Package ‘abseqR’

April 3, 2024

Type Package

Title Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Version 1.20.0

Description AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, ggendro, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics

VignetteBuilder knitr

RoxygenNote 6.1.0

SystemRequirements pandoc (>= 1.19.2.1)

URL https://github.com/malhamdoosh/abseqR

BugReports https://github.com/malhamdoosh/abseqR/issues
biocViews Sequencing, Visualization, ReportWriting, QualityControl,
 MultipleComparison

Suggests testthat

git_url https://git.bioconductor.org/packages/abseqR

git_branch RELEASE_3_18

git_last_commit 6511111

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-04-03

Author JiaHong Fong [cre, aut],
 Monther Alhamdoosh [aut]

Maintainer JiaHong Fong <jiahfong@gmail.com>

R topics documented:

+ .AbSeqCRep,.AbSeqCRep-method .. 4
+ .AbSeqCRep,.AbSeqRep-method .. 5
+ .AbSeqRep,.AbSeqCRep-method .. 6
+ .AbSeqRep,.AbSeqRep-method .. 7
.abundanceAnalysis ... 8
.abundancePlot ... 8
.alignQualityHeatMaps .. 9
.allPrimerNames ... 9
.aminoAcidBar ... 10
.aminoAcidPlot ... 10
.analyzeUpstreamValidity ... 11
.annotAnalysis ... 11
.asRepertoireAlignLen ... 12
.asRepertoireBitscore ... 13
.asRepertoireChain ... 13
.asRepertoireDir ... 14
.asRepertoireList ... 14
.asRepertoireName .. 15
.asRepertoirePrimer3 .. 15
.asRepertoirePrimer5 .. 16
.asRepertoireQueryStart ... 16
.asRepertoireSubjectStart ... 17
.asRepertoireUpstream ... 17
.boxPlot .. 18
.calculateDInd ... 18
.calculateDiversityEstimates .. 19
.canonicalizeTitle ... 19
.capitalize ... 20
.checkVert ... 20
.cloneDistHist ... 21
R topics documented:

- .cloneDistMarginal
- .clonotypeAnalysis
- .collateReports
- .commonPrimerNames
- .correlationTest
- .distanceMeasure
- .diversityAnalysis
- .emptyPlot
- .findRepertoires
- .generateAllSpectratypes
- .generateDelayedReport
- .generateReport
- .getLineTypes
- .getTotal
- .hmFromMatrix
- .inferAnalyzed
- .loadMatrixFromDF
- .loadSamplesFromString
- .pairwiseComparison
- .plotCirclize
- .plotDist
- .plotDiversityCurves
- .plotDuplication
- .plotErrorDist
- .plotIGVErrors
- .plotIGVUpstreamLenDist
- .plotIGVUpstreamLenDistDetailed
- .plotPrimerIGVStatus
- .plotPrimerIntegrity
- .plotRarefaction
- .plotRecapture
- .plotSamples
- .plotSpectratype
- .plotUpstreamLength
- .plotUpstreamLengthDist
- .primerAnalysis
- .prodDistPlot
- .productivityAnalysis
- .productivityPlot
- .readSummary
- .regionAnalysis
- .reportLBE
- .saveAs
- .scatterPlot
- .scatterPlotComplex
- .secretionSignalAnalysis
- .substituteStringInFile
- .summarySE
Description

Combines 2 AbSeqCRep objects together for comparison

Usage

```r
## S4 method for signature 'AbSeqCRep,AbSeqCRep'
e1 + e2
```

Arguments

- `e1`: AbSeqCRep.
- `e2`: AbSeqCRep.

Value

AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison.

See Also

- `abseqReport` returns a list of AbSeqReps

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]]+samples[["PCR2"]]
pcr13 <- samples[["PCR1"]]+samples[["PCR3"]]
```
all_S <- pcr12 + pcr13

you can now call the report function on this object
report(all_S) # uncomment this line to execute report

Description

Combines a `AbSeqCRep` object with a `AbSeqRep` object together for comparison

Usage

```r
## S4 method for signature 'AbSeqCRep,AbSeqRep'
e1 + e2
```

Arguments

- `e1`: AbSeqCRep.
- `e2`: AbSeqRep.

Value

`AbSeqCRep` object. Calling `abseqR`'s functions on this object will always result in a comparison.

See Also

- `abseqReport` returns a list of `AbSeqReps`

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
absseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), absseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(absseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr12 is an instance of AbSeqCRep
pcr12 <- samples[["PCR1"]]

# pcr3 is instance of AbSeqRep
pcr3 <- samples[["PCR3"]]

# pcr123 is an instance of AbSeqCRep
pcr123 <- pcr12 + pcr3
```
Combines a `AbSeqRep` object with a `AbSeqCRep` object together for comparison.

Description

Combines a `AbSeqRep` object with a `AbSeqCRep` object together for comparison.

Usage

```
## S4 method for signature 'AbSeqRep,AbSeqCRep'
e1 + e2
```

Arguments

- `e1`: `AbSeqRep`
- `e2`: `AbSeqCRep`

Value

`AbSeqCRep` object. Calling `abseqR`'s functions on this object will always result in a comparison.

See Also

`abseqReport` returns a list of `AbSeqReps`.

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this
# with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# pcr1 is an instance of AbSeqRep
pcr1 <- samples["PCR1"]
# pcr23 is instance of AbSeqCRep
pcr23 <- samples["PCR2"] + samples["PCR3"]

# pcr123 is an instance of AbSeqCRep
pcr123 <- pcr1 + pcr23

# you can now call the report function on this object
# report(pcr123)  # uncomment this line to execute report
```
AbSeqRep, AbSeqRep-method

Combines 2 AbSeqRep objects together for comparison

Description
Combines 2 AbSeqRep objects together for comparison

Usage
S4 method for signature 'AbSeqRep,AbSeqRep'
e1 + e2

Arguments
e1 AbSeqRep object.
e2 AbSeqRep object.

Value
AbSeqCRep object. Calling abseqR’s functions on this object will always result in a comparison.

See Also
abseqReport returns a list of AbSeqReps

Examples
Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr1 and pcr2 are instances of AbSeqRep
pcr1 <- samples[["PCR1"]]
pcr2 <- samples[["PCR2"]]

pcr12 is an instance of AbSeqCRep
pcr12 <- pcr1 + pcr2

you can now call the report function on this object
report(pcr12) # uncomment this line to execute report
.abundanceAnalysis Conducts abundance analysis

Description
Conducts abundance analysis

Usage
.abundanceAnalysis(abundanceDirectories, abunOut, sampleNames,
combinedNames, mashedNames, skipDgene = FALSE, .save = TRUE)

Arguments
abundanceDirectories list type. List of sample directories
abunOut string type. Output directory
sampleNames vector type. 1-1 correspondence with abundanceDirectories
combinedNames string type. Title "combined" sample names
mashedNames string type. File "mashed" names - avoid special chars
skipDgene logical type. Skip D gene plots?
.save logical type. Save ggplot as Rdata

Value
None

.abundancePlot Abundance distribution

Description
Abundance distribution

Usage
.abundancePlot(files, sampleNames, outputDir, skipDgene = FALSE,
.save = TRUE)

Arguments
files list type. list of files in abundance directory
sampleNames vector type. 1-1 correspondance to files
outputDir string type.
skipDgene logical type. Skip D germline abundance plot if TRUE.
.save logical type. Save Rdata ggplot item
.alignQualityHeatMaps

Value

None

Plots all 5 alignment quality heatmaps

Description

Plots alignment quality vs:

- mismatches
- gaps
- bitscore
- percent identity
- subject start

Usage

