Package ‘atSNP’

May 27, 2024

Type Package
Title Affinity test for identifying regulatory SNPs
Version 1.20.0
Date 2021-4-26
Description
atSNP performs affinity tests of motif matches with the SNP or the reference genomes and SNP-led changes in motif matches.
License GPL-2
LinkingTo Rcpp
Depends R (>= 3.6)
Suggests BiocStyle, knitr, rmarkdown
Imports BSgenome, BiocFileCache, BiocParallel, Rcpp, data.table,
ggplot2, grDevices, graphics, grid, motifStack, rappdirs,
stats, testthat, utils, lifecycle
RoxygenNote 6.1.1
biocViews Software, ChIPSeq, GenomeAnnotation, MotifAnnotation,
Visualization
URL https://github.com/sunyoungshin/atSNP
BugReports https://github.com/sunyoungshin/atSNP/issues
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/atSNP
git_branch RELEASE_3_19
git_last_commit 01ca80b
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-27
Author Chandler Zuo [aut],
Sunyoung Shin [aut, cre],
Sunduz Keles [aut]
Maintainer Sunyoung Shin <sunyoung.shin@utdallas.edu>
Description

atSNP implements the affinity test for large sets of SNP-motif interactions using the importance sampling algorithm. Users may identify SNPs that potentially may affect binding affinity of transcription factors. Given a set of SNPs and a library of motif position weight matrices (PWMs), atSNP provides two main functions for analyzing SNP effects: (i) the binding affinity score for each allele and each PWM and the p-values for allele-specific binding affinity scores (ii) the p-values for affinity score changes between the two alleles for each SNP. Compared to other bioinformatics tools that provide similar functionalities, atSNP is highly scalable.

The atSNP main functions are:

1. **LoadMotifLibrary** - Load position weight matrices
2. **LoadSNPData** - Load the SNP information and code the genome sequences around the SNP locations
3. **LoadFastaData** - Load the SNP data from fasta files
4. **ComputeMotifScore** - Compute the scores for SNP effects on motifs
5. **ComputePValues** - Compute p-values for affinity scores
Some helper functions are:

1. **MatchSubsequence** - Compute the matching subsequence
2. **GetIUPACSequence** - Get the IUPAC sequence of a motif
3. **dtMotifMatch** - Compute the augmented matching subsequence on SNP and reference alleles

The composite logo plotting function is:

1. **plotMotifMatch** - Plot sequence logos of the position weight matrix of the motif and sequences of its corresponding best matching augmented subsequence on the reference and SNP allele

Author(s)

Chandler Zuo Sunyoung Shin <sunyoung.shin@utdallas.edu>

References

See Also

atSNP vignette for more information

Description

Compute the log-likelihood scores for motifs.

Usage

```
ComputeMotifScore(motif.lib, snp.info, ncores = 1)
```

Arguments

- **motif.lib** A list object with the output format of function `LoadMotifLibrary`
- **snp.info** A list object with the output format of function `LoadSNPData`
- **ncores** An integer for the number of parallel process. Default: 1.

Details

This function computes the binding affinity scores for both alleles at each SNP window. For each pair of SNP and motif, it finds the subsequence from both strand that maximizes the affinity binding score. It returns both the matching positions and the maximized affinity scores.
ComputePValues

Value

A list of two data.frame's. Field snp.tbl contains:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snpid</td>
<td>SNP id.</td>
</tr>
<tr>
<td>ref_seq</td>
<td>Reference allele nucleotide sequence.</td>
</tr>
<tr>
<td>snp_seq</td>
<td>SNP allele nucleotide sequence.</td>
</tr>
<tr>
<td>ref_seq_rev</td>
<td>Reference allele nucleotide sequence on the reverse strand.</td>
</tr>
<tr>
<td>snp_seq_rev</td>
<td>SNP allele nucleotide sequence on the reverse strand.</td>
</tr>
</tbody>
</table>

Field motif.score contains:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>motif</td>
<td>Name of the motif.</td>
</tr>
<tr>
<td>motif_len</td>
<td>Length of the motif.</td>
</tr>
<tr>
<td>ref_start, ref_end, ref_strand</td>
<td>Location of the best matching subsequence on the reference allele.</td>
</tr>
<tr>
<td>snp_start, snp_end, snp_strand</td>
<td>Location of the best matching subsequence on the SNP allele.</td>
</tr>
<tr>
<td>log_lik_ref</td>
<td>Log-likelihood score for the reference allele.</td>
</tr>
<tr>
<td>log_lik_snp</td>
<td>Log-likelihood score for the SNP allele.</td>
</tr>
<tr>
<td>log_lik_ratio</td>
<td>The log-likelihood ratio.</td>
</tr>
<tr>
<td>log_enhance_odds</td>
<td>Difference in log-likelihood ratio between SNP allele and reference allele based on the best matching subsequence on the reference allele.</td>
</tr>
<tr>
<td>log_reduce_odds</td>
<td>Difference in log-likelihood ratio between reference allele and SNP allele based on the best matching subsequence on the SNP allele.</td>
</tr>
</tbody>
</table>

