Package ‘benchdamic’

January 23, 2024

Type Package
Title Benchmark of differential abundance methods on microbiome data
Version 1.8.1
Description Starting from a microbiome dataset (16S or WMS with absolute count values) it is possible to perform several analysis to assess the performances of many differential abundance detection methods. A basic and standardized version of the main differential abundance analysis methods is supplied but the user can also add his method to the benchmark. The analyses focus on 4 main aspects: i) the goodness of fit of each method's distributional assumptions on the observed count data, ii) the ability to control the false discovery rate, iii) the within and between method concordances, iv) the truthfulness of the findings if any apriori knowledge is given. Several graphical functions are available for result visualization.

License Artistic-2.0
Encoding UTF-8
Depends R (>= 4.3.0)
Imports stats, stats4, utils, methods, phylseq, TreeSummarizedExperiment, BiocParallel, zinbwave, edgeR, DESeq2, limma, ALDEx2, SummarizedExperiment, MAST, Seurat, ANCOMBC, mixOmics, lme4, NOISeq, deaseq, MicrobiomeStat, Maaslin2, GUniFrac, metagenomeSeq, MGLM, ggrepplot2, RColorBrewer, plyr, reshape2, ggdendro, gggridges, graphics, cowplot, grDevices, tidytext
Suggests knitr, rmarkdown, kableExtra, BiocStyle, magick, SPsimSeq, testthat

VignetteBuilder knitr
LazyData TRUE
RoxygenNote 7.2.3
biocViews Metagenomics, Microbiome, DifferentialExpression, MultipleComparison, Normalization, Preprocessing, Software

BugReports https://github.com/mcalgaro93/benchdamic/issues
git_url https://git.bioconductor.org/packages/benchdamic

topics documented:

git branch RELEASE_3_18

git_last_commit 785ef9a

git_last_commit_date 2023-11-04

Repository Bioconductor 3.18

Date/Publication 2024-01-23

Author Matteo Calgaro [aut, cre] (<https://orcid.org/0000-0002-3056-518X>),
Chiara Romualdi [aut] (<https://orcid.org/0000-0003-4792-9047>),
Davide Risso [aut] (<https://orcid.org/0000-0001-8508-5012>),
Nicola Vitulo [aut] (<https://orcid.org/0000-0002-9571-0747>)

Maintainer Matteo Calgaro <mcalgaro93@gmail.com>

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>addKnowledge</td>
<td>4</td>
</tr>
<tr>
<td>areaCAT</td>
<td>5</td>
</tr>
<tr>
<td>CAT</td>
<td>7</td>
</tr>
<tr>
<td>checkNormalization</td>
<td>8</td>
</tr>
<tr>
<td>createColors</td>
<td>8</td>
</tr>
<tr>
<td>createConcordance</td>
<td>9</td>
</tr>
<tr>
<td>createEnrichment</td>
<td>11</td>
</tr>
<tr>
<td>createMocks</td>
<td>13</td>
</tr>
<tr>
<td>createPositives</td>
<td>14</td>
</tr>
<tr>
<td>createSplits</td>
<td>17</td>
</tr>
<tr>
<td>createTIEC</td>
<td>18</td>
</tr>
<tr>
<td>DA_ALDEx2</td>
<td>19</td>
</tr>
<tr>
<td>DA_ANCOM</td>
<td>21</td>
</tr>
<tr>
<td>DA_basic</td>
<td>23</td>
</tr>
<tr>
<td>DA_dearseq</td>
<td>24</td>
</tr>
<tr>
<td>DA_DESeq2</td>
<td>26</td>
</tr>
<tr>
<td>DA_edgeR</td>
<td>27</td>
</tr>
<tr>
<td>DA_limma</td>
<td>29</td>
</tr>
<tr>
<td>DA_lindan</td>
<td>31</td>
</tr>
<tr>
<td>DA_Maaslin2</td>
<td>32</td>
</tr>
<tr>
<td>DA_MAST</td>
<td>34</td>
</tr>
<tr>
<td>DA_metagenomeSeq</td>
<td>35</td>
</tr>
<tr>
<td>DA_mixMC</td>
<td>37</td>
</tr>
<tr>
<td>DA_NOISeq</td>
<td>38</td>
</tr>
<tr>
<td>DA_Seurat</td>
<td>39</td>
</tr>
<tr>
<td>DA_ZicoSeq</td>
<td>42</td>
</tr>
<tr>
<td>enrichmentTest</td>
<td>44</td>
</tr>
<tr>
<td>extractDA</td>
<td>45</td>
</tr>
<tr>
<td>extractStatistics</td>
<td>47</td>
</tr>
<tr>
<td>fitDM</td>
<td>49</td>
</tr>
<tr>
<td>fitHURDLE</td>
<td>50</td>
</tr>
<tr>
<td>fitModels</td>
<td>51</td>
</tr>
</tbody>
</table>
R topics documented:

- fitNB ... 52
- fitZIG ... 53
- fitZINB ... 54
- getDA ... 54
- getPositives ... 56
- getStatistics ... 58
- get_counts_metadata ... 60
- iterative_ordering .. 61
- meanDifferences .. 62
- microbial_metabolism .. 63
- norm_CSS ... 63
- norm_DESeq2 .. 64
- norm_edgeR ... 66
- norm_TSS ... 67
- plotConcordance .. 68
- plotConcordanceDendrogram 70
- plotConcordanceHeatmap 70
- plotContingency .. 71
- plotEnrichment .. 73
- plotFDR .. 74
- plotFPR .. 75
- plotKS ... 76
- plotLogP ... 78
- plotMD ... 79
- plotMutualFindings ... 80
- plotPositives .. 82
- plotQQ ... 83
- plotRMSE ... 84
- prepareObserved .. 85
- ps_plaque_16S ... 86
- ps_stool_16S ... 87
- RMSE ... 87
- runDA .. 88
- runMocks ... 89
- runNormalizations .. 90
- runSplits .. 91
- setNormalizations ... 93
- set_ALDEx2 ... 94
- set_ANCOM .. 95
- set_basic .. 97
- set_dearseq .. 98
- set_DESeq2 ... 99
- set_edgeR .. 101
- set_limma .. 102
- set_linda .. 103
- set_Maaslin2 ... 105
- set_MAST .. 106
- set_metagenomeSeq .. 107
Description

Add a priori knowledge for each feature tested by a method.

Usage

addKnowledge(method, priorKnowledge, enrichmentCol, namesCol = NULL)

Arguments

method
Output of differential abundance detection method in which DA information is
extracted by the getDA function.

priorKnowledge
data.frame (with feature names as row.names) containing feature level meta-
data.

enrichmentCol
name of the column containing information for enrichment analysis.

namesCol
name of the column containing new names for features (default namesCol = NULL).

Value

A data.frame with a new column containing information for enrichment analysis.

See Also

createEnrichment.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[["GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,
 "Type" = microbial_metabolism[genera, "Type"])
areaCAT

Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
 phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")

DA analysis
da.limma <- DA_limma(
 object = ps_plaque_16S,
 design = ~ 1 + RSID + HMP_BODY_SUBSITE,
 coef = "HMP_BODY_SUBSITESupragingival Plaque",
 norm = "TMM"
)

DA <- getDA(method = da.limma, slot = "pValMat", colName = "adjP",
 type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
 threshold_logfc = 1, top = NULL)

Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorInfo,
 enrichmentCol = "Type", namesCol = "newNames")

areaCAT

Description

Compute the area between the bisector and the concordance curve.