```
.alignQualityHeatMaps(abundanceDirectory, sampleName)
```

Arguments

- `abundanceDirectory` | character type. fully qualified path to abundance directory
- `sampleName` | character type. sample name

Value

list of ggplotly heatmaps

.allPrimerNames

Collect primer names from FASTA

Description

Collect primer names from FASTA

Usage

```
.allPrimerNames(primerFile)
```

Arguments

- `primerFile` | string type. Path to primer file

Value

vector of primer names as seen in primerFile
.aminoAcidBar

Plots amino acid composition logo

Description
Plots amino acid composition logo

Usage
.aminoAcidBar(df, scale, region, germ = "")

Arguments

- df: dataframe
- scale: logical. scale to proportion?
- region: string. which region is this
- germ: string. V germline family

Value
ggplot2 object

.aminoAcidPlot

Composition logo plot

Description
Plots 2 kinds: scaled and unscaled composition logos

Usage
.aminoAcidPlot(compositionDirectory, outdir, sampleName,
regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"),
.save = TRUE)

Arguments

- outdir: string type.
- sampleName: string type.
- regions: logical type. vector of FR/CDR regions to plot
- .save: logical type. save ggplot object

Value
none
.analyzeUpstreamValidity

Plots the validity of upstream sequences

Description
Plots the distribution of valid, faulty, and missing start codon in IGV germlines (repeated for gene and family levels).

Usage
`.analyzeUpstreamValidity(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE)`

Arguments
- `upstreamDirectories` list type. List of sample directories
- `upstreamOut` string type. Output directory
- `expectedLength` int type. Expected length of upstream sequences. (i.e. `upstream_end - upstream_start + 1`). If this is infinite, no plots will be generated.
- `upstreamLengthRange` string type. `start_end` format
- `sampleNames` vector type. 1-1 with upstream directories
- `combinedNames` string type. Title friendly "combined" sample names
- `mashedNames` string type. File friendly "mashed-up" sample names
- `.save` logical type. Save Rdata?

Value
None

.annotAnalysis

Annotation analysis

Description
Annotation analysis

Usage
`.annotAnalysis(annotDirectories, annotOut, sampleNames, mashedNames, .save = TRUE)`
Arguments

annotDirectories
 list type. List of sample directories
annotOut
 string type. Output directory
sampleNames
 vector type. 1-1 with annotDirectories
mashedNames
 string type. File output "mashed" sample names
.save
 logical type. Saves ggplot object

Value

none

Description

Accessor for alignlen slot

Usage

.asRepertoireAlignLen(object, collapse = " - ")

Arguments

object
 AbSeqRep object
collapse
 character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
`.asRepertoireBitscore`
Accessory for bitscore slot

Description

Accessory for bitscore slot

Usage

```
.asRepertoireBitscore(object, collapse = " - ")
```

Arguments

- object
 AbSeqRep object
- collapse
 character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as ‘start - end’ in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

`.asRepertoireChain`
Accessory for chain slot

Description

Accessory for chain slot

Usage

```
.asRepertoireChain(object)
```

Arguments

- object
 AbSeqRep object

Value

character type, the chain type of this sample
.asRepertoireDir

Accessor for the outdir slot

Description

Accessor for the outdir slot

Usage

.asRepertoireDir(object)

Arguments

object AbSeqRep object

Value

character type, the output directory of this object

.asRepertoireList

Accessor for AbSeqCRep's list of AbSeqRep objects

Description

Accessor for AbSeqCRep’s list of AbSeqRep objects

Usage

.asRepertoireList(object)

Arguments

object AbSeqCRep object

Value

list type, list of AbSeqRep objects that together, compose this AbSeqCRep object.
.asRepertoireName

Accessor for the name slot

Description
Accessor for the name slot

Usage
.asRepertoireName(object)

Arguments
object AbSeqRep object

Value
character type, the sample name of this object.

.asRepertoirePrimer3

Accessor for the primer3end slot

Description
Accessor for the primer3end slot

Usage
.asRepertoirePrimer3(object)

Arguments
object AbSeqRep object

Value
character type, the FASTA file name for primer 3’ end sequences
.asRepertoirePrimer5
Accessor for the primer5end slot

Description
Accessor for the primer5end slot

Usage
.asRepertoirePrimer5(object)

Arguments
- **object**
 AbSeqRep object

Value
character type, the FASTA file name for primer 5' end sequences

.asRepertoireQueryStart
Accessor for qstart slot

Description
Accessor for qstart slot

Usage
.asRepertoireQueryStart(object, collapse = " - ")

Arguments
- **object**
 AbSeqRep object
- **collapse**
 character type, collapse the range using this string.

Value
character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.
Description

Accessor for sstart slot

Usage

.asRepertoireSubjectStart(object, collapse = " - ")

Arguments

object AbSeqRep object
collapse character type, collapse the range using this string.

Value

character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively.

Description

Accessor for the upstream slot

Usage

.asRepertoireUpstream(object)

Arguments

object AbSeqRep object

Value

character type
.boxPlot

Description

Creates a box plot

Usage

```r
.boxPlot(dataframes, sampleNames, plotTitle, xlabel = "", ylabel = "", subs = "")
```

Arguments

- **dataframes**: list type. List of sample dataframes
- **sampleNames**: vector type. 1-1 with dataframes
- **plotTitle**: string type
- **xlabel**: string type
- **ylabel**: string type
- **subs**: string type

Value

ggplot2 object

.\calculateDInd

Calculates the "standard" diversity indices

Description

Calculates the "standard" diversity indices

Usage