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

```r
data(example)
ComputeMotifScore(motif_library, snpInfo, ncores = 2)
```

Description

This function computes the p-values for allele-specific affinity scores and between-allele affinity score changes using the importance sampling technique.

Usage

```r
ComputePValues(motif.lib, snp.info, motif.scores, ncores = 1,
              testing.mc = FALSE, figdir = NULL)
```
Arguments

motif.lib A list object with the output format of function `LoadMotifLibrary`.

snp.info A list object with the output format of function `LoadSNPData`.

motif.scores A data.frame object containing at least the following columns:

- motif The name of the motif.
- log_lik_ref The log-likelihood score for the reference allele.
- log_lik_snp The log-likelihood score for the SNP allele.

ncores An integer for the number of parallel processes. Default: 1.

testing.mc Monte Carlo sample size of 200 is considered. Do not change the default unless conducting a quick test. Default: FALSE.

figdir A string for the path to print p-value plots for monitoring results. Default: NULL (no figure).

Value

A data.frame extending `motif.scores` by the following additional columns:

- pval_ref P-values for scores on the reference allele.
- pval_snp P-values for scores on the SNP allele.
- pval_cond_ref Conditional p-values for scores on the reference allele.
- pval_cond_snp Conditional p-values for scores on the SNP allele.
- pval_diff P-values for the difference in scores between the reference and the SNP alleles.
- pval_rank P-values for the log rank ratio between the reference and the SNP alleles.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

data(example)
ComputePValues(motif_library, snpInfo, motif_scores$motif.scores, ncores = 2, testing.mc=TRUE)

```
dtMotifMatch
Compute the augmented matching subsequence on SNP and reference allele s.
```

Description

Calculate the best matching augmented subsequences on both SNP and reference alleles for motifs. Obtain extra unmatching position on the best matching augmented subsequence of the reference and SNP alleles.
Usage

dtMotifMatch(snp.tbl, motif.scores, snpids = NULL, motifs = NULL,
motif.lib, ncores = 2)

Arguments

snp.tbl A data.frame with the following information:

 snpid SNP id.
 ref_seq Reference allele nucleobase sequence.
 snp_seq SNP allele nucleobase sequence.
 ref_seq_rev Reference allele nucleobase sequence on the reverse strand.
 snp_seq_rev SNP allele nucleobase sequence on the reverse strand.

motif.scores A data.frame with the following information:

 motif Name of the motif.
 motif_len Length of the motif.
 ref_start, ref_end, ref_strand Location of the best matching subsequence on the reference allele.
 snp_start, snp_end, snp_strand Location of the best matching subsequence on the SNP allele.
 log_lik_ref Log-likelihood score for the reference allele.
 log_lik_snp Log-likelihood score for the SNP allele.
 log_lik_ratio The log-likelihood ratio.
 log_enhance_odds Difference in log-likelihood ratio between SNP allele and reference allele based on the best matching subsequence on the reference allele.
 log_reduce_odds Difference in log-likelihood ratio between reference allele and SNP allele based on the best matching subsequence on the SNP allele.

snpids A subset of snpid to compute the subsequences. Default: NULL, when all snps are computed.

motifs A subset of motifs to compute the subsequences. Default: NULL, when all motifs are computed.

motif.lib A list of named position weight matrices.

