Package ‘animalcules’

May 29, 2024

Title Interactive microbiome analysis toolkit
Version 1.20.0

Description animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.

License Artistic-2.0

URL https://github.com/wejlab/animalcules

BugReports https://github.com/wejlab/animalcules/issues

Depends R (>= 4.3.0)
Imports ape, assertthat, caret, covr, DESeq2, dplyr, DT, forcats, ggforce, ggplot2, GUniFrac, lattice, limma, magrittr, Matrix, methods, MultiAssayExperiment, plotly, rentrez, reshape2, ROCit, S4Vectors (>= 0.23.19), scales, shiny, shinyjs, stats, SummarizedExperiment, tibble, tidyr, tsne, umap, utils, vegan, XML

Suggests BiocStyle, biomformat, devtools, glmnet, knitr, rmarkdown, testthat, usethis

VignetteBuilder knitr

biocViews Microbiome, Metagenomics, Coverage, Visualization

Encoding UTF-8

LazyData false

RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/animalcules

git_branch RELEASE_3_19
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>animalcules-package</td>
<td>3</td>
</tr>
<tr>
<td>alpha_div_boxplot</td>
<td>4</td>
</tr>
<tr>
<td>alpha_div_test</td>
<td>5</td>
</tr>
<tr>
<td>counts_to_logcpm</td>
<td>5</td>
</tr>
<tr>
<td>counts_to_relabu</td>
<td>6</td>
</tr>
<tr>
<td>df_char_to_factor</td>
<td>6</td>
</tr>
<tr>
<td>differential_abundance</td>
<td>7</td>
</tr>
<tr>
<td>dimred_pca</td>
<td>8</td>
</tr>
<tr>
<td>dimred_pcoa</td>
<td>9</td>
</tr>
<tr>
<td>dimred_tsne</td>
<td>10</td>
</tr>
<tr>
<td>dimred_umap</td>
<td>11</td>
</tr>
<tr>
<td>diversities</td>
<td>12</td>
</tr>
<tr>
<td>diversities_help</td>
<td>13</td>
</tr>
<tr>
<td>diversity_beta_boxplot</td>
<td>14</td>
</tr>
<tr>
<td>diversity_beta_heatmap</td>
<td>15</td>
</tr>
<tr>
<td>diversity_beta_NMDS</td>
<td>16</td>
</tr>
<tr>
<td>diversity_beta_test</td>
<td>16</td>
</tr>
<tr>
<td>do_alpha_div_test</td>
<td>17</td>
</tr>
<tr>
<td>filter_categorize</td>
<td>18</td>
</tr>
<tr>
<td>filter_summary_bar_density</td>
<td>19</td>
</tr>
<tr>
<td>filter_summary_pie_box</td>
<td>20</td>
</tr>
<tr>
<td>find_biomarker</td>
<td>21</td>
</tr>
<tr>
<td>find_taxonomy</td>
<td>22</td>
</tr>
<tr>
<td>find_taxonomy_300</td>
<td>23</td>
</tr>
<tr>
<td>find_taxon_mat</td>
<td>23</td>
</tr>
<tr>
<td>gini_simpson</td>
<td>24</td>
</tr>
<tr>
<td>grep_tid</td>
<td>24</td>
</tr>
<tr>
<td>inverse_simpson</td>
<td>25</td>
</tr>
<tr>
<td>is_categorical</td>
<td>25</td>
</tr>
<tr>
<td>is_integer0</td>
<td>26</td>
</tr>
<tr>
<td>is_integer1</td>
<td>26</td>
</tr>
<tr>
<td>mae_pick_organisms</td>
<td>27</td>
</tr>
<tr>
<td>mae_pick_samples</td>
<td>28</td>
</tr>
<tr>
<td>pct2str</td>
<td>28</td>
</tr>
</tbody>
</table>
animalcules-package

animalcules: Interactive microbiome analysis toolkit

Description

animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.

