Package ‘banocc’

May 29, 2024

Type Package
Title Bayesian ANalysis Of Compositional Covariance
Version 1.28.0
Date 2022-04-20
Maintainer George Weingart <george.weingart@gmail.com>, Curtis Huttenhower <chuttenh@hsph.harvard.edu>
Description BAnOCC is a package designed for compositional data, where each sample sums to one. It infers the approximate covariance of the unconstrained data using a Bayesian model coded with `rstan`. It provides as output the `stanfit` object as well as posterior median and credible interval estimates for each correlation element.
License MIT + file LICENSE
Depends R (>= 3.5.1), rstan (>= 2.17.4)
Imports coda (>= 0.18.1), mvtnorm, stringr
Suggests knitr, rmarkdown, methods, testthat, BiocStyle
VignetteBuilder knitr
RoxygenNote 5.0.1
biocViews ImmunoOncology, Metagenomics, Software, Bayesian
git_url https://git.bioconductor.org/packages/banocc
git_branch RELEASE_3_19
git_last_commit 12c9e57
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Emma Schwager [aut, cre], Curtis Huttenhower [aut]
banocc: A package for Bayesian ANalysis of Compositional Correlation

Description

BAnOCC is a package for inferring correlations between features in compositional data, where each sample sums to one. It provides one object, banocc_model and one function, run_banocc.

banocc objects

banocc_model has the stan model code to be compiled using rstan::stan.

banocc functions

run_banocc takes a compiled model, and returns the ‘stanfit‘ object resulting from a call to rstan::sampling. get_banocc_output takes a ‘stanfit‘ object or the output of run_banocc and returns a list with the posterior median and credible interval estimates.

Description

This is the literal model used for fitting in Stan.

Usage

banocc_model
compositions_hard_null

Format

An object of class character of length 1.

Value

The BAnOCC model as a string to be compiled with \texttt{rstan::stan_model}

Examples

data(compositions_null)
Not run:
compiled_banocc_model <- rstan::stan_model(model_code = banocc_model)
End(Not run)

compositions_hard_null

Simulated compositional data with no feature correlations

Description

These are the normalized samples corresponding to \texttt{counts_hard_null}. They should have a very different correlation structure from the counts. In particular, there should be one strong, positive association which is not present in the count correlation structure.

Usage

compositions_hard_null

Format

A data frame with 1000 rows (compositional samples) and 9 variables (the features)

Value

A data frame with 1000 compositional samples from 9 features, generated by dividing each row of \texttt{counts_hard_null} by its sum.
compositions_null

Simulated compositional data with no feature correlations

Description
These are the normalized samples corresponding to counts_null. They should have a similar (but not identical) correlation structure.

Usage
compositions_null

Format
A data frame with 1000 rows (compositional samples) and 9 variables (the features)

Value
A data frame with 1000 compositional samples from 9 features, generated by dividing each row of counts_null by its sum.

compositions_neg_spike

Simulated compositional data with a negative count correlation

Description
These are the normalized data corresponding to counts_neg_spike. The count data have one negative feature correlation, but the compositional correlation structure should be different.

Usage
compositions_neg_spike

Format
A data frame with 1000 rows (compositional samples) and 9 variables (the features)

Value
A data frame with 1000 compositional samples from 9 features, generated by dividing each row of counts_neg_spike by its sum.
compositions_pos_spike

Simulated compositional data with a positive count correlation

Description

These are the normalized data corresponding to counts_pos_spike. The count data have one positive feature correlation, but the compositional correlation structure should be different.

Usage

compositions_pos_spike

Format

A data frame with 1000 rows (compositional samples) and 9 variables (the features)

Value

A data frame with 1000 compositional samples from 9 features, generated by dividing each row of counts_pos_spike by its sum.

counts_hard_null

Simulated count data with no feature correlations

Description

Nine features are draw independently from very different log-normal distributions whose means and variances are positively correlated. This means that the compositions generated from this dataset (see compositions_hard_null) should be have a correlation structure very different from that of these counts.

Usage

counts_hard_null

Format

A data frame with 1000 rows (samples) and 9 variables (the features)

Value

A data frame with 1000 unconstrained samples from 9 features.
counts_neg_spike Simulated count data with one negative feature correlation

Description

Nine features are drawn from a log-normal distribution with one negative correlation. The resulting compositions are in compositions_neg_spike

Usage

counts_neg_spike

Format

A data frame with 1000 rows (samples) and 9 variables (the features)

Value

A data frame with 1000 unconstrained samples from 9 features.

counts_null Simulated count data with no feature correlations

Description

Nine features are drawn independently from similar log-normal distributions to generate null count data. Because the feature distributions are very similar, the compositions generated from this dataset (see compositions_null), should have a correlation structure similar to that of the counts.

Usage

counts_null

Format

A data frame with 1000 rows (the samples) and 9 variables (the features)

Value

A data frame with 1000 unconstrained samples from 9 features.
counts_pos_spike

Simulated count data with one positive feature correlation

Description
Nine features are drawn from a log-normal distribution with one positive correlation. The resulting compositions are in compositions_pos_spike.