ncores The number of cores used for parallel computing. Default: 10

Value

A data.frame containing all columns from the function, MatchSubsequence. In addition, the following columns are added:

snp_ref_start, snp_ref_end, snp_ref_length Location and Length of the best matching augmented subsequence on both the reference and SNP allele.
ref_aug_match_seq_forward Best matching augmented subsequence or its corresponding sequence to the forward strand.
snp_aug_match_seq_forward Best matching augmented subsequence or its corresponding sequence to the forward strand.
ref_aug_match_seq_reverse Best matching augmented subsequence or its corresponding sequence to the reverse strand.
snp_aug_match_seq_reverse Best matching augmented subsequence or its corresponding sequence to the reverse strand.
ref_location SNP location of the best matching augmented subsequence on the reference allele.
snp_location SNP location of the best matching augmented subsequence on the SNP allele.
encode_motif

ref_extra_pwm_left Left extra unmatching position on the best matching augmented subsequence of the reference allele.
ref_extra_pwm_right Right extra unmatching position on the best matching augmented subsequence of the reference allele.
snp_extra_pwm_left Left extra unmatching position on the best matching augmented subsequence of the SNP allele.
snp_extra_pwm_right Right extra unmatching position on the best matching augmented subsequence of the SNP allele.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>

Examples

data(example)
dtMotifMatch(motif_scores$snp.tbl, motif_scores$motif.scores, motif.lib = motif_library)

encode_motif

Description

This motif library can be loaded by 'data(encode_library)'.

Format

A list object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

encode_motifinfo

Description

This is a character vector that be loaded by 'data(encode_library)'. The names of this vector are the same as the names for encode_motif. The entries of this vector are the corresponding motif information parsed from the raw file.

Format

A character vector.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>
GetIUPACSequence

Get the IUPAC sequence of a motif.

Description

Convert the posotion weight matrix of a motif to the IUPAC sequence.

Usage

```
GetIUPACSequence(pwm, prob = 0.25)
```

Arguments

- `pwm`: The position weight matrix, with the columns representing A, C, G, T.
- `prob`: The probability threshold. Default: 0.25.

Value

A character string.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

```
data(example)
GetIUPACSequence(motif_library[[1]], prob = 0.2)
```

jaspar_motif

Description

This motif library can be loaded by 'data(jaspar_library)'.

Format

A list object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Description

This is a character vector that be loaded by 'data(jaspar_library)’. The names of this vector are the same as the names for jaspar_motif. The entries of this vector are the corresponding motif information parsed from the raw file.

Format

A character vector.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

LoadFastaData

Load the SNP data from fasta files.

Description

Load SNP data.

Usage

LoadFastaData(ref.filename = NULL, snp.filename = NULL,
ref.urlname = NULL, snp.urlname = NULL, snpids = NULL,
default.par = FALSE)

Arguments

ref.filename a fastq file name for the reference allele sequences.
snp.filename a fastq file name for the SNP allele sequences.
ref.urlname URL of a fastq file for the reference allele sequences.
snp.urlname URL of a fastq file for the SNP allele sequences.
snpids SNP IDs
default.par A boolean for whether using the default Markov parameters. Default: FALSE.
Value

A list object containing the following components:

- sequence_matrix: A list of integer vectors representing the deroxyribose sequence around each SNP.
- a1: An integer vector for the deroxyribose at the SNP location on the reference genome.
- a2: An integer vector for the deroxyribose at the SNP location on the SNP genome.

The results are coded as: "A"-1, "C"-2, "G"-3, "T"-4.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

```r
LoadFastaData(
  ref.urlname="http://pages.stat.wisc.edu/~keles/atSNP-Data/sample_1.fasta",
  snp.urlname="http://pages.stat.wisc.edu/~keles/atSNP-Data/sample_2.fasta")
```

Description

Load the file for position weight matrices for motifs.

Usage

```r
LoadMotifLibrary(filename = NULL, urlname = NULL, tag = "MOTIF",
  transpose = FALSE, field = 2, sep = c("\t", " "), skipcols = 0,
  skiprows = 2, pseudocount = 0)
```

Arguments

- `filename`: a MEME format file name.
- `urlname`: URL containing a MEME format file.
- `tag`: A string that marks the description line of the position weight matrix.
- `transpose`: If TRUE (default), then the position weight matrix should have 4 columns. Otherwise, it should have 4 rows.
- `field`: The index of the field in the description line, seperated by space, that indicates the motif name.
- `sep`: A vector of chars for the string separators to parse each lines of the matrix. Default: c(" ", ",").
- `skipcols`: Number of columns to be skipped in the position weight matrix.
- `skiprows`: Number of description lines before each position weight matrix.
- `pseudocount`: An integer for the pseudocount added to each of the original matrices. Default: 0. Recommended to be 1 if the original matrices are position frequency matrices.
LoadSNPData

