Package ‘animalcules’

May 17, 2024

Title Interactive microbiome analysis toolkit
Version 1.20.0
Description animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.

License Artistic-2.0
URL https://github.com/wejlab/animalcules
BugReports https://github.com/wejlab/animalcules/issues
Depends R (>= 4.3.0)
Imports ape, assertthat, caret, covr, DESeq2, dplyr, DT, forcats, ggforce, ggplot2, GUniFrac, lattice, limma, magrittr, Matrix, methods, MultiAssayExperiment, plotly, rentrez, reshape2, ROCit, S4Vectors (>= 0.23.19), scales, shiny, shinyjs, stats, SummarizedExperiment, tibble, tidyr, tsne, umap, utils, vegan, XML
Suggests BiocStyle, biomformat, devtools, glmnet, knitr, rmarkdown, testthat, usethis
VignetteBuilder knitr
biocViews Microbiome, Metagenomics, Coverage, Visualization
Encoding UTF-8
LazyData false
RoxygenNote 7.3.0
git_url https://git.bioconductor.org/packages/animalcules
git_branch RELEASE_3_19
Contents

animalcules-package ... 3
alpha_div_boxplot .. 4
alpha_div_test ... 5
counts_to_logcpm ... 5
counts_to_relabu .. 6
df_char_to_factor ... 6
differential_abundance .. 7
dimred_pca .. 8
dimred_pcoa .. 9
dimred_tsne .. 10
dimred_umap .. 11
diversities .. 12
diversities_help ... 13
diversity_beta_boxplot .. 14
diversity_beta_heatmap ... 15
diversity_beta_NMDS ... 16
diversity_beta_test ... 16
do_alpha_div_test .. 17
filter_categorize .. 18
filter_summary_bar_density 19
filter_summary_pie_box .. 20
find_biomarker ... 21
find_taxonomy ... 22
find_taxonomy_300 .. 23
find_taxon_mat .. 23
gini_simpson ... 24
grep_tid .. 24
inverse_simpson .. 25
is_categorical ... 25
is_integer0 .. 26
is_integer1 .. 26
mae_pick_organisms .. 27
mae_pick_samples ... 28
pct2str ... 28
animalcules-package

animalcules: Interactive microbiome analysis toolkit

Description

animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.

Author(s)

Maintainer: Jessica McClintock <jessica.mcclintock@rutgers.edu>

Authors:

- Yue Zhao <yuez@bu.edu> (ORCID)
- Anthony Federico <anfed@bu.edu> (ORCID)
- W. Evan Johnson <wej@bu.edu> (ORCID)

See Also

Useful links:

- https://github.com/wejlab/animalcules
- Report bugs at https://github.com/wejlab/animalcules/issues
alpha_div_boxplot

Description

Alpha diversity boxplot

Usage

alpha_div_boxplot(
 MAE,
 tax_level,
 condition,
 alpha_metric = c("inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit")
)

Arguments

MAE A multi-assay experiment object. Required.
tax_level The taxon level used for organisms. Required.
condition Which condition to group samples. Required.
alpha_metric Which alpha diversity metric to use. Required. Can be one of: "inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit"

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- alpha_div_boxplot(toy_data,
 tax_level = "genus",
 condition = "DISEASE",
 alpha_metric = "shannon"
)
p
alpha_div_test

Get alpha diversity

Description

Get alpha diversity

Usage

alpha_div_test(sam_table, alpha_stat)

Arguments

- **sam_table**: A dataframe with 2 cols, richness and condition. Required.
- **alpha_stat**: Wilcoxon rank sum test or T-test for the test

Value

A dataframe

Examples

```r
df_test <- data.frame(
  richness = seq_len(10),
  condition = c(rep(1, 5), rep(0, 5))
)
alpha_div_test(df_test, alpha_stat = "Wilcoxon rank sum test")
```

counts_to_logcpm

Covert a counts table to a relative abundances table

Description

Covert a counts table to a relative abundances table

Usage

counts_to_logcpm(counts_table)

Arguments

- **counts_table**: A organism x sample data frame of counts

Value

A organism x sample data frame of logcpm counts
df_char_to_factor

Examples

logcpm <- counts_to_logcpm(as.data.frame(matrix(seq_len(12), 4)))

counts_to_relabu Covert a counts table to a relative abundances table

Description

Covert a counts table to a relative abundances table

Usage

counts_to_relabu(counts_table)