Author(s)

Maintainer: Jessica McClintock <jessica.mcclintock@rutgers.edu>

Authors:

• Yue Zhao <yuez@bu.edu> (ORCID)
• Anthony Federico <anfed@bu.edu> (ORCID)
• W. Evan Johnson <wej@bu.edu> (ORCID)

See Also

Useful links:

• https://github.com/wejlab/animalcules
• Report bugs at https://github.com/wejlab/animalcules/issues
alpha_div_boxplot

Description

Alpha diversity boxplot

Usage

alpha_div_boxplot(
 MAE,
tax_level,
condition,
alpha_metric = c("inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit")
)

Arguments

MAE
A multi-assay experiment object. Required.

tax_level
The taxon level used for organisms. Required.

condition
Which condition to group samples. Required.

alpha_metric
Which alpha diversity metric to use. Required. Can be one of: "inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit"

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- alpha_div_boxplot(toy_data,
tax_level = "genus",
condition = "DISEASE",
alpha_metric = "shannon"
)
p
alpha_div_test Get alpha diversity

Description
Get alpha diversity

Usage
alpha_div_test(sam_table, alpha_stat)

Arguments
sam_table A dataframe with 2 cols, richness and condition. Required.
alpha_stat Wilcoxon rank sum test or T-test for the test

Value
A dataframe

Examples
df_test <- data.frame(
 richness = seq_len(10),
 condition = c(rep(1, 5), rep(0, 5))
)
alpha_div_test(df_test, alpha_stat = "Wilcoxon rank sum test")

counts_to_logcpm Covert a counts table to a relative abundances table

Description
Covert a counts table to a relative abundances table

Usage
counts_to_logcpm(counts_table)

Arguments
counts_table A organism x sample data frame of counts

Value
A organism x sample data frame of logcpm counts
Examples

```r
logcpm <- counts_to_logcpm(as.data.frame(matrix(seq_len(12), 4)))
```

Counts to Relative Abundances

Description
Covert a counts table to a relative abundances table.

Usage

```r
counts_to_relabu(counts_table)
```

Arguments

- `counts_table`: A organism x sample data frame of counts.

Value
A organism x sample data frame of relative abundances.

Examples

```r
counts_to_relabu(matrix(seq_len(12), 4))
```

Factorize all Categorical Columns

Description
Factorize all categorical columns.

Usage

```r
df_char_to_factor(df)
```

Arguments

- `df`: A sample x condition data frame.

Value
A sample x condition data frame.
differential_abundance

Examples

```r
df_char_to_factor(matrix(seq_len(12)))
```

differential_abundance

Differential abundance analysis

Description

Differential abundance analysis

Usage

```r
differential_abundance(
  MAE,
  tax_level,
  input_da_condition = c(),
  input_da_condition_covariate = NULL,
  min_num_filter = 5,
  input_da_padj_cutoff = 0.05,
  method = "DESeq2"
)
```

Arguments

- **MAE** : A multi-assay experiment object
- **tax_level** : The taxon level used for organisms
- **input_da_condition** : Which condition is the target condition
- **input_da_condition_covariate** : Covariates added to linear function
- **min_num_filter** : Minimum number reads mapped to this microbe
- **input_da_padj_cutoff** : adjusted pValue cutoff
- **method** : choose between DESeq2 and limma

Value

A output dataframe
Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
differential_abundance(toy_data,
tax_level = "phylum",
input_da_condition = c("DISEASE"),
min_num_filter = 2,
input_da_padj_cutoff = 0.5,
method = "DESeq2")

dimred_pca

Dimensionality reduction through PCA

Description
Dimensionality reduction through PCA

Usage

dimred_pca(
 MAE,
tax_level,
color,
shape = NULL,
pcx = 1,
pcy = 2,
pcz = NULL,
datatype = c("logcpm", "relabu", "counts")
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>tax_level</td>
<td>The taxon level used for organisms</td>
</tr>
<tr>
<td>color</td>
<td>A condition to color data points by e.g. "AGE"</td>
</tr>
<tr>
<td>shape</td>
<td>A condition to shape data points by e.g. "SEX"</td>
</tr>
<tr>
<td>pcx</td>
<td>Principal component on the x-axis e.g. 1</td>
</tr>
<tr>
<td>pcy</td>
<td>Principal component on the y-axis e.g. 2</td>
</tr>
<tr>
<td>pcz</td>
<td>Principal component on the z-axis e.g. 3</td>
</tr>
<tr>
<td>datatype</td>
<td>Datatype to use e.g. c("logcpm", "relabu", "counts")</td>
</tr>
</tbody>
</table>