Details

This function reads the formatted file containing motif information and convert them into a list of position weight matrices. The list of arguments should provide enough flexibility of importing a varying number of formats. Some examples are the following: For MEME format, the suggested arguments are: tag = 'Motif', skiprows = 2, skipcols = 0, transpose = FALSE, field = 2, sep = ’ ’; For motif files from JOHNSON lab (i.e. http://johnsonlab.ucsf.edu/mochi_files/JASPAR_motifs_H_sapiens.txt), the suggested arguments are: tag = '/NAME', skiprows = 1, skipcols = 0, transpose = FALSE, field = 2, sep = ”t”; For JASPAR pfm matrices (i.e. http://jaspar.genereg.net/download/CORE/JASPAR2018_CORE_vertebrates_non-redundant_pfms_jaspar.txt), the suggested arguments are: tag = ”>”, skiprows = 1, skipcols = 0, transpose = TRUE, field = 1, sep = ”\t”; For the TRANSFAC library provided by UCF bioinformatics groups (i.e. http://gibbs.biomed.ucf.edu/PreDREM/download/nonredundantmotif.transfac), the suggested arguments are: tag = ”DE”, skiprows = 1, skipcols = 1, transpose = FALSE, field = 2, sep = ”\t”.

Value

A list object of position weight matrices.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

pwms <- LoadMotifLibrary(
 urlname="http://pages.stat.wisc.edu/~keles/atSNP-Data/pfm_vertebrates.txt",
 tag = “>”, transpose = FALSE, field = 1, sep = c("\t", " ", ">")
)

LoadSNPData

Load the SNP information and code the genome sequences around the SNP locations.

Description

Load the SNP data.

Usage

LoadSNPData(filename = NULL,
 genome.lib = "BSgenome.Hsapiens.UCSC.hg38",
 snp.lib = "SNPlocs.Hsapiens.dbSNP144.GRCh38", snpids = NULL,
 half.window.size = 30, default.par = FALSE, mutation = FALSE, ...)

LoadSNPData

Arguments

filename A table containing the SNP information. Must contain at least five columns with exactly the following names:

- chr chromosome.
- snp The nucleotide position of the SNP.
- snpid The names of the SNPs.
- a1 The deoxyribose for one allele.
- a2 The deoxyribose for the other allele.

If this file exists already, it is used to extract the SNP information. Otherwise, SNP information extracted using argument `snpid` is outputted to this file.

genome.lib A string of the library name for the genome version. Default: "BSgenome.Hsapiens.UCSC.hg38".

snp.lib A string of the library name to obtain the SNP information based on rs ids. Default: "SNPlocs.Hsapiens.dbSNP144.GRCh38".

snpid A vector of rs ids for the SNPs. This argument is overridden if the file with name `filename` exists.

half.window.size An integer for the half window size around the SNP within which the motifs are matched. Default: 30.

default.par A boolean for whether using the default Markov parameters. Default: FALSE.

mutation A boolean for whether this is mutation data. See details for more information. Default: FALSE.

... Other parameters passed to `read.table`.

Details

This function extracts the nucleotide sequence within a window around each SNP and codes them using 1-A, 2-C, 3-G, 4-T.

There are two ways of obtaining the nucleotide sequences. If `filename` is not NULL and the file exists, it should contain the positions and alleles for each SNP. Based on such information, the sequences around SNP positions are extracted using the Bioconductor annotation package specified by `genome.lib`. Users should make sure that this annotation package corresponds to the correct species and genome version of the actual data. Alternatively, users can also provide a vector of rs ids via the argument `snpid`. The SNP locations and allele information is then obtained via the Bioconductor annotation package specified by `snp.lib`, and passed on to the package specified by `genome.lib` to further obtain the nucleotide sequences.

If `mutation=FALSE` (default), this function assumes that the data is for SNP analysis, and the reference genome should be consistent with either the a1 or a2 nucleotide. When extracting the genome sequence around each SNP position, this function compares the nucleotide at the SNP location on the reference genome with both a1 and a2 to distinguish between the reference allele and the SNP allele. If the nucleotide extracted from the reference genome does not match either a1 or a2, the SNP is discarded. The discarded SNPs are in the 'rsid.rm' field in the output.

Alternatively, if `mutation=TRUE`, this function assumes that the data is for general single nucleotide mutation analysis. After extracting the genome sequence around each SNP position, it replaces
the nucleotide at the SNP location by the a1 nucleotide as the 'reference' allele sequence, and by
the a2 nucleotide as the 'snp' allele sequence. It does NOT discard the sequence even if neither
a1 or a2 matches the reference genome. When this data set is used in other functions, such as
`ComputeMotifScore`, `ComputePValues`, all the results (i.e. affinity scores and their p-values) for
the reference allele are indeed for the a1 allele, and results for the SNP allele are indeed for the a2
allele.

