended AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the + operation between two AbSeqRep objects, which are in turn, obtained indirectly from abseqReport and report functions. It is also possible to obtain this class object by + (adding) AbSeqCRep objects.

Value

AbSeqCRep

Slots

repertoires list of AbSeqRep objects.
See Also

AbSeqRep

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples["PCR1"] + samples["PCR2"]
pcr13 <- samples["PCR1"] + samples["PCR3"]

all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13

AbSeqRep-class

S4 class - AbSeqRepertoire analysis object

Description

The AbSeqRep object contains all metadata associated with the AbSeq (python backend) run conducted on it. This S4 class represents a single sample(repertoire) and it can be "combined" with other samples by using the + operator to create an AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the abseqReport and report functions.

Value

AbSeqRep

Slots

f1 character. Path to FASTA/FASTQ file 1.
f2 character. Path to FASTA/FASTQ file 2.
chain character. Type of chain, possible values:
 • hv
 • lv
 • kv
 • klv
each representing Heavy, Lambda and Kappa respectively.
task character. Type of analysis conducted, possible values:
 • all
 • annotate
 • abundance
 • diversity
 • productivity
 • fastqc
 • primer
 • 5utr
 • rsasimple
 • seqlen
 • secretion
 • seqlenclass

name character. Name of analysis.

bitscore numeric. Part of filtering criteria: V gene bitscore filter value.

qstart numeric. Part of filtering criteria: V gene query start filter value.

sstart numeric. Part of filtering criteria: V gene subject start filter value.

alignlen numeric. Part of filtering criteria: V gene alignment length filter value.

clonelimit numeric. Number of clones to export into csv file. This is only relevant in -t all or -t diversity where clonotypes are exported into <outdir>/<name>/diversity/clonotypes

detailedComposition logical. Plots composition logo by IGHV families if set to true, otherwise, plots logos by FR/CDRs.

log character. Path to log file.

merger character. Merger used to merge paired-end reads.

fmt character. File format of file1 and (if present) file2. Possible values are FASTA or FASTQ.

sites character. Path to restriction sites txt file. This option is only used if -t rsasimple

primer5end ANY. Path to 5’ end primer FASTA file.

primer3end ANY. Path to 3’ end primer FASTA file.

trim5 numeric. Number of nucleotides to trimd at the 5’ end;

trim3 numeric. Number of nucleotides to trimd at the 3’ end;

outdir character. Path to output directory

primer5endoffset numeric. Number of nucleotides to offset before aligning 5’ end primers in primer5end FASTA file.

threads numeric. Number of threads to run.

upstream character. Index (range) of upstream nucleotides to analyze. This option is only used if -t 5utr or -t secretion.

seqtype character. Sequence type, possible values are either dna or protein.

database character. Path to IgBLAST database.

actualqstart numeric. Query sequence’s starting index (indexing starts from 1). This value overrides the inferred query start position by AbSeq.
fr4cut logical. The end of FR4 is marked as the end of the sequence if set to TRUE, otherwise the end of the sequence is either the end of the read itself, or trimmed to \(--\text{trim}3 \text{ <num>}\).

domainSystem character. Domain system to use in IgBLAST, possible values are either \text{imgt} or \text{kabat}.

See Also

\text{abseqReport} returns a list of \text{AbSeqRep} objects.

Examples

this class is not directly constructed by users, but as a return
value from the abseqReport method.

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

\text{abseqReport} \hspace{1cm} \text{Visualize all analysis conducted by abseqPy}

Description

Plots all samples in the output directory supplied to abseqPy's \text{--outdir} or \text{-o} argument. Users can optionally specify which samples in directory should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

Calling this function with a valid directory will always return a named list of objects; these individual objects can be combined using the + operator to form a new comparison, in which the report function accepts as its first parameter.