Value
A list with a plotly object and summary table
dimred_pcoa

Dimensionality reduction through PCoA

Description

Dimensionality reduction through PCoA

Usage

```r
dimred_pcoa(
  MAE,
  tax_level,
  color,
  shape = NULL,
  axx = 1,
  axy = 2,
  axz = NULL,
  method = c("bray", "jaccard")
)
```

Arguments

- **MAE**
 A multi-assay experiment object
- **tax_level**
 The taxon level used for organisms
- **color**
 A condition to color data points by e.g. "AGE"
- **shape**
 A condition to shape data points by e.g. "SEX"
- **axx**
 Principle coordinate on the x-axis e.g. 1
- **axy**
 Principle coordinate on the y-axis e.g. 2
- **axz**
 Principle coordinate on the z-axis e.g. 2
- **method**
 Method to use e.g. c("bray", "jaccard")

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pca(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
px = 1,
py = 2,
datatype = "logcpm"
)
result$plot
result$table
```
Value

A list with a plotly object and summary table

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pcoa(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
axx = 1,
axy = 2,
method = "bray"
)
result$plot
result$table

dimred_tsne

Dimensionality reduction through t-SNE

Description

Dimensionality reduction through t-SNE

Usage

dimred_tsne(
 MAE,
tax_level,
color,
shape = NULL,
k = c("2D", "3D"),
initial dims = 30,
perplexity = 10,
datatype = c("logcpm", "relabu", "counts"),
tsne_cache = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>tax_level</td>
<td>The taxon level used for organisms</td>
</tr>
<tr>
<td>color</td>
<td>A condition to color data points by e.g. "AGE"</td>
</tr>
<tr>
<td>shape</td>
<td>A condition to shape data points by e.g. "SEX"</td>
</tr>
<tr>
<td>k</td>
<td>Plot dimensions e.g. c("2D","3D")</td>
</tr>
</tbody>
</table>
dimred_umap

initial_dims The number of dimensions to use in reduction method
perplexity Optimal number of neighbors
datatype Datatype to use e.g. c("logcpm", "relabu", "counts")
tsne_cache Pass the cached data back into the function

Value

A list with a plotly object and cached data

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
results <- dimred_tsne(toy_data,
tax_level = "phylum",
color = "AGE",
shape = "GROUP",
k = "3D",
initial_dims = 30,
perplexity = 10,
datatype = "logcpm"
)
results$plot

dimred_umap

Dimensionality reduction through PCA

Description

Dimensionality reduction through PCA

Usage

dimred_umap(
 MAE,
tax_level,
color,
shape = NULL,
ax = 1,
ay = 2,
zc = NULL,
n_neighbors = 15,
metric = c("euclidean", "manhattan"),
n_epochs = 200,
init = c("spectral", "random"),
min_dist = 0.1,
datatype = c("logcpm", "relabu", "counts")
)
Arguments

MAE A multi-assay experiment object
tax_level The taxon level used for organisms
color A condition to color data points by e.g. "AGE"
shape A condition to shape data points by e.g. "SEX"
cx Component on the x-axis e.g. 1
cy Component on the y-axis e.g. 2
cz Component on the z-axis e.g. 3
n_neighbors Number of nearest neighbors
metric Distance function e.g. c("euclidean", "manhattan")
n_epochs Number of iterations
init Initial embedding using eigenvector e.g ct("spectral", "random")
min_dist Determines how close points appear in the final layout
datatype Datatype to use e.g. c("logcpm", "relabu", "counts")

Value

A list with a plotly object and summary table

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_umap(toy_data,
tax_level = "genus",
color = "AGE",
shape = "DISEASE",
cx = 1,
cy = 2,
datatype = "logcpm"
)
result$plot

diversities Get alpha diversity

Description

Get alpha diversity

Usage

diversities(counts_table, index = "all", zeroes = TRUE)
diversities_help

Arguments
- `counts_table`: A dataframe with organism x sample
- `index`: One of inverse_simpson, gini_simpson, shannon, fisher, coverage, unit
- `zeroes`: A boolean for whether to ignore zero values

Value
A list of alpha diversity

Examples
- `diversities_help(matrix(seq_len(12), nrow = 3), index = "shannon")`

diversities_help
Get alpha diversity

Description
Get alpha diversity

Usage
- `diversities_help(counts_table, index = "all", zeroes = TRUE)`

Arguments
- `counts_table`: A dataframe with organism x sample
- `index`: One of inverse_simpson, gini_simpson, shannon, fisher, coverage, unit
- `zeroes`: A boolean for whether to ignore zero values

Value
A list of alpha diversity

Examples
- `diversities_help(matrix(seq_len(12), nrow = 3), index = "shannon")`
diversity_beta_boxplot

Beta diversity boxplot

Description

Beta diversity boxplot

Usage