```r
\calculateDInd(df)
```

Arguments

- **df**: clonotype dataframe. Vegan format:
 +———+ | S.1 | S.2 | S.3 | S.4 | ... | (each species should have its own column) +———+
 | v1 | v2 | v3 | ... | (each species' count values are placed in the corresponding column) +———+
.calculateDiversityEstimates

Calculates Lower Bound Estimates for unseen species and Common Diversity Indices from clonotype tables

Description

Employ common techniques to calculate LBE for unseen species and commonly used diversity indices

Usage

.calculateDiversityEstimates(diversityDirectories, diversityOut, sampleNames)

Arguments

diversityDirectories list type. List of directories to diversity dir
diversityOut string type. Output directory
sampleNames vector type. 1-1 with diversityDirectories sample names

Value

None

.canonicalizeTitle Convert file names to human friendly text

Description

Convert file names to human friendly text

Usage

.canonicalizeTitle(str)
Arguments
str string type

Value
string

`.capitalize`
Helper function to capitalize the first letter of str

Description
Helper function to capitalize the first letter of str

Usage
`.capitalize(str)`

Arguments
str string type

Value
string, str capitalized

`.checkVert`
Checks if abseqPy has a metadata line that suggests the orientation

Description
Checks if abseqPy has a metadata line that suggests the orientation

Usage
`.checkVert(filename)`

Arguments
filename csv filename

Value
True if CSV metadata says "plot vertically"
.cloneDistHist

Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)

Description
Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn’t really matter anyway, since we’re stripping away the y-ticks)

Usage
.cloneDistHist(df.original, otherClones, lim.min, flip)

Arguments
- df.original: dataframe with all clones
- otherClones: clones from the other dataframe
- lim.min: x-axis minimum limit
- flip: logical type

Value
ggplot2 object

.cloneDistMarginal

Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

Description
Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones)

Usage
.cloneDistMarginal(df.original, otherClones, lim.min, flip)

Arguments
- df.original: dataframe with all clones
- otherClones: clones from the other dataframe
- lim.min: x-axis minimum limit
- flip: logical type

Value
ggplot2 object
.clonotypeAnalysis

Comprehensive clonotype analyses

Description

Comprehensive clonotype analyses

Usage

```
.clonotypeAnalysis(diversityDirectories, clonotypeOut, sampleNames, mashedNames, .save = TRUE)
```

Arguments

- `diversityDirectories`: list type. List of directories to diversity dir
- `clonotypeOut`: string type. Output directory
- `sampleNames`: vector type. 1-1 with diversityDirectories
- `mashedNames`: string type. Prefix for output files using "mashed-up"
- `save`: logical type. Save ggplot object?

Value

Nothing

 COLLATE REPORTS

Description

Collate all HTML reports into a single directory and create an entry index.html file that redirects to all collated HTML files

Usage

```
.collateReports(reports, individualSamples, outputDirectory)
```

Arguments

- `reports`: list/vector type. Collection of strings that are path(s) to <sample>_report.html
- `individualSamples`: list type. List of AbSeqRep objects. Used to extract filtering information and % read counts.
- `outputDirectory`: string type. Where should the report be placed.
commonPrimerNames

Value

Nothing

Description

Collect the intersection of all primer names within a collection of primer files.

Usage

```r
.commonPrimerNames(primerFiles)
```

Arguments

- `primerFiles` list / vector type. Collection of primer files

Value

vector type. Vector of primerNames that are present in ALL primerFiles. NULL if there’s no intersection at all.

correlationTest

Description

Conducts pearson and spearman correlation analysis on dataframe.

Usage

```r
.correlationTest(df)
```

Arguments

- `df` dataframe with at least the following 2 columns: +———+ | prop.x | prop.y | +———+ |..... | | +———+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones. They may contain 0 in a column to denote it being missing from sample x or y.

Value

named list of pearson, pearson.p, spearman, spearman.p
.distanceMeasure
Computes the distance between pairwise samples

Description
Computes the distance between pairwise samples

Usage
```
.distanceMeasure(df)
```

Arguments
- `df` dataframe with at least the following 2 columns: `prop.x`
 `prop.y`
 where `prop.x` and `prop.y` are normalized counts (i.e., frequencies) of the clones. They may contain 0 in a column to denote it being missing from sample x or y.

Value
named list of bray.curtis, jaccard, and morisita.horn

.diversityAnalysis
Title Diversity analysis

Description
Title Diversity analysis

Usage
```
.diversityAnalysis(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)
```

Arguments
- `diversityDirectories` list type. List of directories to diversity dir
- `diversityOut` string type. Output directory
- `sampleNames` vector type. 1-1 with diversityDirectories
- `mashedNames` string type. Prefix for output files using "mashed-up" sample names
- `.save` logical type. Save ggplot object?

Value
None
.emptyPlot

Creates and returns an empty plot

Description

Creates and returns an empty plot

Usage

.emptyPlot()

Value

empty ggplot2 object

.findRepertoires

Given a directory = <abseqPy_outputdir>/RESULT_DIR/, returns the directories (repositories) in 'directory'. That is, will not return any sample_vs_sample directories. This is done by asserting that a 'repository' must have an (analysis.params) file, and a summary.txt file.

Description

A sample_vs_sample directory will not have these files.

Usage

.findRepertoires(directory)

Arguments

directory string. Path up until <abseqPy_outputdir>/RESULT_DIR/

Value

vector of strings that are samples in 'directory', note, this is NOT a full path, but just the sample/reertoire name itself
.generateAllSpectratypes

Generates all FR/CDR spectratypes

Description
Generates all FR/CDR spectratypes

Usage
.generateAllSpectratypes(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE)

Arguments
- diversityDirectories: list type. List of directories to diversity dir
- diversityOut: string type. Output directory
- sampleNames: vector type. 1-1 with diversityDirectories
- mashedNames: string type. Prefix for output files using "mashed-up" sample names
- .save: logical type. Save ggplot object?

Value
Nothing

.generateDelayedReport

Generates report for all samples in 'compare'

Description
This function is needed because we are delaying the generation of reports until after all threads/processes have joined. There's currently an issue with rmarkdown::render() in parallel execution, see: https://github.com/rstudio/rmarkdown

Usage
.generateDelayedReport(root, compare, interactivePlot)

Arguments
- root: string, project root directory.
- compare: vector of strings, each string is a comparison defined by the user (assumes that this value has been checked).
- interactivePlot: logical, whether or not to plot interactive plotly plots.
.generateReport

Value

a named list of samples, each an AbSeqRep object found in "root"

.generateReport

Generates HTML report from AbSeqRep and AbSeqCRep objects

Description

Generates HTML report from AbSeqRep and AbSeqCRep objects

Usage

.generateReport(object, root, outputDir, interactivePlot = TRUE, .indexHTML = "#")

Arguments

- object: AbSeqCRep type.
- root: string type. Root directory of the sample(s)
- outputDir: string type. The path where the HTML will be generated
- interactivePlot: logical type. Interactive or not
- .indexHTML: character type. The back button will redirect to this link. This is typically used to redirect users back to index.html page

Value

path (including HTML name) where the report (HTML file) was saved to

.getLineTypes

Helper function to return line types by importance based on provided CD/Fs regions

Description

In the aesthetics of diversity plots (rarefaction, recapture, and duplication), the line types should emphasise the most important antibody region, they're ranked in ascending order of: "FR4", "FR1", "FR2", "FR3", "CDR1", "CDR2", "CDR3", "V".

Usage

.getLineTypes(regions)
Arguments
regions a list/vector of strings (regions)

Value
vector of strings, each corresponding to the appropriate line type for regions.

hmFromMatrix

Plots a plotly heatmap from provided matrix

Description
Plots a plotly heatmap from provided matrix

Usage
hmFromMatrix(m, title, xlabel = "", ylabel = "")

Arguments
m matrix type
title character type
xlabel character type
ylabel character type

Value
list with keys: static and interactive (ggplot2 object and plotly object respectively)

.getTotal

Get total number of samples (n)

Description
Often enough, the CSV values supplied do not contain raw counts but percentages (so this value will let us know exactly the sample size).

Usage
getTotal(filename)

Arguments
filename csv filename

Value
string, sample size.

.inferAnalyzed

Returns all samples found under sampleDirectory

Description

Returns all samples found under sampleDirectory

Usage

.inferAnalyzed(sampleDirectory)

Arguments

sampleDirectory

string, path to sample directory.

Value

un-normalized path to all samples under sampleDirectory

.loadMatrixFromDF

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Description

Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE.

Usage

.loadMatrixFromDF(dataframe, value.var, diag, unidirectional = TRUE)

Arguments

dataframe
dataframe with 3 required columns, namely:

+-------------------------------
| from | to | value.var | ... |
+-------------------------------

where value.var is the string provided in the function parameter

value.var

the column to use as the matrix value

diag

what should the diagonal values be if the dataframe doesn’t provide them

unidirectional

logical type. If the dataframe provided has the reverse pairs (i.e. a from-to pair AND a to-from pair with the same values in the value.var column), then this should be FALSE. Otherwise, this function will flip the from-to columns to generate a symmetric dataframe (and hence, a symmetric matrix).
.pairwiseComparison

Value

a symmetric matrix with rownames(mat) == colnames(mat) The diagonal values are filled with diag if the dataframe itself doesn’t have diagonal data

.loadSamplesFromString

Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Description

Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames

Usage

.loadSamplesFromString(sampleNames, root, warnMove = TRUE)

Arguments

sampleNames vector, singleton or otherwise
root string type. root directory
warnMove logical type. Warning message ("message" level, not "warning" level) if the directory has been moved?

Value

AbSeqRep or AbSeqCRep object depending on sampleNames

.pairwiseComparison

Conduct all vs all pairwise comparison analyses

Description

Conduct all vs all pairwise comparison analyses

Usage

.pairwiseComparison(dataframes, sampleNames, outputPath, .save = TRUE)

Arguments

dataframes list of dataframes
sampleNames 1-1 vector corresponding to dataframes
outputPath string
.save logical
.plotCirclize

V-J association plot

Value

nothing

.plotCirclize

Description

V-J association plot

Usage