Arguments

counts_table A organism x sample data frame of counts

Value

A organism x sample data frame of relative abundances

Examples

counts_to_relabu(matrix(seq_len(12), 4))

df_char_to_factor Factorize all categorical columns

Description

Factorize all categorical columns

Usage

df_char_to_factor(df)

Arguments

df A sample x condition data frame

Value

A sample x condition data frame

differential_abundance

Examples

```r
df_char_to_factor(matrix(seq_len(12)))
```

differential_abundance

Differential abundance analysis

Description

Differential abundance analysis

Usage

```r
differential_abundance(
    MAE,
    tax_level,
    input_da_condition = c(),
    input_da_condition_covariate = NULL,
    min_num_filter = 5,
    input_da_padj_cutoff = 0.05,
    method = "DESeq2"
)
```

Arguments

- **MAE**: A multi-assay experiment object
- **tax_level**: The taxon level used for organisms
- **input_da_condition**: Which condition is the target condition
- **input_da_condition_covariate**: Covariates added to linear function
- **min_num_filter**: Minimum number reads mapped to this microbe
- **input_da_padj_cutoff**: adjusted pValue cutoff
- **method**: choose between DESeq2 and limma

Value

A output dataframe
Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
differential_abundance(toy_data,
tax_level = "phylum",
input_da_condition = c("DISEASE"),
min_num_filter = 2,
input_da_padj_cutoff = 0.5,
method = "DESeq2"
)

dimred_pca

Dimensionality reduction through PCA

Description

Dimensionality reduction through PCA

Usage

dimred_pca(
 MAE,
 tax_level,
 color,
 shape = NULL,
 pcx = 1,
 pcy = 2,
 pcz = NULL,
 datatype = c("logcpm", "relabu", "counts")
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>tax_level</td>
<td>The taxon level used for organisms</td>
</tr>
<tr>
<td>color</td>
<td>A condition to color data points by e.g. "AGE"</td>
</tr>
<tr>
<td>shape</td>
<td>A condition to shape data points by e.g. "SEX"</td>
</tr>
<tr>
<td>pcx</td>
<td>Principal component on the x-axis e.g. 1</td>
</tr>
<tr>
<td>pcy</td>
<td>Principal component on the y-axis e.g. 2</td>
</tr>
<tr>
<td>pcz</td>
<td>Principal component on the z-axis e.g. 3</td>
</tr>
<tr>
<td>datatype</td>
<td>Datatype to use e.g. c("logcpm", "relabu", "counts")</td>
</tr>
</tbody>
</table>

Value

A list with a plotly object and summary table
Examples
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pcoa(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
pcx = 1,
pcy = 2,
datatype = "logcpm"
)
result$plot
result$table

dimred_pcoa
Dimensionality reduction through PCoA

Description
Dimensionality reduction through PCoA

Usage
dimred_pcoa(
 MAE,
tax_level,
color,
shape = NULL,
axx = 1,
axy = 2,
axz = NULL,
method = c("bray", "jaccard")
)

Arguments

- **MAE**
 A multi-assay experiment object

- **tax_level**
 The taxon level used for organisms

- **color**
 A condition to color data points by e.g. "AGE"

- **shape**
 A condition to shape data points by e.g. "SEX"

- **axx**
 Principle coordinate on the x-axis e.g. 1

- **axy**
 Principle coordinate on the y-axis e.g. 2

- **axz**
 Principle coordinate on the z-axis e.g. 2

- **method**
 Method to use e.g. c("bray", "jaccard")
Value

A list with a plotly object and summary table

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pcoa(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
axx = 1,
axy = 2,
method = "bray"
)
result$plot
result$table
```

dimred_tsne
Dimensionality reduction through t-SNE

Description

Dimensionality reduction through t-SNE

Usage