```r
diversity_beta_boxplot(
    MAE,
    tax_level,
    input_beta_method,
    input_select_beta_condition
)
```

Arguments

- `MAE`: A multi-assay experiment object
- `tax_level`: The taxon level used for organisms
- `input_beta_method`: `bray`, `jaccard`
- `input_select_beta_condition`: Which condition to group samples

Value

A plotly object

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_boxplot(toy_data,
    tax_level = "genus",
    input_beta_method = "bray",
    input_select_beta_condition = "DISEASE"
)
p
```
diversity_beta_heatmap

Beta diversity heatmap

Description

Beta diversity heatmap

Usage

diversity_beta_heatmap(
 MAE,
 tax_level,
 input_beta_method,
 input_bdhm_select_conditions,
 input_bdhm_sort_by = c("nosort", "conditions")
)

Arguments

MAE A multi-assay experiment object
tax_level The taxon level used for organisms
input_beta_method
bray, jaccard
input_bdhm_select_conditions Which condition to group samples
input_bdhm_sort_by Sorting option e.g. "nosort", "conditions"

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_heatmap(toy_data,
tax_level = "genus",
input_beta_method = "bray",
input_bdhm_select_conditions = "DISEASE",
input_bdhm_sort_by = "conditions"
)
p
diversity_beta_NMDS

Beta diversity NMDS plot

Description

Beta diversity NMDS plot

Usage

```r
diversity_beta_NMDS(
    MAE,
    tax_level,
    input_beta_method,
    input_select_beta_condition
)
```

Arguments

- **MAE**
 A multi-assay experiment object
- **tax_level**
 The taxon level used for organisms
- **input_beta_method**
 bray, jaccard
- **input_select_beta_condition**
 Which condition to group samples

Value

A plotly object/NMDS plot

diversity_beta_test

Perform a beta diversity test

Description

Perform a beta diversity test

Usage

```r
diversity_beta_test(
    MAE,
    tax_level,
    input_beta_method,
    input_select_beta_condition,
    input_select_beta_stat_method,
    input_num_permutation_permanova = 999
)
```
do_alpha_div_test

Arguments

MAE
A Multi-Assay Experiment object. Required.
tax_level
The taxon level at which organisms should be grouped. Req'd.
input_beta_method
Can be either "bray" or "jaccard". Required.
input_select_beta_condition
Condition to group samples. Should be a character string of a colData column name. Required.
input_select_beta_stat_method
The test to be used. Can be one of either "PERMANOVA", "Wilcoxon rank sum test", or "Kruskal-Wallis". Required.
input_num_permutation_permanova
The number of permutations to be used.