If the input is a list of rsid's, the SNP information extracted from snp.lib may contain more than
two alleles for a single location. For such cases, `LoadSNPData` first extracts all pairs of alleles asso-
ciated with those locations. If 'mutation=TRUE', all those pairs are considered as pairs of reference
and SNP alleles, and their information is contained in 'sequence_matrix', 'a1', 'a2' and 'snpid'. If
'mutation=FALSE', `LoadSNPData` further filters these pairs based on whether one allele matches
to the reference genome nucleotide extracted from genome.lib. Only those pairs with one allele
matching the reference genome nucleotide is considered as pairs of reference and SNP alleles, with
their information contained in 'sequence_matrix', 'a1', 'a2' and 'snpid'.

Value

A list object containing the following components:

- `sequence_matrix` A list of integer vectors representing the deroxyribose sequence around each SNP.
- `a1` An integer vector for the deroxyribose at the SNP location on the reference genome.
- `a2` An integer vector for the deroxyribose at the SNP location on the SNP genome.
- `snpid` A string vector for the SNP rsids.
- `rsid.missing` If the data source is a list of rsids, this field records rsids for SNPs that are discarded because they are not in
the reference genome.
- `rsid.duplicate` If the data source is a list of rsids, this field records rsids for SNPs that based on the SNPlocs package, this
locus has more than 2 alleles.
- `rsid.na` This field records rsids for SNPs that are discarded because the nucleotide sequences contain none ACGT characters.
- `rsid.rm` If the data source is a table and mutation=FALSE, this field records rsids for SNPs that are discarded because the nucleotide on the reference genome does not match either the a1 or a2 allele.

The results are coded as: "A"-1, "C"-2, "G"-3, "T"-4.

Author(s)

Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

```r
## Not run: LoadSNPData(snpids = c("rs53576", "rs7412"),
genome.lib = "BSgenome.Hsapiens.UCSC.hg38", snp.lib =
"SNPlocs.Hsapiens.dbSNP144.GRCh38", half.window.size = 30, default.par = TRUE
, mutation = FALSE)
## End(Not run)
```
MatchSubsequence

Compute the matching subsequence.

Description
This function combines the SNP set, the motif library and the affinity score table and produce the matching subsequence found at each SNP location for each motif.

Usage
MatchSubsequence(snp.tbl, motif.scores, motif.lib, snpids = NULL, motifs = NULL, ncores = 1)

Arguments
snp.tbl A data.frame with the following information:

<table>
<thead>
<tr>
<th>SNP id</th>
<th>SNP id.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ref_seq</td>
<td>Reference allele nucleotide sequence.</td>
</tr>
<tr>
<td>snp_seq</td>
<td>SNP allele nucleotide sequence.</td>
</tr>
<tr>
<td>ref_seq_rev</td>
<td>Reference allele nucleotide sequence on the reverse strand.</td>
</tr>
<tr>
<td>snp_seq_rev</td>
<td>SNP allele nucleotide sequence on the reverse strand.</td>
</tr>
</tbody>
</table>

motif.scores A data.frame with the following information:

<table>
<thead>
<tr>
<th>Name of the motif.</th>
<th>Name of the motif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>motif</td>
<td>Length of the motif.</td>
</tr>
<tr>
<td>motif_len</td>
<td>Location of the best matching subsequence on the reference allele.</td>
</tr>
<tr>
<td>ref_start, ref_end, ref_strand</td>
<td>Location of the best matching subsequence on the SNP allele.</td>
</tr>
<tr>
<td>snp_start, snp_end, snp_strand</td>
<td>Log-likelihood score for the reference allele.</td>
</tr>
<tr>
<td>log_lik_ref</td>
<td>Log-likelihood score for the SNP allele.</td>
</tr>
<tr>
<td>log_lik_snp</td>
<td>The log-likelihood ratio.</td>
</tr>
<tr>
<td>log_lik_ratio</td>
<td>Difference in log-likelihood ratio between SNP allele and reference allele based on the best matching subsequence on the reference allele.</td>
</tr>
<tr>
<td>log_enhance_odds</td>
<td>Difference in log-likelihood ratio between reference allele and SNP allele based on the best matching subsequence on the SNP allele.</td>
</tr>
<tr>
<td>log_reduce_odds</td>
<td></td>
</tr>
</tbody>
</table>

motif.lib A list of the position weight matrices for the motifs.

snpids A subset of snpids to compute the subsequences. Default: NULL, when all snps are computed.