Usage

\text{abseqReport(directory, report, compare, BPPARAM)}

Arguments

directory \hspace{1cm} string type. directory as specified in \text{-o} or \text{--outdir} in abseqPy. This tells AbSeq where to look for abseqPy's output.

report \hspace{1cm} (optional) integer type. The possible values are:
- 0 - does nothing (returns named list of \text{AbSeqRep} objects)
- 1 - generates plots for csv files
- 2 - generates a report that collates all plots
- 3 - generates interactive plots in report (default)
each higher value also does what the previous values do. For example, `report = 2` will return a named list of `AbSeqRep` objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together.

compare (optional) vector of strings. From the samples in found in directory directory, they can be selected and compared against each other. For example, to compare "sample1" with "sample2" and "sample3" with "sample4", compare should be c("sample1,sample2", "sample3,sample4"). An error will be thrown if the samples specified in this parameter are not found in directory.

BPPARAM (optional) BiocParallel backend. Configures the parallel implementation. Refer to BiocParallel for more information. By default, use all available cores.

Value

named list. List of `AbSeqRep` objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of `report`.

See Also

AbSeqRep

report. Analogous function, but takes input from an `AbSeqRep` or `AbSeqCRep` object instead.

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this#
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)

### 1. The `report` parameter usage example:

# report = 0; don't plot, don't collate a HTML report, don't show anything interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
# samples is now a named list of AbSeqRep objects

# report = 1; just plot pngs; don't collate a HTML report; nothing interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 1)
# samples is now a named list of AbSeqRep objects

# report = 2; plot pngs; collate a HTML report; HTML report will NOT be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 2)
# samples is now a named list of AbSeqRep objects

# report = 3 (default); plot pngs; collate a HTML report; HTML report will be interactive
# samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 3)
# samples is now a named list of AbSeqRep objects

### 2. Using the return value of abseqReport:

# NOTE, often, this is used to load multiple samples from different directories
# using abseqReport (with report = 0), then the samples are added together
# before calling the report function. This is most useful when the samples
```
live in different abseqPy output directory.

Note that the provided example data has PCR1, PCR2, and PCR3
samples contained within the directory
stopifnot(names(samples) == c("PCR1", "PCR2", "PCR3"))

as a hypothetical example, say we found something
interesting in PCR1 and PCR3, and we want to isolate them:
we want to explicitly compare PCR1 with PCR3
pcr13 <- samples[["PCR1"]][,] + samples[["PCR3"]][,]

see abseqR::report for more information.
abseqR::report(pcr13) # uncomment this line to run

BPPARAM usage:

4 core machine, use all cores - use whatever value that suits you
nproc <- 4

samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::MulticoreParam(nproc))

run sequentially - no multiprocessing
samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::SerialParam())

see https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
for more information about how to use BPPARAM and BiocParallel in general.

report

Plots AbSeqRep or AbSeqCRep object to the specified directory

Description

Plots all samples in the object argument and saves the analysis in outputDir. Users can optionally specify which samples in object should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

This method is analogous to abseqReport. The only difference is that this method accepts AbSeqRep or AbSeqCRep objects as its first parameter, and the outputDir specifies where to store the result.

Usage

```r
report(object, outputDir, report = 3)
```

S4 method for signature 'AbSeqRep'
report(object, outputDir, report = 3)
S4 method for signature 'AbSeqCRep'

`report(object, outputDir, report = 3)`

Arguments

- **object**: AbSeqRep or AbSeqCRep object to plot.
- **outputDir**: string type. Directory where analysis will be saved to.
- **report**: (optional) integer type. The possible values are:
 - 0 - does nothing (returns named list of `AbSeqRep` objects)
 - 1 - generates plots for csv files
 - 2 - generates a report that collates all plots
 - 3 - generates interactive plots in report (default)

Each value also does what the previous values do. For example, `report = 2` will return a named list of `AbSeqRep` objects, plot csv files, and generate a (non-interactive) HTML report that collates all the plots together.

Value

named list. List of `AbSeqRep` objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of `abseqReport`.

See Also

- `abseqReport`. Analogous function, but takes input from a string that signifies the output directory of abseqPy as the first argument instead.
- `AbSeqRep`
- `AbSeqCRep`

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# We can use the + operator to combine samples, thus requesting the
# report function to compare them:
pclr12 <- samples[["PCR1"]]+samples[["PCR2"]]

# generate plots and report for this new comparison
# report(pclr12, "PCR1_vs_PCR2")

# generate plots only
# report(pclr12, "PCR1_vs_PCR2", report = 1)

# generate plots, and a non-interactive report
```
report(pcr12, "PCR1_vs_PCR2", report = 2)