Value

A plotly object.

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_test(toy_data,
tax_level = "genus",
input_beta_method = "bray",
input_select_beta_condition = "DISEASE",
input_select_beta_stat_method = "Wilcoxon rank sum test",
input_num_permutation_permanova = 999)
p

do_alpha_div_test Alpha diversity statistical test

Description

Alpha diversity statistical test

Usage

do_alpha_div_test(
MAE,
tax_level,
condition,
alpha_metric = c("inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit"),
alpha_stat = c("Wilcoxon rank sum test", "T-test", "Kruskal-Wallis")
)
Arguments

- **MAE**: A multi-assay experiment object
- **tax_level**: The taxon level used for organisms
- **condition**: Which condition to group samples
- **alpha_metric**: Which alpha diversity metric to use
- **alpha_stat**: Which stat test to use

Value

A dataframe

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- do_alpha_div_test(toy_data,
  tax_level = "genus",
  condition = "DISEASE",
  alpha_metric = "shannon",
  alpha_stat = "Wilcoxon rank sum test"
)
p
```

filter_categorize
Categorize continuous variables

Description

Categorize continuous variables

Usage

```r
filter_categorize(
  sam_table,
  sample_condition,
  new_label,
  nbins = NULL,
  bin_breaks = c(),
  bin_labels = c()
)
```
Arguments

- **sam_table**: A sample x condition dataframe
- **sample_condition**: Continuous variable to categorize
- **new_label**: Column name for categorized variable
- **nbins**: Auto select ranges for n bins/categories
- **bin_breaks**: Manually select ranges for bins/categories
- **bin_labels**: Manually label bins/categories

Value

A list with an updated sample table and before/after plots

Examples

```r
library(SummarizedExperiment)
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
toy <- MultiAssayExperiment::experiments(toy_data)[[1]]
samples <- as.data.frame(colData(microbe))
result <- filter_categorize(samples,
    sample_condition = "AGE",
    new_label = "AGE_GROUP",
    bin_breaks = c(0, 55, 75, 100),
    bin_labels = c("Young", "Adult", "Elderly")
)
print(result$sam_table)
print(result$plot.unbinned)
print(result$plot.binned)
```

filter_summary_bar_density

Data visualization by bar plot / density plot

Description

Data visualization by bar plot / density plot

Usage

```r
filter_summary_bar_density(
    MAE,
    samples_discard = NULL,
    filter_type,
    sample_condition
)
```
filter_summary_pie_box

Description

Data visualization by pie chart / box plot

Usage

```r
filter_summary_pie_box(
  MAE,  
  samples_discard = NULL,  
  filter_type,  
  sample_condition  
)
```

Arguments

- **MAE**
 A multi-assay experiment object
- **samples_discard**
 The list of samples to filter
- **filter_type**
 Either 'By Microbes' or 'By Metadata'
- **sample_condition**
 Which condition to check e.g. 'SEX'

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_bar_density(toy_data,  
samples_discard = c("subject_2", "subject_4"),  
filter_type = "By Metadata",  
sample_condition = "SEX"
)
result
```

filter_summary_pie_box

Data visualization by pie chart / box plot
find_biomarker

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_pie_box(toy_data,
 samples_discard = c("subject_2", "subject_4"),
 filter_type = "By Microbes",
 sample_condition = "SEX"
)
result

find_biomarker Identify biomarkers

Description

Identify biomarkers

Usage

find_biomarker(
 MAE,
 tax_level,
 input_select_target_biomarker,
 nfolds = 3,
 nrepeats = 3,
 seed = 99,
 percent_top_biomarker = 0.2,
 model_name = c("logistic regression", "random forest")
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>A multi-assay experiment object</td>
</tr>
<tr>
<td>tax_level</td>
<td>The taxon level used for organisms</td>
</tr>
<tr>
<td>input_select_target_biomarker</td>
<td>Which condition is the target condition</td>
</tr>
<tr>
<td>nfolds</td>
<td>number of splits in CV</td>
</tr>
<tr>
<td>nrepeats</td>
<td>number of CVs with different random splits</td>
</tr>
<tr>
<td>seed</td>
<td>for repeatable research</td>
</tr>
<tr>
<td>percent_top_biomarker</td>
<td>Top importance percentage to pick biomarker</td>
</tr>
<tr>
<td>model_name</td>
<td>one of 'logistic regression', 'random forest'</td>
</tr>
</tbody>
</table>
find_taxonomy