```r
dimred_tsne(
  MAE,
  tax_level,
  color,
  shape = NULL,
  k = c("2D", "3D"),
  initial_dims = 30,
  perplexity = 10,
  datatype = c("logcpm", "relabu", "counts"),
  tsne_cache = NULL
)
```

Arguments

- **MAE**
 A multi-assay experiment object

- **tax_level**
 The taxon level used for organisms

- **color**
 A condition to color data points by e.g. "AGE"

- **shape**
 A condition to shape data points by e.g. "SEX"

- **k**
 Plot dimensions e.g. c("2D","3D")
dimred_umap

- **initial_dims**: The number of dimensions to use in reduction method
- **perplexity**: Optimal number of neighbors
- **datatype**: Datatype to use e.g. c("logcpm", "relabu", "counts")
- **tsne_cache**: Pass the cached data back into the function

Value

A list with a plotly object and cached data

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
results <- dimred_umap(toy_data,
tax_level = "phylum",
color = "AGE",
shape = "GROUP",
k = "3D",
initial_dims = 30,
perplexity = 10,
datatype = "logcpm"
)
results$plot
```

dimred_umap

Dimensionality reduction through PCA

Description

Dimensionality reduction through PCA

Usage

```r
dimred_umap(
  MAE,
tax_level,
  color,
  shape = NULL,
  cx = 1,
  cy = 2,
  cz = NULL,
  n_neighbors = 15,
  metric = c("euclidean", "manhattan"),
n_epochs = 200,
  init = c("spectral", "random"),
  min_dist = 0.1,
  datatype = c("logcpm", "relabu", "counts")
)
```
Arguments

MAE A multi-assay experiment object

tax_level The taxon level used for organisms

color A condition to color data points by e.g. "AGE"

shape A condition to shape data points by e.g. "SEX"

cx Component on the x-axis e.g. 1

cy Component on the y-axis e.g. 2

cz Component on the z-axis e.g. 3

n_neighbors Number of nearest neighbors

metric Distance function e.g. c("euclidean", "manhattan")

n_epochs Number of iterations

init Initial embedding using eigenvector e.g. c("spectral", "random")

min_dist Determines how close points appear in the final layout

datatype Datatype to use e.g. c("logcpm", "relabu", "counts")

Value

A list with a plotly object and summary table

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_umap(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
cx = 1,
cy = 2,
datatype = "logcpm"
)
result$plot
```

diversities Get alpha diversity

Description

Get alpha diversity

Usage

diversities(counts_table, index = "all", zeroes = TRUE)
diversities_help

Arguments

- **counts_table**: A dataframe with organism x sample
- **index**: One of inverse_simpson, gini_simpson, shannon, fisher, coverage, unit
- **zeroes**: A boolean for whether to ignore zero values

Value

A list of alpha diversity

Examples

```
diversities(matrix(seq_len(12), nrow = 3), index = "shannon")
```

diversities_help

Get alpha diversity

Description

Get alpha diversity

Usage

```
diversities_help(counts_table, index = "all", zeroes = TRUE)
```

Arguments

- **counts_table**: A dataframe with organism x sample
- **index**: one of inverse_simpson, gini_simpson, shannon, fisher, coverage, unit
- **zeroes**: A boolean for whether to ignore zero values

Value

A list of alpha diversity

Examples

```
diversities_help(matrix(seq_len(12), nrow = 3), index = "shannon")
```
diversity_beta_boxplot

Beta diversity boxplot

Description

Beta diversity boxplot

Usage

```r
diversity_beta_boxplot(
  MAE,
  tax_level,
  input_beta_method,
  input_select_beta_condition
)
```

Arguments

- **MAE**
 A multi-assay experiment object
- **tax_level**
 The taxon level used for organisms
- **input_beta_method**
 - bray, jaccard
- **input_select_beta_condition**
 Which condition to group samples

Value

A plotly object

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_boxplot(toy_data,
  tax_level = "genus",
  input_beta_method = "bray",
  input_select_beta_condition = "DISEASE"
)
p
```
diversity_beta_heatmap

Beta diversity heatmap

Description

Beta diversity heatmap

Usage

```r
diversity_beta_heatmap(
  MAE,
  tax_level,
  input_beta_method,
  input_bdhm_select_conditions,
  input_bdhm_sort_by = c("nosort", "conditions")
)
```

Arguments

- **MAE**: A multi-assay experiment object
- **tax_level**: The taxon level used for organisms
- **input_beta_method**: bray, jaccard
- **input_bdhm_select_conditions**: Which condition to group samples
- **input_bdhm_sort_by**: Sorting option e.g. "nosort", "conditions"