motifs A subset of motifs to compute the subsequences. Default: NULL, when all motifs are computed.

ncores The number of cores used for parallel computing.
Value

A data.frame containing all columns in both snp.tbl and motif.scores. In addition, the following columns are added:

- ref_match_seq: Best matching subsequence on the reference allele.
- snp_match_seq: Best matching subsequence on the SNP allele.
- ref_seq_snp_match: Subsequence on the reference allele corresponding to the best matching location on the SNP allele.
- snp_seq_ref_match: Subsequence on the SNP allele corresponding to the best matching location on the reference allele.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

Examples

```r
data(example)
MatchSubsequence(motif.scores$snp.tbl, motif.scores$motif.scores,
motif_library, ncores=2)
```

Description

A list of the position weight matrices corresponding to motifs, loaded by `data(example)`.

Format

A list object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>
motif_match

Composit logo plotting input containing motif scores, the matching subsequences and the augmented matching subsequences on SNP and reference allele

Description

This data.frame object loaded by 'data(example)' contains information about MYC_disc1 match to rs53576.

Format

A data.frame object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

motif_scores

Scores for the sample snp data computed based on the motif data.

Description

This list object loaded by 'data(example)' contains two fields:

- **snp.tbl** A data.frame containing the sequence of nucleobases around each SNP.
- **motif.scores** A data.frame containing the likelihood scores computed for each SNP and each motif.

Format

A data.frame object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>
Description

Plot the best matching augmented subsequences on the reference and SNP alleles. Plot sequence logos of the position weight matrix of the motif to the corresponding positions of the best matching subsequences on the references and SNP alleles.

Usage

plotMotifMatch(motif.match, motif.lib, cex.main = 2, ...)

Arguments

- `motif.match`: a single row of dtMotifMatch output in data.frame format
- `motif.lib`: A list of position weight matrices
- `cex.main`: The size of the main title.
- `...`: Other parameters passed to plotMotifLogo.

Value

Sequence logo stacks: Reference subsequences, sequence logo of reference allele matching position weight matrix, SNP subsequences, sequence logo of SNP allele matching position weight matrix

Author(s)

Sunyoung Shin<sunyoung.shin@utdallas.edu>

Examples

data(example)
plotMotifMatch(motif_match, motif.lib = motif_library)
Description

This parameter is fitted using 61bp windowns around the SNPs in the NHGRI catalog. Loaded by 'data(default_par)'.

Format

A numeric vector.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

snpInfo

A data set for SNP information.

Description

This list object loaded by 'data(example)' contains three fields:

- **sequence_matrix**: A sequence matrix, coded by 1-A, 2-C, 3-G, 4-T, with each column corresponding to a subsequence of 61 bp.
- **transition**: The transition matrix used in Markov model.
- **prior**: The stationary distribution used in the Markov model.

Format

A list object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>
snp_tbl

A data frame for SNP information.

Description

This data frame is loaded by `data(example)`. It is a table including the following columns:

- **chr**: The chromosome.
- **snp**: The SNP location coordinate.
- **snpid**: The SNP label.
- **a1,a2**: The nucleotide on the reference and SNP allele.

Format

A data.frame object.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>

transition

Default transition probability matrix for nucleotide sequences in the reference genome.

Description

This parameter is fitted using 61bp windowns around the SNPs in the NHGRI catalog. Loaded by `data(default_par)`.

Format

A 4 by 4 numeric matrix.

Author(s)

Sunyoung Shin <sunyoung.shin@utdallas.edu>, Chandler Zuo <chandler.c.zuo@gmail.com>
Index

* GenomeAnnotation
 atSNP-package, 2
* LogoPlot
 atSNP-package, 2
* MotifAnnotation
 atSNP-package, 2
 atSNP-package, 2
 ComputeMotifScore, 2, 3, 13
 ComputePValues, 2, 4, 13
 dtMotifMatch, 3, 5
 encode_motif, 7, 7
 encode_motifinfo, 7
 GetIUPACSequence, 3, 8
 jaspar_motif, 8, 9
 jaspar_motifinfo, 9
 LoadFastaData, 2, 9
 LoadMotifLibrary, 2, 3, 5, 10
 LoadSNPData, 2, 3, 5, 11, 13
 MatchSubsequence, 3, 6, 14
 motif_library, 15
 motif_match, 16
 motif_scores, 16
 plotMotifMatch, 3, 17
 prior, 18
 read.table, 12
 snp_tbl, 19
 snpInfo, 18
 transition, 19