Value

A list

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- find_biomarker(toy_data,
tax_level = "family",
input_select_target_biomarker = c("DISEASE"),
nfolds = 3,
nrepeats = 3,
seed = 99,
percent_top_biomarker = 0.2,
model_name = "logistic regression"
)
p

find_taxonomy

Find the taxonomy for unlimited tids

Description

Find the taxonomy for unlimited tids

Usage

find_taxonomy(tids)

Arguments

tids Given taxonomy ids

Value

A list of taxon levels with information

Examples

taxonLevels <- find_taxonomy(tids = 1200)
find_taxonomy_300

Find the taxonomy for maximum 300 tids

Description
Find the taxonomy for maximum 300 tids

Usage
find_taxonomy_300(tids)

Arguments
tids Given taxonomy ids

Value
taxondata Data with the taxonomy information

Examples
taxonLevels <- find_taxonomy_300(tids = 1200)

find_taxon_mat

Find the Taxonomy Information Matrix

Description
Find the Taxonomy Information Matrix

Usage
find_taxon_mat(names, taxonLevels)

Arguments
names Row names of the taxonomy matrix
taxonLevels Taxon Levels of all tids

Value
taxmat Taxonomy Information Matrix
Examples

```r
ids <- c("ti|54005", "ti|73001", "ti|573", "ti|228277", "ti|53458")
tids <- c("54005", "73001", "573", "228277", "53458")
taxonLevels <- find_taxonomy(tids)
tax_table <- find_taxon_mat(ids, taxonLevels)
```

gini_simpson
Get alpha diversity using gini

Description
Get alpha diversity using gini

Usage
```
gini_simpson(x)
```

Arguments
- `x`: A list of counts

Value
A single value

Examples
```
gini_simpson(seq_len(10))
```

grep_tid
Greps the tid from the given identifier string

Description
Greps the tid from the given identifier string

Usage
```
grep_tid(id)
```

Arguments
- `id`: Given identifier string
inverse_simpson

Value

tid string

Examples

grep_tid("ti|700015|org|Coriobacterium_glomerans_PW2")

inverse_simpson Get alpha diversity using inverse simpson

Description

Get alpha diversity using inverse simpson

Usage

inverse_simpson(x)

Arguments

x A list of counts

Value

A single value

Examples

inverse_simpson(seq_len(10))

is_categorical Check if object is categorical

Description

Check if object is categorical

Usage

is_categorical(v)

Arguments

v A single value
Value

Boolean

Examples

nums <- 2
is_categorical(nums)

is_integer0

Description

check if integer(0)

Usage

is_integer0(x)

Arguments

x A single value

Value

Boolean

Examples

nums <- 2
is_integer0(nums)

is_integer1

Description

check if integer(1)

Usage

is_integer1(x)
mae_pick_organisms

Arguments
 x A single value

Value
 Boolean

Examples
 nums <- 2
 is_integer1(nums)

mae_pick_organisms Modify organisms of multi-assay experiment object

Description
 Modify organisms of multi-assay experiment object

Usage
 mae_pick_organisms(MAE, isolate_organisms = NULL, discard_organisms = NULL)

Arguments
 MAE A multi-assay experiment object
 isolate_organisms Isolate specific organisms e.g. ti001, ti002
 discard_organisms Discard specific organisms e.g. ti001, ti002

Value
 A multi-assay experiment object

Examples
 data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
 toy_data <- readRDS(data_dir)
 subset <- mae_pick_organisms(toy_data,
 isolate_organisms = c("ti|001", "ti|002")
)
mae_pick_samples
Modify samples of multi-assay experiment object