Value

A plotly object

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_heatmap(toy_data,
  tax_level = "genus",
  input_beta_method = "bray",
  input_bdhm_select_conditions = "DISEASE",
  input_bdhm_sort_by = "conditions"
)
p
```
diversity_beta_NMDS Beta diversity NMDS plot

Description
Beta diversity NMDS plot

Usage

diversity_beta_NMDS(
 MAE,
 tax_level,
 input_beta_method,
 input_select_beta_condition
)

Arguments

MAE A multi-assay experiment object
tax_level The taxon level used for organisms
input_beta_method
 bray, jaccard
input_select_beta_condition
 Which condition to group samples

Value
A plotly object/NMDS plot

diversity_beta_test Perform a beta diversity test

Description
Perform a beta diversity test

Usage

diversity_beta_test(
 MAE,
 tax_level,
 input_beta_method,
 input_select_beta_condition,
 input_select_beta_stat_method,
 input_num_permutation_permanova = 999
)

do_alpha_div_test

Arguments

MAE A Multi-Assay Experiment object. Required.
tax_level The taxon level at which organisms should be grouped. Req’d.
input_beta_method Can be either "bray" or "jaccard". Required.
input_select_beta_condition Condition to group samples Should be a character string of a colData column name. Required.
input_select_beta_stat_method The test to be used. Can be one of either "PERMANOVA", "Wilcoxon rank sum test", or "Kruskal-Wallis". Required.
input_num_permutation_permanova The number of permutations to be used.

Value

A plotly object.

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_test(toy_data,
tax_level = "genus",
input_beta_method = "bray",
input_select_beta_condition = "DISEASE",
input_select_beta_stat_method = "Wilcoxon rank sum test",
input_num_permutation_permanova = 999)
p

do_alpha_div_test Alpha diversity statistical test

Description

Alpha diversity statistical test

Usage

do_alpha_div_test(
 MAE,
tax_level,
condition,
alpha_metric = c("inverse_simpson","gini_simpson","shannon","fisher","coverage","unit"),
alpha_stat = c("Wilcoxon rank sum test","T-test","Kruskal-Wallis")
)
Arguments

MAE A multi-assay experiment object

tax_level The taxon level used for organisms

condition Which condition to group samples

alpha_metric Which alpha diversity metric to use

alpha_stat Which stat test to use

Value

A dataframe

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- do_alpha_div_test(toy_data,
 tax_level = "genus",
 condition = "DISEASE",
 alpha_metric = "shannon",
 alpha_stat = "Wilcoxon rank sum test"
)
p

filter_categorize *Categorize continuous variables*

Description

Categorize continuous variables

Usage

```r
filter_categorize(
  sam_table,
  sample_condition,
  new_label,
  nbins = NULL,
  bin_breaks = c(),
  bin_labels = c()
)```
filter_summary_bar_density

Arguments

- **sam_table**: A sample x condition dataframe
- **sample_condition**: Continuous variable to categorize
- **new_label**: Column name for categorized variable
- **nbins**: Auto select ranges for n bins/categories
- **bin_breaks**: Manually select ranges for bins/categories
- **bin_labels**: Manually label bins/categories

Value

A list with an updated sample table and before/after plots

Examples

```r
library(SummarizedExperiment)
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
toy <- MultiAssayExperiment::experiments(toy_data)[[1]]
samples <- as.data.frame(colData(microbe))
result <- filter_categorize(samples,
 sample_condition = "AGE",
 new_label = "AGE_GROUP",
 bin_breaks = c(0, 55, 75, 100),
 bin_labels = c("Young", "Adult", "Elderly")
)
result$sam_table
result$plot.unbinned
result$plot.binned
```

---

**filter_summary_bar_density**

Data visualization by bar plot / density plot

Description

Data visualization by bar plot / density plot

Usage

```r
filter_summary_bar_density(
 MAE,
 samples_discard = NULL,
 filter_type,
 sample_condition
)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>samples_discard</td>
<td>The list of samples to filter</td>
</tr>
<tr>
<td>filter_type</td>
<td>Either 'By Microbes' or 'By Metadata'</td>
</tr>
<tr>
<td>sample_condition</td>
<td>Which condition to check e.g. 'SEX'</td>
</tr>
</tbody>
</table>

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_bar_density(toy_data,
samples_discard = c("subject_2", "subject_4"),
filter_type = "By Metadata",
sample_condition = "SEX"
)
result

Description

Data visualization by pie chart / box plot

Usage

filter_summary_pie_box(
  MAE,
  samples_discard = NULL,
  filter_type,
  sample_condition
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>samples_discard</td>
<td>The list of samples to filter</td>
</tr>
<tr>
<td>filter_type</td>
<td>Either 'By Microbes' or 'By Metadata'</td>
</tr>
<tr>
<td>sample_condition</td>
<td>Which condition to check e.g. 'SEX'</td>
</tr>
</tbody>
</table>
find_biomarker

Value

A plotly object

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_pie_box(toy_data,
samples_discard = c("subject_2", "subject_4"),
filter_type = "By Microbes",
sample_condition = "SEX"
)
result
```