```
.plotCirclize(sampleName, path, outputdir)
```

Arguments

- **sampleName**: string type
- **path**: string type. Path to _vjassoc.csv
- **outputdir**: string type

Value

None

.plotDist

Bar plotter

Description

Plots bar plot for all sample in dataframes. If length(sampleNames) == 1, then the bars will also have y-values (or x if horizontal plot) labels on them. Use 'perc' to control if the values are percentages.

Usage

```
.plotDist(dataframes, sampleNames, plotTitle, vert = TRUE, xlabel = "", ylabel = "", perc = TRUE, subs = "", sorted = TRUE, cutoff = 15, legendPos = "right")
```
.plotDiversityCurves

Arguments

- **dataframes**: list type. List of dataframes
- **sampleNames**: vector type. 1-1 correspondence to dataframes.
- **plotTitle**: string type.
- **vert**: boolean type. True if the plot should be vertical
- **xlabel**: string type
- **ylabel**: string type
- **perc**: boolean type. True if data’s axis is a percentage proportion (instead of 0-1) only used if length(sampleNames) == 1
- **subs**: string type
- **sorted**: boolean type. True if bar plot should be sorted in descending order
- **cutoff**: int type. Number of maximum ticks to show (x on vert plots, y on hori plots).
- **legendPos**: string type. Where to position legend (see ggplot’s theme())

Value

- ggplot2 object

-plotDiversityCurves Plots rarefaction, recapture, and de-dup plots for specified region

Description

Plots rarefaction, recapture, and de-dup plots for specified region

Usage

.plotDiversityCurves(region, diversityDirectories, sampleNames, mashedNames, diversityOut, .save = TRUE)

Arguments

- **region**: string type. One of: "cdr", "cdr_v", and "fr". "cdr" means CDR1-3, "cdr_v" means CDR3 and V only, and finally "fr" means FR1-4.
- **diversityDirectories**: list type. List of directories to diversity dir
- **sampleNames**: vector type. 1-1 with diversityDirectories
- **mashedNames**: string type. Prefix for output files using "mashed-up"
- **diversityOut**: string type. Output directory sample names
- **.save**: logical type. Save ggplot object?

Value

- Nothing
.plotDuplication

Duplication level plot

Description

bins singletons, doubletons, and higher order clonotypes into a line plot

Usage

```
.plotDuplication(files, sampleNames, regions = c("CDR3", "V"))
```

Arguments

- `files` list type. List of strings to cdr_v_duplication.csv pathname
- `sampleNames` vector type. Vector of strings each representing sample names
- `regions` vector type. Which regions to include in the plot. Default = c("CDR3", "V")

Value

`ggplot2` object

.plotErrorDist

Plots the error distribution for each region: CDRs, FRs, IGV, IGD, and IGJ

Description

Plots the distribution of indels (gaps), indels in out-of-frame sequences, and the distribution of mismatches for CDRs, FRs, IGV, IGD, and IGJ.

Usage

```
.plotErrorDist(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `productivityDirectories` list type. List of directories
- `prodOut` string type. Output directory
- `sampleNames` vector type. 1-1 with productivity directories
- `combinedNames` string type. Title friendly "combined" sample names
- `mashedNames` string type. File friendly "mashed-up" sample names
- `.save` logical type. Save Rdata?
.plotIGVErrors

Plots the error distribution for IGV germlines

Description

Plots the distribution of in-frame unproductive, out-of-frame unproductive, and productive IGV germlines.