Description
Modify samples of multi-assay experiment object

Usage
mae_pick_samples(MAE, isolate_samples = NULL, discard_samples = NULL)

Arguments
MAE
A multi-assay experiment object

isolate_samples
Isolate specific samples e.g. c('SAM_01', 'SAM_02')

discard_samples
Discard specific samples e.g. c('SAM_01', 'SAM_02')

Value
A multi-assay experiment object

Examples
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
subset <- mae_pick_samples(toy_data,
 isolate_samples = c(
 "subject_9",
 "subject_14"
)
)

pct2str
Converts decimal percentage to string with specified digits

Description
Converts decimal percentage to string with specified digits

Usage
pct2str(v, digits = 2)
percent

Arguments

- `v` A single value
- `digits` number of digits

Value

Boolean

Examples

```r
nums <- 0.23
pct2str(nums)
```

Format decimals to percentages

Description

Format decimals to percentages

Usage

```r
percent(x, digits = 2, format = "f")
```

Arguments

- `x` An array of decimals
- `digits` number of digits
- `format` f

Value

An array of formatted strings

Examples

```r
nums <- c(0.42, 0.15, 0.4, 0.563, 0.2)
percent(nums)
```
read_pathoscope_data
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Description
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Usage
```r
read_pathoscope_data(
  input_dir = ".",
  pathoreport_file_suffix = "-sam-report.tsv",
  use.input.files = FALSE,
  input.files.path.vec = NULL,
  input.files.name.vec = NULL
)
```

Arguments
- **input_dir**
 Directory where the tsv files from PathoScope are located
- **pathoreport_file_suffix**
 PathoScope report files suffix
- **use.input.files**
 whether input dir to pathoscope files or directly pathoscope files
- **input.files.path.vec**
 vector of pathoscope file paths
- **input.files.name.vec**
 vector of pathoscope file names

Value
List of final guess relative abundance and count data

relabu_barplot
Plot bar plots of sample and group level relative abundance

Description
Plot bar plots of sample and group level relative abundance
Usage

relabu_barplot(
 MAE,
 tax_level,
 order_organisms = c(),
 sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
 group_samples = FALSE,
 group_conditions = "ALL",
 sample_conditions = c(),
 isolate_samples = c(),
 discard_samples = c(),
 show_legend = TRUE
)

Arguments

 MAE A multi-assay experiment object
 tax_level The taxon level used for organisms
 order_organisms A character list of organisms to send to top
 sort_by Sort bars by one of c("nosort", "conditions", "organisms", "alphabetically")
 group_samples A bool specifying whether to group samples
 group_conditions Group by one or more conditions e.g. "ALL" or "SEX"
 sample_conditions Plot associated conditions with samples.
 isolate_samples Isolate specific samples e.g. c("SAM_01", "SAM_02")
 discard_samples Discard specific samples e.g. c("SAM_01", "SAM_02")
 show_legend A bool specifying whether or not to show organisms legend

Value

 A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_barplot(toy_data,
 tax_level = "family",
 order_organisms = c("Retroviridae"),
 sort_by = "organisms",
 sample_conditions = c("SEX", "AGE"),
 show_legend = TRUE
)
relabu_boxplot

Plot boxplots comparing different organism prevalence across conditions

Description

Plot boxplots comparing different organism prevalence across conditions

Usage

```r
relabu_boxplot(
  MAE,
  tax_level,
  condition,
  organisms = c(),
  datatype = c("counts", "relative abundance", "logcpm")
)
```

Arguments

- **MAE**: A multi-assay experiment object
- **tax_level**: The taxon level used for organisms
- **condition**: Compare groups by condition e.g. 'SEX'
- **organisms**: Include organisms for plotting.
- **datatype**: counts, relative abundance, logcpm

Value

A plotly object

Examples

```r
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_boxplot(toy_data,
  tax_level = "genus",
  organisms = c("Escherichia", "Actinomyces"),
  condition = "SEX",
  datatype = "logcpm"
)
p
```
relabu_heatmap