find_biomarker Identify biomarkers

Description

Identify biomarkers

Usage

```r
find_biomarker(
 MAE,
 tax_level,
 input_select_target_biomarker,
 nfolds = 3,
 nrepeats = 3,
 seed = 99,
 percent_top_biomarker = 0.2,
 model_name = c("logistic regression", "random forest")
)
```

Arguments

- **MAE** A multi-assay experiment object
- **tax_level** The taxon level used for organisms
- **input_select_target_biomarker** Which condition is the target condition
- **nfolds** number of splits in CV
- **nrepeats** number of CVs with different random splits
- **seed** for repeatable research
- **percent_top_biomarker** Top importance percentage to pick biomarker
- **model_name** one of 'logistic regression', 'random forest'
find_taxonomy

Value

A list

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- find_biomarker(toy_data,
tax_level = "family",
input_select_target_biomarker = c("DISEASE"),
nfolds = 3,
nrepeats = 3,
seed = 99,
percent_top_biomarker = 0.2,
model_name = "logistic regression"
)
p

taxonLevels <- find_taxonomy(tids = 1200)

find_taxonomy  

Find the taxonomy for unlimited tids

Description

Find the taxonomy for unlimited tids

Usage

find_taxonomy(tids)

Arguments

tids  Given taxonomy ids

Value

A list of taxon levels with information

Examples

taxonLevels <- find_taxonomy(tids = 1200)
find\_taxonomy\_300

Find the taxonomy for maximum 300 tids

**Description**

Find the taxonomy for maximum 300 tids

**Usage**

```r
find_taxonomy_300(tids)
```

**Arguments**

- `tids` Given taxonomy ids

**Value**

- `taxondata` Data with the taxonomy information

**Examples**

```r
taxonLevels <- find_taxonomy_300(tids = 1200)
```

---

find\_taxon\_mat

Find the Taxonomy Information Matrix

**Description**

Find the Taxonomy Information Matrix

**Usage**

```r
find_taxon_mat(names, taxonLevels)
```

**Arguments**

- `names` Row names of the taxonomy matrix
- `taxonLevels` Taxon Levels of all tids

**Value**

- `taxmat` Taxonomy Information Matrix
Examples

```r
c <- c("ti|54005", "ti|73001", "ti|573", "ti|228277", "ti|53458")
t <- c("54005", "73001", "573", "228277", "53458")
taxonLevels <- find_taxonomy(t)
tax_table <- find_taxon_mat(c, taxonLevels)
```

---

**gini_simpson**  
*Get alpha diversity using gini*

**Description**

Get alpha diversity using gini

**Usage**

`gini_simpson(x)`

**Arguments**

- `x`  
  A list of counts

**Value**

A single value

**Examples**

```r
gini_simpson(seq_len(10))
```

---

**grep_tid**  
*Greps the tid from the given identifier string*

**Description**

Greps the tid from the given identifier string

**Usage**

`grep_tid(id)`

**Arguments**

- `id`  
  Given identifier string
inverse_simpson

Value
tid string

Examples
grep_tid("ti\|700015\|org\|Coriobacterium\_glomerans\_PW2")

inverse_simpson  Get alpha diversity using inverse simpson

Description
Get alpha diversity using inverse simpson

Usage
inverse_simpson(x)

Arguments
x  A list of counts

Value
A single value

Examples
inverse_simpson(seq_len(10))

is_categorical  Check if object is categorical

Description
Check if object is categorical

Usage
is_categorical(v)

Arguments
v  A single value
is_integer0

Description
check if integer(0)

Usage
is_integer0(x)

Arguments
x A single value

Value
Boolean

Examples

nums <- 2
is_categorical(nums)

is_integer1

Description
check if integer(1)