Usage

```r
.plotIGVErrors(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Arguments

- `productivityDirectories`: list type. List of directories
- `prodOut`: string type. Output directory
- `sampleNames`: vector type. 1-1 with productivity directories
- `combinedNames`: string type. Title friendly "combined" sample names
- `mashedNames`: string type. File friendly "mashed-up" sample names
- `.save`: logical type, save Rdata?

Value

None

.plotIGVUpstreamLenDist

Plot IGV family distribution for a given upstreamLengthRange

Description

Given an upstream length range, plot the distributions of IGV family without showing their actual lengths. If their actual lengths matter, refer to `.plotIGVUpstreamLenDistDetailed`.

Usage

```r
.plotIGVUpstreamLenDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE)
```

Value

None
Arguments

- `upstreamDirectories` - list type. List of sample directories
- `upstreamOut` - string type. Output directory
- `upstreamLengthRange` - The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
- `lengthType` - string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files.
- `sampleNames` - vector type. 1-1 with upstream directories
- `combinedNames` - string type. Title friendly "combined" sample names
- `mashedNames` - string type. File friendly "mashed-up" sample names
- `.save` - logical type. Save Rdata?

Value

None

Description

A boxplot for each IGV families showing the IQR of upstream lengths. In contrast to `.plotIGVUpstreamLenDist`, which only shows the distribution of IGV families over `upstreamLengthRange`.

Usage

`.plotIGVUpstreamLenDistDetailed(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE)`

Arguments

- `upstreamDirectories` - list type. List of sample directories
- `upstreamOut` - string type. Output directory
- `upstreamLengthRange` - The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive. string type.
.plotPrimerIGVStatus

lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files.
sampleNames vector type. 1-1 with upstream directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value
None

Description
Plots, for a given category and pend, the primer IGV indelled distribution in a bar plot

Usage
.plotPrimerIGVStatus(primer, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)

Arguments

primer string, primer name
pend string, either 3 or 5 (primer end)
category string, either "all", "productive", or "outframe"
primerDirectories string type. Path to primer analysis directory
sampleNames vector type. 1-1 with primerDirectories
primerOut string type. output directory
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value
None
Description

Plots the distribution of primer integrity for a given category and 5' or 3' end

Usage

.plotPrimerIntegrity(primerIntegrity, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE)

Arguments

primerIntegrity
string. One of "stopcodon", "integrity", "indelled", "indel_pos"

pend
string, either 3 or 5 (primer end)

category
string, either "all", "productive", or "outframe"

primerDirectories
string type. Path to primer analysis directory

sampleNames
vector type. 1-1 with primerDirectories

primerOut
string type. output directory

combinedNames
string type. Title friendly "combined" sample names

mashedNames
string type. File friendly "mashed-up" sample names

.save
logical type. Save Rdata?

Value

None

Description

Rarefaction plot

Usage

.plotRarefaction(files, sampleNames, regions = c("CDR3", "V"))
.plotRecapture

Arguments

files list type. A list of files consisting of path to samples
sampleNames vector type. A vector of strings, each being the name of samples in files
regions vector type. A vector of strings, regions to be included. Defaults to c("CDR3", "V")

Value

ggplot2 object

Description

Plots the percent of recapture clonotypes (on the y-axis) drawn from a repeated (with replacement) sample size on the x axis. The percentage of recaptured clonotypes is averaged over 5 recapture rounds.

Usage

.plotRecapture(files, sampleNames, regions = c("CDR3", "V"))

Arguments

files list type. List of _cdr_v_recapture.csv.gz files.
sampleNames vector type. A vector of strings each representing the name of samples in files.
regions vector type. A vector of strings, regions to be included in the plot. defaults to c("CDR3", "V")

Value

ggplot2 object
.plotSamples

Monolith AbSeq Plot function - the "driver" program

Description
Monolith AbSeq Plot function - the "driver" program

Usage
.plotSamples(sampleNames, directories, analysis, outputDir, primer5Files, primer3Files, upstreamRanges, skipDgene = FALSE)

Arguments
- sampleNames: vector type. Vector of sample names in strings
- directories: vector type. Vector of directories in strings, must be 1-1 with sampleNames
- analysis: vector / list type. What analysis to plot for. If sampleNames or directories is > 1 (i.e. AbSeqCRep), then make sure that it's an intersection of all analysis conducted by the repertoires, otherwise, it wouldn't make sense
- outputDir: string type. Where to dump the output
- primer5Files: vector / list type. Collection of strings that the sample used for primer5 analysis. If sample N doesn’t have a primer 5 file, leave it as anything but a valid file path.
- primer3Files: vector / list type. Collection of strings that the sample used for primer 3 analysis. If sample N doesn’t have a primer 3 file, leave it as anything but a valid file path.
- upstreamRanges: list type. Collection of "None"s or vector denoting upstreamStart and upstreamEnd for each sample.
- skipDgene: logical type. Whether or not to skip D gene distribution plot

Value
none

.plotSpectratype

Spectratype plotter

Description
Plots length distribution

Usage
.plotSpectratype(dataframes, sampleNames, region, title = "Spectratype", subtitle = "", xlabel = "Length(AA)", ylabel = "Distribution", showLabel = FALSE)
Arguments

dataframes list type. List of dataframes.
sampleNames vector type. 1-1 correspondance with dataframes
region string type. Region that will be displayed in the plot title. This specifies which region this spectratype belongs to. If not supplied, a default (start, end) range will be displayed instead
title string type. Ignored if region is specified.
subtitle string type
xlabel string type
ylabel string type
showLabel bool type. Show geom_text? - Ignored if samples > 1

Value

ggplot2 object

Description

Plot upstream distribution

Usage

.plotUpstreamLength(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

upstreamDirectories list type. List of sample directories
upstreamOut string type. Output directory
expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - upstream_start + 1).
upstreamLengthRange string type. start_end format
sampleNames vector type. 1-1 with upstream directories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value

None
.plotUpstreamLengthDist

Plot upstream sequence length distribution for upstream sequences (5'UTR or secretion signal) for a given upstreamLengthRange

Description

Given an upstream length range, plot the distribution of upstream sequence lengths.

Usage

.plotUpstreamLengthDist(upstreamDirectories, upstreamOut,
upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames,
.save)

Arguments

upstreamDirectories
list type. List of sample directories

upstreamOut
string type. Output directory

upstreamLengthRange
The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive.string type.

lengthType
string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files.

sampleNames
vector type. 1-1 with upstream directories

combinedNames
string type. Title friendly "combined" sample names

mashedNames
string type. File friendly "mashed-up" sample names

.save
logical type. Save Rdata?

Value

None
.primerAnalysis Conducts primer specificity analysis

Description

Conducts primer specificity analysis

Usage

primerAnalysis(primerDirectories, primer5Files, primer3Files, primerOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

primerDirectories string type. Path to primer analysis directory
primer5Files vector / list type. 5' end primer files
primer3Files vector / list type. 3' end primer files
primerOut string type. output directory
sampleNames vector type. 1-1 with primerDirectories
combinedNames string type. Title friendly "combined" sample names
mashedNames string type. File friendly "mashed-up" sample names
.save logical type. Save Rdata?

Value

None

.prodDistPlot Plots a distribution plot for different productivity analysis files

Description

A wrapper for plotDist

Usage

prodDistPlot(productivityDirectories, sampleNames, title, reg, outputFileName, region, .save = TRUE)
.productivityAnalysis

Arguments

productivityDirectories
 vector type. directories where all productivity csv files lives (usually <sample-name>/productivity/)

sampleNames
 vector type.

title
 string type.

reg
 string type. Regular expression to find the right files for this particular distribution plot

outputFileName
 string type. Vector of file names to save in the order of regions

region
 string type. Most of the dist plots are regional based. use "" if no regions are involved

.save
 logical type. Save Rdata?

Value

None

Description

Conducts productivity analysis

Usage

$productivityAnalysis(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE)

Arguments

productivityDirectories
 list type. List of directories

prodOut
 string type. Output directory

sampleNames
 vector type. 1-1 with productivity directories

combinedNames
 string type. Title friendly "combined" sample names

mashedNames
 string type. File friendly "mashed-up" sample names

.save
 logical type. Save Rdata

Value

None
.productivityPlot: Summary of productivity

Description

Shows the percentage of 1. productivity, 2. non-functional + reason for being unproductive, i.e. "Stop Codon" or "Out of frame" or "Stop & Out"

Usage