Plot heatmap of sample level counts in logcpm

Description
Plot heatmap of sample level counts in logcpm

Usage
relabu_heatmap(
 MAE,
 tax_level,
 sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
 sample_conditions = c(),
 isolate_organisms = c(),
 isolate_samples = c(),
 discard_samples = c(),
 log_cpm = TRUE
)

Arguments
MAE A multi-assay experiment object
tax_level The taxon level used for organisms
sort_by Sort bars by one of c('nosort', 'conditions', 'organisms', 'alphabetically')
sample_conditions Plot conditions e.g. c('SEX', 'AGE')
isolate_organisms Isolate specific organisms e.g. c('Hepacivirus')
isolate_samples Isolate specific samples e.g. c('SAM_01', 'SAM_02')
discard_samples Discard specific samples e.g. c('SAM_01', 'SAM_02')
log_cpm Convert counts to logcpm

Value
A plotly object

Examples
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_heatmap(toy_data,
 tax_level = "genus",
 sort_by = "conditions",
sample_conditions = c("SEX", "AGE")

run_animalcules

Run animalcules shiny app

Description

Run animalcules shiny app

Usage

`run_animalcules(dev = FALSE)`

Arguments

- `dev` Run the application in developer mode

Value

The shiny app will open

Examples

```r
## Not run:
run_animalcules()
## End(Not run)
```

shannon

Get alpha diversity using shannon

Description

Get alpha diversity using shannon

Usage

`shannon(x)`

Arguments

- `x` A list of counts
simpson_index

Value
A single value

Examples

```
simpson_index(seq_len(10))
```

upsample_counts

Upsample a counts table to a higher taxon level

Description
Upsample a counts table to a higher taxon level

Usage
```
upsample_counts(counts_table, tax_table, higher_level)
```
write_to_biom

Arguments

- counts_table: A organism x sample data frame of counts
- tax_table: A organism x taxlev data frame of labels
- higher_level: Higher taxon level to upsample to

Value

A organism x sample data frame of counts

Examples

```r
toy_data <- readRDS(system.file("extdata/toy_data.rds", package = "animalcules"))
tax_table <- toy_data$tax_table
sam_table <- toy_data$sam_table
counts_table <- toy_data$counts_table
counts_table <- upsample_counts(counts_table, tax_table, "phylum")
```

describe

Output biom

Description

Output biom

Usage

```r
write_to_biom(MAE, path_to_output)
```

Arguments

- MAE: A multi-assay experiment object
- path_to_output: The folder to output biom file

Value

A message
Index

* internal
 animalcules-package, 3
 mae_pick_organisms, 27
 mae_pick_samples, 28
 pct2str, 28
 percent, 29
 read_pathoscope_data, 30
 relabu_barplot, 30
 relabu_boxplot, 32
 relabu_heatmap, 33
 run_animalcules, 34
 shannon, 34
 simpson_index, 35
 upsample_counts, 35
 write_to_biom, 36

alpha_div_boxplot, 4
alpha_div_test, 5
animalcules (animalcules-package), 3
animalcules-package, 3

counts_to_logcpm, 5
counts_to_relabu, 6

df_char_to_factor, 6
differential_abundance, 7
dimred_pca, 8
dimred_pcoa, 9
dimred_tsne, 10
dimred_umap, 11
diversities, 12
diversities_help, 13
diversity_beta_boxplot, 14
diversity_beta_heatmap, 15
diversity_beta_NMDS, 16
diversity_beta_test, 16
do_alpha_div_test, 17

filter_categorize, 18
filter_summary_bar_density, 19
filter_summary_pie_box, 20
find_biomarker, 21
find_taxon_mat, 23
find_taxonomy, 22
find_taxonomy_300, 23

gini_simpson, 24
grep_tid, 24

inverse_simpson, 25
is_categorical, 25
is_integer0, 26
is_integer1, 26