Usage
is_integer1(x)

is_integer0 check if integer(0)

is_integer1 check if integer(1)
mae_pick_organisms

**Arguments**

- `x` A single value

**Value**

Boolean

**Examples**

```r
defines <- 2
is_integer1(defines)
```

---

**mae_pick_organisms**  
*Modify organisms of multi-assay experiment object*

**Description**

Modify organisms of multi-assay experiment object

**Usage**

```r
mae_pick_organisms(MAE, isolate_organisms = NULL, discard_organisms = NULL)
```

**Arguments**

- `MAE` A multi-assay experiment object
- `isolate_organisms` Isolate specific organisms e.g. ti001, ti002
- `discard_organisms` Discard specific organisms e.g. ti001, ti002

**Value**

A multi-assay experiment object

**Examples**

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
subset <- mae_pick_organisms(toy_data,
 isolate_organisms = c("ti\001", "ti\002")
)
```
mae_pick_samples  
Modify samples of multi-assay experiment object

Description
Modify samples of multi-assay experiment object

Usage
mae_pick_samples(MAE, isolate_samples = NULL, discard_samples = NULL)

Arguments
MAE           A multi-assay experiment object
isolate_samples Isolate specific samples e.g. c('SAM_01', 'SAM_02')
discard_samples Discard specific samples e.g. c('SAM_01', 'SAM_02')

Value
A multi-assay experiment object

Examples
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
subset <- mae_pick_samples(toy_data,
isolate_samples = c("subject_9", "subject_14")
)
)

pct2str  
Converts decimal percentage to string with specified digits

Description
Converts decimal percentage to string with specified digits

Usage
pct2str(v, digits = 2)
percent

Arguments

v A single value
digits number of digits

Value

Boolean

Examples

ums <- 0.23
pct2str(nums)

percent Format decimals to percentages

Description

Format decimals to percentages

Usage

percent(x, digits = 2, format = "f")

Arguments

x An array of decimals
digits number of digits
format f

Value

An array of formatted strings

Examples

ums <- c(0.42, 0.15, 0.4, 0.563, 0.2)
percent(nums)
read_pathoscope_data

Description

Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Usage

read_pathoscope_data(
  input_dir = ".", 
  pathoreport_file_suffix = "-sam-report.tsv", 
  use.input.files = FALSE, 
  input.files.path.vec = NULL, 
  input.files.name.vec = NULL 
)

Arguments

input_dir Directory where the tsv files from PathoScope are located
pathoreport_file_suffix PathoScope report files suffix
use.input.files whether input dir to pathoscope files or directly pathoscope files
input.files.path.vec vector of pathoscope file paths
input.files.name.vec vector of pathoscope file names

Value

List of final guess relative abundance and count data

relabu_barplot

Description

Plot bar plots of sample and group level relative abundance
Usage

relabu_barplot(
  MAE,
  tax_level,
  order_organisms = c(),
  sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
  group_samples = FALSE,
  group_conditions = "ALL",
  sample_conditions = c(),
  isolate_samples = c(),
  discard_samples = c(),
  show_legend = TRUE
)

Arguments

MAE A multi-assay experiment object
tax_level The taxon level used for organisms
order_organisms A character list of organisms to send to top
sort_by Sort bars by one of c("nosort", "conditions", "organisms", "alphabetically")
group_samples A bool specifying whether to group samples
group_conditions Group by one or more conditions e.g. "ALL" or "SEX"
sample_conditions Plot associated conditions with samples.
isolate_samples Isolate specific samples e.g. c("SAM_01", "SAM_02")
discard_samples Discard specific samples e.g. c("SAM_01", "SAM_02")
show_legend A bool specifying whether or not to show organisms legend

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_barplot(toy_data,
  tax_level = "family",
  order_organisms = c("Retroviridae"),
  sort_by = "organisms",
  sample_conditions = c("SEX", "AGE"),
  show_legend = TRUE
)
relabu_boxplot

Plot boxplots comparing different organism prevalence across conditions

Description

Plot boxplots comparing different organism prevalence across conditions

Usage

relabu_boxplot(
  MAE,
  tax_level,
  condition,
  organisms = c(),
  datatype = c("counts", "relative abundance", "logcpm")
)

Arguments

- **MAE**: A multi-assay experiment object
- **tax_level**: The taxon level used for organisms
- **condition**: Compare groups by condition e.g. 'SEX'
- **organisms**: Include organisms for plotting.
- **datatype**: counts, relative abundance, logcpm

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_boxplot(toy_data,
  tax_level = "genus",
  organisms = c("Escherichia", "Actinomyces"),
  condition = "SEX",
  datatype = "logcpm"
)
p
relabu_heatmap

Plot heatmap of sample level counts in logcpm

Description
Plot heatmap of sample level counts in logcpm

Usage
relabu_heatmap(
  MAE,
  tax_level,
  sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
  sample_conditions = c(),
  isolate_organisms = c(),
  isolate_samples = c(),
  discard_samples = c(),
  log_cpm = TRUE
)

Arguments
MAE A multi-assay experiment object
tax_level The taxon level used for organisms
sort_by Sort bars by one of c('nosort', 'conditions', 'organisms', 'alphabetically')
sample_conditions Plot conditions e.g. c('SEX', 'AGE')
isolate_organisms Isolate specific organisms e.g. c('Hepacivirus')
isolate_samples Isolate specific samples e.g. c('SAM_01', 'SAM_02')
discard_samples Discard specific samples e.g. c('SAM_01', 'SAM_02')
log_cpm Convert counts to logcpm

Value
A plotly object

Examples
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_heatmap(toy_data,
  tax_level = "genus",
  sort_by = "conditions",
```r
run_animalcules = c("SEX", "AGE")