```r
.productivityPlot(dataframes, sampleNames)
```

Arguments

- `dataframes`: list type. List of sample dataframes
- `sampleNames`: vector type. 1-1 with dataframes

Value

`ggplot2` object

.readSummary: Return value specified by key from AbSeq's summary file

Description

Return value specified by key from AbSeq's summary file

Usage

```r
.readSummary(sampleRoot, key)
```

Arguments

- `sampleRoot`: sample's root directory. For example, `/path/to/<outputdir>/reports/<sample_name>`.
- `key`: character type. Possible values are (though they might change):
 - RawReads
 - AnnotatedReads
 - FilteredReads
 - ProductiveReads

Value

value associated with key from summary file. "NA" (in string) if the field is not available refer to util.R for the key values
.regionAnalysis

Title Shows varying regions for a given clonotype defined by its CDR3

Description

Title Shows varying regions for a given clonotype defined by its CDR3

Usage

.regionAnalysis(path, sampleName, top = 15)

Arguments

path string type. Path to diversity folder where <sampleName>_clonotype_diversity_region_analysis.csv.gz is located
sampleName string type
top int type. Top N number of clones to analyze

Value
ggplot2 object

.reportLBE

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Description

Reports abundance-based (Lower bound) diversity estimates using the Vegan package

Usage

.reportLBE(df)

Arguments

df clonotype dataframe. Vegan format: +——+ | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) +——+ | v1 | v2 | v3 | ... | (each species’ count values are placed in the corresponding column) +——+

Value
dataframe with the format: +——+ | S.obs | S.chao1 | se.chao1 | S.ACE | se.ACE | s.jack1 | s.jack2 | +——+ | v1 | v2 | ... | +——+
.saveAs Saves ggplot object as a Rdata file.

Description
It's a convenient function that does the check and saves at the same time, for brevity within other areas of the code (to eliminate repeated if checks).

Usage
.saveAs(.save, filename, plot)

Arguments
.save logical type. Whether or not we should save.
filename string.
plot ggplot object.

Value
nothing

.scatterPlot Title Creates a scatter plot

Description
Title Creates a scatter plot

Usage
.scatterPlot(df1, df2, name1, name2, cloneClass)

Arguments
df1 dataframe for sample 1
df2 dataframe for sample 2
name1 string type. Sample 1 name
name2 string type. Sample 2 name
cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

Value
ggplot2 object
.scatterPlotComplex

Create a complex scatter plot

Description

Creates a complex scatter plot

Usage

```r
.scatterPlotComplex(df.union, df1, df2, name1, name2, cloneClass)
```

Arguments

- `df.union`: A 'lossless' dataframe created by intersecting `sample1` and `sample2`'s dataframes. It should contain NAs where clones that appear in one sample doesn’t appear in the other. For example:
  ```
  +---------------------------------+ | Clonotype | prop.x | prop.y | Count.x |
  | Count.y | +---------------------------------+ | ABCDEF | NA | 0.01 | NA |
  210 | ...... | +---------------------------------+ |
  ```
- `df1`: Dataframe for sample 1
- `df2`: Dataframe for sample 2
- `name1`: String type. Sample 1 name
- `name2`: String type. Sample 2 name
- `cloneClass`: String type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region

This plotting technique was shamelessly plagiarised from https://github.com/mikessh/vdjtools/blob/master/src/main/resources/rscripts/intersect_pair_scatter.r (VDJTools) with minor modifications

Value

`ggplot2` object

.secretionSignalAnalysis

Secretion signal analysis

Description

Generates all the required plots for Secretion signal analysis. This includes upstream length distributions and upstream sequence validity.

Usage

```r
.secretionSignalAnalysis(secDirectories, secOut, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE)
```
Arguments

- `secDirectories`: list type. Secretion signal directories where files are located.
- `secOut`: string type. Where to dump output.
- `sampleNames`: vector type. 1-1 with `secDirectories`.
- `combinedNames`: string type. Title friendly string.
- `mashedNames`: string type. File name friendly string.
- `upstreamRanges`: list type. Upstream ranges for each sample. If length(`secDirectories`) > 1, the plots will only be generated for upstream ranges that are present in ALL samples (i.e. the intersection).
- `save`: logical type, save Rdata?

Value

None

[substituteStringInFile](#)

Substitutes the first occurrence of 'key' with 'value' in 'filename'

Description

Substitutes the first occurrence of 'key' with 'value' in 'filename'

Usage

`.substituteStringInFile(filename, key, value, fixed = FALSE)`

Arguments

- `filename`: character type.
- `key`: character type.
- `value`: character type.
- `fixed`: logical type.

Value

None
.summarySE

Summary of dataframe

Description

Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).

adapted from http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/#Helper functions

Usage

```r
.summarySE(data = NULL, measurevar, groupvars = NULL, na.rm = FALSE, conf.interval = 0.95, .drop = TRUE)
```

Arguments

- `data`: a data frame.
- `measurevar`: the name of a column that contains the variable to be summarized.
- `groupvars`: a vector containing names of columns that contain grouping variables.
- `na.rm`: a boolean that indicates whether to ignore NA's.
- `conf.interval`: the percent range of the confidence interval (default is 95%).
- `.drop`: logical.

Value

dataframe

.topNDist

Title Clonotype table

Description

Title Clonotype table

Usage