generate plots, and an interactive report
report(pcr12, "PCR1_vs_PCR2", report = 3) # this is the default
Index

+, AbSeqCRep, AbSeqCRep-method, 4
+, AbSeqCRep, AbSeqRep-method, 5
+, AbSeqRep, AbSeqCRep-method, 6
+, AbSeqRep, AbSeqRep-method, 7
.UTRAAnalysis, 50
.abundanceAnalysis, 8
.abundancePlot, 8
.alignQualityHeatMaps, 9
.allPrimerNames, 9
.aminoAcidBar, 10
.aminoAcidPlot, 10
.analyzeUpstreamValidity, 11
.annotAnalysis, 11
.asRepertoireAlignLen, 12
.asRepertoireBitscore, 13
.asRepertoireChain, 13
.asRepertoireDir, 14
.asRepertoireList, 14
.asRepertoireName, 15
.asRepertoire Primer3, 15
.asRepertoire Primer5, 16
.asRepertoireQueryStart, 16
.asRepertoireSubjectStart, 17
.asRepertoireUpstream, 17
.boxPlot, 18
.calculateDInd, 18
.calculateDiversityEstimates, 19
.canonicalizeTitle, 19
.capitalize, 20
.checkVert, 20
.cloneDistHist, 21
.cloneDistMarginal, 21
.clonotypeAnalysis, 22
.collateReports, 22
.commonPrimerNames, 23
.correlationTest, 23
.distanceMeasure, 24
.diversityAnalysis, 24
.emptyPlot, 25
.findRepertoires, 25
.generateAllSpectratypes, 26
.generateDelayedSpectratypes, 26
.generateReport, 27
.getLineTypes, 27
.getTotal, 28
.hmFromMatrix, 28
.inferAnalyzed, 29
.loadMatrixFromDF, 29
.loadSamplesFromString, 30
.pairwiseComparison, 30
.plotCirclize, 31
.plotDist, 31
.plotDiversityCurves, 32
.plotDuplication, 33
.plotErrorDist, 33
.plotIGVErrors, 34
.plotIGVUpstreamLenDist, 34, 35
.plotIGVUpstreamLenDistDetailed, 34, 35
.plotIGVUpstreamLenDistStatus, 36
.plotIGVUpstreamLenDistIntegrity, 37
.plotRarefaction, 37
.plotRecapture, 38
.plotSamples, 39
.plotSpectratype, 39
.plotUpstreamLength, 40
.plotUpstreamLengthDist, 41
.primerAnalysis, 42
.prodDistPlot, 42
.productivityAnalysis, 43
.productivityPlot, 44
.readSummary, 44
.regionAnalysis, 45
.reportLBE, 45
.saveAs, 46
.scatterPlot, 46
.scatterPlotComplex, 47
.secretionSignalAnalysis, 47
.substituteStringInFile, 48
.summarySE, 49
.topNDist, 49
.vennIntersection, 51

AbSeqCRep, 4–7, 14, 27, 51, 52, 55–57
AbSeqCRep (AbSeqCRep-class), 51
AbSeqCRep-class, 51
AbSeqRep, 5–7, 14, 27, 51, 52, 54–57
AbSeqRep (AbSeqRep-class), 52
AbSeqRep-class, 52
abseqReport, 4–7, 51, 52, 54, 56, 57

report, 51, 52, 54, 55, 56
report, AbSeqCRep-method (report), 56
report, AbSeqRep-method (report), 56