p
```

---

**run_animalcules**  
*Run animalcules shiny app*

**Description**  
Run animalcules shiny app

**Usage**  
```
run_animalcules(dev = FALSE)
```

**Arguments**  
- `dev`  
  - Run the application in developer mode

**Value**  
The shiny app will open

**Examples**  
```
Not run:
run_animalcules()

End(Not run)
```

---

**shannon**  
*Get alpha diversity using shannon*

**Description**  
Get alpha diversity using shannon

**Usage**  
```
shannon(x)
```

**Arguments**  
- `x`  
  - A list of counts
**simpson_index**

**Value**

A single value

**Examples**

```
simpson_index(seq_len(10))
```

---

**simpson_index**

*Get alpha diversity using simpson*

**Description**

Get alpha diversity using simpson

**Usage**

```
simpson_index(x)
```

**Arguments**

- **x**  
  A list of counts

**Value**

A single value

**Examples**

```
simpson_index(seq_len(10))
```

---

**upsample_counts**

*Upsample a counts table to a higher taxon level*

**Description**

Upsample a counts table to a higher taxon level

**Usage**

```
upsample_counts(counts_table, tax_table, higher_level)
```
### Arguments
- `counts_table`: A organism x sample data frame of counts
- `tax_table`: A organism x taxlev data frame of labels
- `higher_level`: Higher taxon level to upsample to

### Value
A organism x sample data frame of counts

### Examples
```r
toy_data <- readRDS(system.file("extdata/toy_data.rds", package = "animalcules"))
tax_table <- toy_data$tax_table
sam_table <- toy_data$sam_table
counts_table <- toy_data$counts_table
counts_table <- upsample_counts(counts_table, tax_table, "phylum")
```

---

### Description
Output biom

### Usage
```r
write_to_biom(MAE, path_to_output)
```

### Arguments
- `MAE`: A multi-assay experiment object
- `path_to_output`: The folder to output biom file

### Value
A message
Index

* internal
  animalcules-package, 3
alpha_div_boxplot, 4
alpha_div_test, 5
animalcules (animalcules-package), 3
animalcules-package, 3
counts_to_logcpm, 5
counts_to_relabu, 6
df_char_to_factor, 6
differential_abundance, 7
dimred_pca, 8
dimred_pcoa, 9
dimred_tsne, 10
dimred_umap, 11
diversities, 12
diversities_help, 13
diversity_beta_boxplot, 14
diversity_beta_heatmap, 15
diversity_beta_NMDS, 16
diversity_beta_test, 16
do_alpha_div_test, 17
filter_categorize, 18
filter_summary_bar_density, 19
filter_summary_pie_box, 20
find_biomarker, 21
find_taxon_mat, 23
find_taxonomy, 22
find_taxonomy_300, 23
gini_simpson, 24
grep_tid, 24
inverse_simpson, 25
is_categorical, 25
is_integer0, 26
is_integer1, 26
mae_pick_organisms, 27
mae_pick_samples, 28
pct2str, 28
percent, 29
read_pathoscope_data, 30
relabu_barplot, 30
relabu_boxplot, 32
relabu_heatmap, 33
run_animalcules, 34
shannon, 34
simpson_index, 35
upsample_counts, 35
write_to_biom, 36