Package ‘awst’

May 29, 2024

Title Asymmetric Within-Sample Transformation

Version 1.12.0

Description We propose an Asymmetric Within-Sample Transformation (AWST) to regularize RNA-seq read counts and reduce the effect of noise on the classification of samples. AWST comprises two main steps: standardization and smoothing. These steps transform gene expression data to reduce the noise of the lowly expressed features, which suffer from background effects and low signal-to-noise ratio, and the influence of the highly expressed features, which may be the result of amplification bias and other experimental artifacts.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

URL https://github.com/drisso/awst

BugReports https://github.com/drisso/awst/issues

Imports stats, methods, SummarizedExperiment

Suggests airway, ggplot2, testthat, EDASeq, knitr, BiocStyle, RefManageR, sessioninfo, rmarkdown

biocViews Normalization, GeneExpression, RNASeq, Software, Transcriptomics, Sequencing, SingleCell

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/awst

git_branch RELEASE_3_19

git_last_commit 8f7055e

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Davide Risso [aut, cre, cph] (<https://orcid.org/0000-0001-8508-5012>), Stefano Pagnotta [aut, cph] (<https://orcid.org/0000-0002-8298-9777>)

Maintainer Davide Risso <risso.davide@gmail.com>
Description

This function implements the asymmetric within-sample transformation described in Risso and Pagnotta (2019). The function includes two steps: a standardization step and an asymmetric winsorization step. See details.

Usage

```r
## S4 method for signature 'matrix'
awst(x, poscount = FALSE, full_quantile = FALSE, sigma0 = 0.075, lambda = 13)
## S4 method for signature 'SummarizedExperiment'
awst(
  x,
  poscount = FALSE,
  full_quantile = FALSE,
  sigma0 = 0.075,
  lambda = 13,
  expr_values = "counts",
  name = "awst"
)
```

Arguments

- **x**: a matrix of (possibly normalized) RNA-seq read counts or a ‘SummarizedExperiment’.
- **poscount**: a logical value indicating whether positive counts only should be used for the standardization step.
- **full_quantile**: a logical value indicating whether the data have been normalized with the full-quantile normalization. In this case, computations can be sped up.
- **sigma0**: a multiplicative constant to be applied to the smoothing function.
- **lambda**: a parameter that controls the growth rate of the smoothing function.
- **expr_values**: integer scalar or string indicating the assay that contains the matrix to use as input.
- **name**: string specifying the name of the assay to be used to store the results of the transformation.
Details

The standardization step is based on a log-normal distribution of the high-intensity genes. Optionally, only positive counts can be used in this step (this option is especially useful for single-cell data). The winsorization step is controlled by two parameters, sigma0 and lambda, which control the growth rate of the winsorization function.

Value

if 'x' is a matrix, it returns a matrix of transformed values, with genes in rows and samples in column. If 'x' is a 'SummarizedExperiment', it returns a 'SummarizedExperiment' with the transformed value in the 'name' slot.

Methods (by class)

• matrix: the input is a matrix of (possibly normalized) counts
• SummarizedExperiment: the input is a SummarizedExperiment with (possibly normalized) counts in one of its assays.

References

Examples

```r
x <- matrix(data = rpois(100, lambda=5), ncol=10, nrow=10)
awst(x)
```

Description

This function filters out genes that show a low heterogeneity, as measured by Shannon’s entropy.

Usage

```r
## S4 method for signature 'matrix'
gene_filter(
  x,
  from = min(x, na.rm = TRUE),
  to = max(x, na.rm = TRUE),
  nBins = 20,
  heterogeneity_threshold = 0.1
)
```
S4 method for signature 'SummarizedExperiment'

gene_filter(
 x,
 from = min(assay(x, awst_values), na.rm = TRUE),
 to = max(assay(x, awst_values), na.rm = TRUE),
 nBins = 20,
 heterogeneity_threshold = 0.1,
 awst_values = "awst"
)

Arguments

- **x**: a matrix of transformed gene expression counts (typically the results of \texttt{awst}).
- **from**: the minimum value from which to start binning data.
- **to**: the maximum value for the binning of the data.
- **nBins**: the number of bins.
- **heterogeneity_threshold**: the threshold used for the filtering.
- **awst_values**: integer scalar or string indicating the assay that contains the awst-transformed values to use as input.

Details

Shannon’s entropy is computed on the categorized data after AWST transformation. Those genes that show a lower entropy than the predefined threshold are deemed to carry too low information to be useful for the classification of the samples, and are hence removed.

Value

if ‘x’ is a matrix, it returns a filtered matrix. If ‘x’ is a ‘SummarizedExperiment’, it returns a filtered ‘SummarizedExperiment’

Methods (by class)

- \texttt{matrix}: the input is a matrix of awst-transformed values.
- \texttt{SummarizedExperiment}: the input is a SummarizedExperiment with awst-transformed values in one of its assays.

References

Examples

```r
set.seed(222)
x <- matrix(rpois(75, lambda=5), ncol=5, nrow=15)
a <- awst(x)
gene_filter(a)
```
Index

awst, 2, 4
awst, matrix-method (awst), 2
awst, SummarizedExperiment-method (awst), 2

gene_filter, 3
gene_filter, matrix-method (gene_filter), 3
gene_filter, SummarizedExperiment-method (gene_filter), 3