```r
.topNDist(dataframes, sampleNames, top = 10)
```

Arguments

- `dataframes`: list type. List of dataframes.
- `sampleNames`: vector type. Vector of strings representing sample names should have one-to-one correspondence with dataframes.
- `top`: int type. Top N clonotypes to plot.
.UTR5Analysis

Value

None

Description

Generates all the required plots for 5' UTR analysis. This includes upstream length distributions and upstream sequence validity.

Usage

.UTR5Analysis(utr5Directories, utr5Out, sampleNames, combinedNames,
 mashedNames, upstreamRanges, .save = TRUE)

Arguments

utr5Directories
 list type. 5UTR directories where files are located

utr5Out
 string type. Where to dump output

sampleNames
 vector type. 1-1 with utr5Directories

combinedNames
 string type. Title friendly string

mashedNames
 string type. File name friendly string

upstreamRanges
 list type. Upstream ranges for each sample. If length(utr5Directories) > 1, the
 plots will only be generated for upstream ranges that are present in ALL samples. (i.e the intersection)

.save
 logical type, save Rdata?

Value

none
.vennIntersection

Title Creates Venn diagram for clonotype intersection

Usage

.vennIntersection(dataframes, sampleNames, outFile, top = Inf)

Arguments

dataframes list type. List of sample dataframes. Only accepts 2 - 5 samples. Warning message will be generated for anything outside of the range

sampleNames vector type. 1-1 with dataframes

outFile string type. Filename to be saved as

top int type. Top N cutoff, defaults to ALL clones if not specified

Value

Nothing

AbSeqCRep-class

S4 class - AbSeqCompositeRepertoire analysis object

Description

AbSeqCRep is a collection of AbSeqRep S4 objects. This S4 class contains multiple samples (repertoires) and it can be "combined" with other samples by using the + operator to create an extended AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the + operation between two AbSeqRep objects, which are in turn, obtained indirectly from abseqReport and report functions. It is also possible to obtain this class object by + (adding) AbSeqCRep objects.

Value

AbSeqCRep

Slots

repertoires list of AbSeqRep objects.
AbSeqRep-class

See Also

AbSeqRep

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

The provided example data has PCR1, PCR2, and PCR3 samples contained within
pcr12 and pcr13 are instances of AbSeqCRep
pcr12 <- samples[["PCR1"]]+samples[["PCR2"]]
pcr13 <- samples[["PCR1"]]+samples[["PCR3"]]

all_S is also an instance of AbSeqCRep
all_S <- pcr12 + pcr13

AbSeqRep-class
S4 class - AbSeqRepertoire analysis object

Description

The AbSeqRep object contains all metadata associated with the AbSeq (python backend) run conducted on it. This S4 class represents a single sample(repertoire) and it can be "combined" with other samples by using the + operator to create an AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation.

Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the abseqReport and report functions.

Value

AbSeqRep

Slots

f1 character. Path to FASTA/FASTQ file 1.
f2 character. Path to FASTA/FASTQ file 2.
chain character. Type of chain, possible values:

- hv
- lv
- kv
- klv

each representing Heavy, Lambda and Kappa respectively.
AbSeqRep-class

- **task** character. Type of analysis conducted, possible values:
 - all
 - annotate
 - abundance
 - diversity
 - productivity
 - fastqc
 - primer
 - 5utr
 - rsasimple
 - seqlen
 - secretion
 - seqlenclass

- **name** character. Name of analysis.

- **bitscore** numeric. Part of filtering criteria: V gene bitscore filter value.

- **qstart** numeric. Part of filtering criteria: V gene query start filter value.

- **sstart** numeric. Part of filtering criteria: V gene subject start filter value.

- **alignlen** numeric. Part of filtering criteria: V gene alignment length filter value.

- **clonelimit** numeric. Number of clones to export into csv file. This is only relevant in -t all or -t diversity where clonotypes are exported into <outdir>/<name>/diversity/clonotypes

- **detailedComposition** logical. Plots composition logo by IGHV families if set to true, otherwise, plots logos by FR/CDRs.

- **log** character. Path to log file.

- **merger** character. Merger used to merge paired-end reads.

- **fmt** character. File format of file1 and (if present) file2. Possible values are FASTA or FASTQ.

- **sites** character. Path to restriction sites txt file. This option is only used if -t rsasimple

- **primer5end** ANY. Path to 5' end primer FASTA file.

- **primer3end** ANY. Path to 3' end primer FASTA file.

- **trim5** numeric. Number of nucleotides to trim at the 5' end;

- **trim3** numeric. Number of nucleotides to trim at the 3' end;

- **outdir** character. Path to output directory

- **primer5endoffset** numeric. Number of nucleotides to offset before aligning 5' end primers in primer5end FASTA file.

- **threads** numeric. Number of threads to run.

- **upstream** character. Index (range) of upstream nucleotides to analyze. This option is only used if -t 5utr or -t secretion.

- **seqtype** character. Sequence type, possible values are either dna or protein.

- **database** character. Path to IgBLAST database.

- **actualqstart** numeric. Query sequence’s starting index (indexing starts from 1). This value overrides the inferred query start position by AbSeq.
fr4cut logical. The end of FR4 is marked as the end of the sequence if set to TRUE, otherwise the end of the sequence is either the end of the read itself, or trimmed to --trim3 <num>.

domainSystem character. Domain system to use in IgBLAST, possible values are either imgt or kabat.

See Also

abseqReport returns a list of AbSeqRep objects.

Examples

this class is not directly constructed by users, but as a return # value from the abseqReport method.

Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

abseqReport Visualize all analysis conducted by abseqPy

Description

Plots all samples in the output directory supplied to abseqPy's --outdir or -o argument. Users can optionally specify which samples in directory should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

Calling this function with a valid directory will always return a named list of objects; these individual objects can be combined using the + operator to form a new comparison, in which the report function accepts as its first parameter.

Usage

abseqReport(directory, report, compare, BPPARAM)

Arguments

directory string type. directory as specified in -o or --outdir in abseqPy. This tells AbSeq where to look for abseqPy's output.

report (optional) integer type. The possible values are:

• 0 - does nothing (returns named list of AbSeqRep objects)
• 1 - generates plots for csv files
• 2 - generates a report that collates all plots
• 3 - generates interactive plots in report (default)
abseqReport

each higher value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together.

compare

(optional) vector of strings. From the samples in found in directory directory, they can be selected and compared against each other. For example, to compare "sample1" with "sample2" and "sample3" with "sample4", compare should be c("sample1,sample2", "sample3,sample4"). An error will be thrown if the samples specified in this parameter are not found in directory.

BPPARAM

(optional) BiocParallel backend. Configures the parallel implementation. Refer to BiocParallel for more information. By default, use all available cores.

Value
	named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of report.

See Also

AbSeqRep

report. Analogous function, but takes input from an AbSeqRep or AbSeqCRep object instead.

Examples

Use example data from abseqR as abseqPy's output, substitute this
with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)

1. The `report` parameter usage example:

report = 0; don't plot, don't collate a HTML report, don't show anything interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)
samples is now a named list of AbSeqRep objects

report = 1; just plot pngs; don't collate a HTML report; nothing interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 1)
samples is now a named list of AbSeqRep objects

report = 2; plot pngs; collate a HTML report; HTML report will NOT be interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 2)
samples is now a named list of AbSeqRep objects

report = 3 (default); plot pngs; collate a HTML report; HTML report will be interactive
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 3)
samples is now a named list of AbSeqRep objects

2. Using the return value of abseqReport:

NOTE, often, this is used to load multiple samples from different directories
using abseqReport (with report = 0), then the samples are added together
before calling the report function. This is most useful when the samples
live in different abseqPy output directory.

Note that the provided example data has PCR1, PCR2, and PCR3 samples contained within the directory
stopifnot(names(samples) == c("PCR1", "PCR2", "PCR3"))

as a hypothetical example, say we found something interesting in PCR1 and PCR3, and we want to isolate them:
we want to explicitly compare PCR1 with PCR3
pcr13 <- samples[["PCR1"]]+samples[["PCR3"]]

see abseqR::report for more information.
abseqR::report(pcr13) # uncomment this line to run

BPPARAM usage:

4 core machine, use all cores - use whatever value that suits you
nproc <- 4
samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::MulticoreParam(nproc))

run sequentially - no multiprocessing
samples <- abseqReport(file.path(abseqPyOutput, "ex"),
BPPARAM = BiocParallel::SerialParam())

see https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
for more information about how to use BPPARAM and BiocParallel in general.

Description

Plots all samples in the object argument and saves the analysis in outputDir. Users can optionally specify which samples in object should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics.

This method is analogous to `abseqReport`. The only difference is that this method accepts `AbSeqRep` or `AbSeqCRep` objects as its first parameter, and the outputDir specifies where to store the result.

Usage