Usage

areaCAT(concordance, plotIt = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>concordance</td>
<td>A long format data.frame produced by createConcordance function.</td>
</tr>
<tr>
<td>plotIt</td>
<td>Plot the concordance (default plotIt = FALSE).</td>
</tr>
</tbody>
</table>
A long format data.frame object with several columns:

- `comparison` which indicates the comparison number;
- `n_features` which indicates the total number of taxa in the comparison dataset;
- `method1` which contains the first method name;
- `method2` which contains the first method name;
- `rank`;
- `concordance` which is defined as the cardinality of the intersection of the top rank elements of each list, divided by rank, i.e. \(\frac{(L_{1:rank} \cap M_{1:rank})}{(rank)} \), where L and M represent the lists of the extracted statistics of method1 and method2 respectively;
- `heightOver` which is the distance between the bisector and the concordance value;
- `areaOver` which is the cumulative sum of the `heightOver` value.

See Also

`createConcordance` and `plotConcordance`

Examples

```r
data(ps_plaque_16S)

# Balanced design for dependent samples
my_splits <- createSplits(
  object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE",
  balanced = TRUE, paired = "RSID", N = 10 # N = 100 suggested
)

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
  phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Initialize some limma based methods
my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
  coef = "HMP_BODY_SUBSITE_Supragingival Plaque",
  norm = c("TMM", "CSS"))

# Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
  method = c("TMM", "CSS"))

# Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
  normalization_list = my_norm, object = ps_plaque_16S)

# Concordance for p-values
concordance_pvalues <- createConcordance(
  object = results, slot = "pValMat", colName = "rawP", type = "pvalue"
)
```
Add area over the concordance curve
concordance_area <- areaCAT(concordance = concordance_pvalues)

Description

For the i top-ranked members of each list, concordance is defined as \(\frac{\text{length}(\text{intersect}(\text{vec1}[1:i], \text{vec2}[1:i]))}{i} \).

Usage

CAT(vec1, vec2, maxrank = \text{min(length(vec1), length(vec2))})

Arguments

- **vec1, vec2**: Two numeric vectors, for computing concordance. If these are numeric vectors with names, the numeric values will be used for sorting and the names will be used for calculating concordance. Otherwise, they are assumed to be already-ranked vectors, and the values themselves will be used for calculating concordance.
- **maxrank**: Optionally specify the maximum size of top-ranked items that you want to plot.

Value

A data.frame with two columns: `rank` containing the length of the top lists and `concordance` which is the fraction in common that the two provided lists have in the top rank items.

See Also

createConcordance.

Examples

```r
vec1 <- c("A" = 10, "B" = 5, "C" = 20, "D" = 15)
vec2 <- c("A" = 1, "B" = 2, "C" = 3, "D" = 4)
CAT(vec1, vec2)
```
checkNormalization(checkNormalization)

Description

Check if the normalization function’s name and the method’s name to compute normalization/scaling factors are correctly matched.

Usage

cHECKNormalization(fun, method, ...)

Arguments

- fun: a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2", "norm_CSS"...).
- method: a character with the normalization method (e.g. "TMM", "upperquartile"... if the fun is "norm_edgeR").
- ...: other arguments if needed (e.g. for norm_edgeR normalizations).

Value

a list object containing the normalization method and its parameters.

See Also

setNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

Check if TMM normalization belong to "norm_edgeR"
check_TMM_normalization <- checkNormalization(fun = "norm_edgeR",
 method = "TMM")

createColors(createColors)

Description

Produce a qualitative set of colors.

Usage

cREATEColors(variable)
Arguments

variable character vector or factor variable.

Value

A named vector containing the color codes.

Examples

Given qualitative variable
cond <- factor(c("A", "A", "B", "B", "C", "D"),
 levels = c("A", "B", "C", "D"))

Associate a color to each level (or unique value, if not a factor)
cond_colors <- createColors(cond)
Value

A long format data.frame object with several columns:

- comparison which indicates the comparison number;
- n_features which indicates the total number of taxa in the comparison dataset;
- method1 which contains the first method name;
- method2 which contains the first method name;
- rank;
- concordance which is defined as the cardinality of the intersection of the top rank elements of each list, divided by rank, i.e., \(\frac{(L_{1:rank} \cap M_{1:rank})}{rank} \), where L and M represent the lists of the extracted statistics of method1 and method2 respectively (averaged values between subset1 and subset2).