Usage
counts_pos_spike

Format
A data frame with 1000 rows (samples) and 9 variables (the features)

Value
A data frame with 1000 unconstrained samples from 9 features.

get_banocc_output

takes a model fit from BAnOCC, evaluates convergence and generates appropriate convergence metrics and inference

Description
Takes a model fit from BAnOCC, evaluates convergence and generates appropriate convergence metrics and inference

Usage
get_banocc_output(banoccfit, conf_alpha = 0.05, get_min_width = FALSE, calc_snc = TRUE, eval_convergence = TRUE, verbose = FALSE, num_level = 0)

Arguments
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>banoccfit</td>
<td>Either a stanfit object (the Fit element returned by run_banocc), or the list returned by a call to run_banocc.</td>
</tr>
<tr>
<td>conf_alpha</td>
<td>The percentage of the posterior density outside the credible interval. That is, a 1-conf_alpha * 100% credible interval will be returned.</td>
</tr>
<tr>
<td>get_min_width</td>
<td>A boolean value: should the minimum CI width that includes zero be calculated?</td>
</tr>
<tr>
<td>calc_snc</td>
<td>Boolean: should the scaled neighborhood criterion be calculated?</td>
</tr>
</tbody>
</table>
eval_convergence
Booleand: if ‘TRUE’, convergence will be evaluated using the Rhat statistic, and the fit output (estimates, credible intervals, etc.) will be missing if this statistic does not indicate convergence.

verbose
Print informative statements as the function executes?

num_level
The number of indentations to add to the output when verbose = TRUE.

Value
Returns a named list with the following elements:

CI
The $1 - \text{conf_alpha} \times 100\%$ credible intervals

Estimates.median
The correlation estimates, which are the marginal posterior medians

Min.width
Only present if the get_min_width argument is TRUE. The minimum CI width that includes zero for each correlation.

SNC
Only present if the calc_snc argument is TRUE. The scaled neighborhood criterion for each correlation.

Fit
The stanfit object returned by the call to run_banocc.

Data
Only present if the banoccfit argument is specified as the output of a call to run_banocc. It will be missing if banoccfit is specified as a stanfit object.

See Also
vignette("banocc-vignette") for more examples.

Examples
data(compositions_null)
Not run:
compiled_banocc_model <- rstan::stan_model(model_code=banocc_model)
b_fit <- run_banocc(C=compositions_null,
 compiled_banocc_model=compiled_banocc_model)
b_output <- get_banocc_output(banoccfit=b_fit)
End(Not run)

run_banocc

 Runs BAnOCC to fit the model and generate appropriate convergence metrics and inference.

Description

Runs BAnOCC to fit the model and generate appropriate convergence metrics and inference.
run_banocc

Usage

run_banocc(compiled_banocc_model, C, n = rep(0, ncol(C)), L = 10 *
 diag(ncol(C)), a = 0.5, b = 0.01, cores = getOption("mc.cores", 1L),
 chains = 4, iter = 50, warmup = floor(iter/2), thin = 1,
 init = NULL, control = NULL, verbose = FALSE, num_level = 0)

Arguments

compiled_banocc_model
 The compiled stan model (as with stan_model(model_code = banocc_model)).
C
 The dataset as a data frame or matrix. This should be N by P with N samples as
 the rows and P features as the columns.
n
 The prior mean for m; vectors of length less than P (the number of features/columns
 of C) will be recycled.
L
 The prior variance-covariance for m (must be positive-definite with dimension
 PxP where P=number of features/columns in C), or a vector of length p of vari-
 ances for m. If a vector of length less than P is given, it will be recycled.
a
 The shape parameter of a gamma distribution (the prior on the shrinkage parameter lambda)
b
 The rate parameter of a gamma distribution (the prior on the shrinkage parameter lambda)
cores
 Number of cores to use when executing the chains in parallel, which defaults to
 1 but we recommend setting the mc.cores option to be as many processors as
 the hardware and RAM allow (up to the number of chains).
chains
 A positive integer specifying the number of Markov chains. The default is 4.
itер
 A positive integer specifying the number of iterations for each chain (including
 warmup). The default is 2000.
warmup
 A positive integer specifying the number of warmup (aka burnin) iterations per
 chain. If step-size adaptation is on (which it is by default), this also controls
 the number of iterations for which adaptation is run (and hence these warmup
 samples should not be used for inference). The number of warmup iterations
 should not be larger than iter and the default is iter/2.
thin
 A positive integer specifying the period for saving samples. The default is 1,
 which is usually the recommended value.
init
 The initial values as a list (see sampling in the rstan package). Default value is
 NULL, which means that initial values are sampled from the priors for parameters
 m and lambda while O is set to the identity matrix.
control
 A named list of parameters to control the sampler’s behavior. See the details
 in the documentation for the control argument in stan.
verbose
 Print informative statements as the function executes?
um_level
 The number of indentations to add to the output when verbose = TRUE.
Value

Returns a named list with the following elements:

Data The data formatted as a named list that includes the input data (C) and the prior parameters (n, L, a, b)

Fit The stanfit object returned by the call to `sampling`

See Also

`vignette("banocc-vignette")` for more examples.

Examples

data(compositions_null)

```r
## Not run:
compiled_banocc_model <- rstan::stan_model(model_code=banocc_model)

b_stanfit <- run_banocc(C=compositions_null,
                        compiled_banocc_model=compiled_banocc_model)

## End(Not run)
```
Index

* datasets
 - banocc_model, 2
 - compositions_hard_null, 3
 - compositions_neg_spike, 4
 - compositions_null, 4
 - compositions_pos_spike, 5
 - counts_hard_null, 5
 - counts_neg_spike, 6
 - counts_null, 6
 - counts_pos_spike, 7

banocc, 2
banocc-package (banocc), 2
banocc_model, 2

compositions_hard_null, 3
compositions_neg_spike, 4
compositions_null, 4
compositions_pos_spike, 5
counts_hard_null, 5
counts_neg_spike, 6
counts_null, 6
counts_pos_spike, 7

get_banocc_output, 7

run_banocc, 8

sampling, 9, 10
stan, 9