```r
report(object, outputDir, report = 3)
```

S4 method for signature 'AbSeqRep'

```r
report(object, outputDir, report = 3)
```
S4 method for signature 'AbSeqCRep'
report(object, outputDir, report = 3)

Arguments

- **object**
 - AbSeqRep or AbSeqCRep object to plot.

- **outputDir**
 - string type. Directory where analysis will be saved to.

- **report**
 - (optional) integer type. The possible values are:
 - 0 - does nothing (returns named list of AbSeqRep objects)
 - 1 - generates plots for csv files
 - 2 - generates a report that collates all plots
 - 3 - generates interactive plots in report (default)

 Each value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive) HTML report that collates all the plots together.

Value

- named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of abseqReport.

See Also

- abseqReport. Analogous function, but takes input from a string that signifies the output directory of abseqPy as the first argument instead.

- AbSeqRep

- AbSeqCRep

Examples

```r
# Use example data from abseqR as abseqPy's output, substitute this with your own abseqPy output directory
abseqPyOutput <- tempdir()
file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE)
samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)

# The provided example data has PCR1, PCR2, and PCR3 samples contained within
# We can use the + operator to combine samples, thus requesting the
# report function to compare them:
pcr12 <- samples[["PCR1"]]+samples[["PCR2"]]

# generate plots and report for this new comparison
# report(pcr12, "PCR1_vs_PCR2")

# generate plots only
# report(pcr12, "PCR1_vs_PCR2", report = 1)

# generate plots, and a non-interactive report
```

report(pcr12, "PCR1_vs_PCR2", report = 2)

generate plots, and an interactive report
report(pcr12, "PCR1_vs_PCR2", report = 3) # this is the default
Index

.+AbSeqCRep, AbSeqCRep-method, 4
.+AbSeqCRep, AbSeqRep-method, 5
.+AbSeqRep, AbSeqCRep-method, 6
.+AbSeqRep, AbSeqRep-method, 7
.UTR5Analysis, 50
.abundanceAnalysis, 8
.abundancePlot, 8
.alignQualityHeatMaps, 9
.allPrimerNames, 9
.aminoAcidBar, 10
.aminoAcidPlot, 10
.analyzeUpstreamValidity, 11
.annotAnalysis, 11
.asRepertoireAlignLen, 12
.asRepertoireBitscore, 13
.asRepertoireChain, 13
.asRepertoireDir, 14
.asRepertoireList, 14
.asRepertoireName, 15
.asRepertoirePrimer3, 15
.asRepertoirePrimer5, 16
.asRepertoireQueryStart, 16
.asRepertoireSubjectStart, 17
.asRepertoireUpstream, 17
.boxPlot, 18
.calculateDInd, 18
.calculateDiversityEstimates, 19
.canonicalizeTitle, 19
.capitalize, 20
.checkVert, 20
.cloneDistHist, 21
.cloneDistMarginal, 21
.clonotypeAnalysis, 22
.collateReports, 22
.commonPrimerNames, 23
.correlationTest, 23
.distanceMeasure, 24
.diversityAnalysis, 24
.emptyPlot, 25
.findRepertoires, 25
.generateAllSpectratypes, 26
.generateDelayedReport, 26
.generateReport, 27
.getLineTypes, 27
.getTotal, 28
.hmFromMatrix, 28
.inferAnalyzed, 29
.loadMatrixFromDF, 29
.loadSamplesFromStrings, 30
.pairwiseComparison, 30
.plotCirclize, 31
.plotDist, 31
.plotDiversityCurves, 32
.plotDuplication, 33
.plotErrorDist, 33
.plotIGVErrors, 34
.plotIGVUpstreamLenDist, 34, 35
.plotIGVUpstreamLenDistDetailed, 34, 35
.plotPrimerIGVStatus, 36
.plotPrimerIntegrity, 37
.plotRarefaction, 37
.plotRecapture, 38
.plotSamples, 39
.plotSpectratype, 39
.plotUpstreamLength, 40
.plotUpstreamLengthDist, 41
.primerAnalysis, 42
.prodDistPlot, 42
.productivityAnalysis, 43
.productivityPlot, 44
.readSummary, 44
.regionAnalysis, 45
.reportLBE, 45
.saveAs, 46
.scatterPlot, 46
.scatterPlotComplex, 47
.secretionSignalAnalysis, 47
.substituteStringInFile, 48
.summarySE. 49
.topNDist. 49
.vennIntersection. 51

AbSeqCRep. 4–7, 14, 27, 51, 52, 55–57
AbSeqCRep (AbSeqCRep-class). 51
AbSeqCRep-class. 51
AbSeqRep. 5–7, 14, 27, 51, 52, 54–57
AbSeqRep (AbSeqRep-class). 52
AbSeqRep-class. 52
abseqReport. 4–7, 51, 52, 54, 56, 57

report. 51, 52, 54, 55, 56
report, AbSeqCRep-method (report). 56
report, AbSeqRep-method (report). 56