See Also

extractStatistics and areaCAT.

Examples

data(ps_plaque_16S)

Balanced design
my_splits <- createSplits(
 object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
 paired = "RSID", N = 10 # N = 100 suggested
)

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
 phyloseq::sample_data(ps_plaque_16S)[["RSID"]]
)

Initialize some limma based methods
my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
 coef = "HMP_BODY_SUBSITESupragingival Plaque",
 norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
 normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(
 object = results, slot = "pValMat", colName = "rawP", type = "pvalue"
)

Concordance for log fold changes
createEnrichment

concordance_logfc <- createConcordance(
 object = results, slot = "statInfo", colName = "logFC", type = "logfc"
)

Concordance for log fold changes in the first method and p-values in the
other
concordance_logfc_pvalues <- createConcordance(
 object = results, slot = c("statInfo", "pValMat"),
 colName = c("logFC", "rawP"), type = c("logfc", "pvalue")
)

createEnrichment

createEnrichment

Description

Create a data.frame object with several information to perform enrichment analysis.

Usage

createEnrichment(
 object,
 priorKnowledge,
 enrichmentCol,
 namesCol = NULL,
 slot = "pValMat",
 colName = "adjP",
 type = "pvalue",
 direction = NULL,
 threshold_pvalue = 1,
 threshold_logfc = 0,
 top = NULL,
 alternative = "greater",
 verbose = FALSE
)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matrices, and method's name must be present (See vignette for detailed information).

priorKnowledge data.frame (with feature names as row.names) containing feature level metadata.

enrichmentCol name of the column containing information for enrichment analysis.

namesCol name of the column containing new names for features (default namesCol = NULL).

slot A character vector with 1 or number-of-methods-times repeats of the slot names where to extract values for each method (default slot = "pValMat").
colName A character vector with 1 or number-of-methods-times repeats of the column name of the slot where to extract values for each method (default colName = "rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type of the column selected where to extract values for each method. Two values are possible: "pvalue" or "logfc" (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s column name containing information about the signs of differential abundance (usually log fold changes) for each method (default direction = NULL).

threshold_pvalue A single or a numeric vector of thresholds for p-values. If present, features with p-values lower than threshold_pvalue are considered differentially abundant. Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc A single or a numeric vector of thresholds for log fold changes. If present, features with log fold change absolute values higher than threshold_logfc are considered differentially abundant. Set threshold_logfc = 0 to not filter by log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change values, are considered as differentially abundant (default top = NULL).

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 × 2 case.

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value a list of objects for each method. Each list contains:

- data a data.frame object with DA directions, statistics, and feature names;
- tables a list of 2x2 contingency tables;
- tests the list of Fisher exact tests’ p-values for each contingency table;
- summaries a list with the first element of each contingency table and its p-value (for graphical purposes);

See Also addKnowledge, extractDA, and enrichmentTest.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,
 "Type" = microbial_metabolism[genera, "Type"])

Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)

Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
 object = ps_plaque_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
 coef = "HMP_BODY_SUBSITESupragingival Plaque",
 norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
 phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis
enrichment <- createEnrichment(object = Plaque_16S_DA,
 priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
 slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
 threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

createMocks

createMocks

Description

Given the number of samples of the dataset from which the mocks should be created, this function produces a `data.frame` object with as many rows as the number of mocks and as many columns as the number of samples. If an odd number of samples is given, the lower even integer will be considered in order to obtain a balanced design for the mocks.

Usage

createMocks(nsamples, N = 1000)
Arguments

nsamples an integer representing the total number of samples.
N number of mock comparison to generate.

Value

da data.frame containing N rows and nsamples columns (if even). Each cell of the data frame contains the "grp1" or "grp2" characters which represent the mock groups pattern.

Examples

Generate the pattern for 100 mock comparisons for an experiment with 30 # samples
mocks <- createMocks(nsamples = 30, N = 100)
head(mocks)

createPositives

describePositives

Description

Inspect the list of p-values or/and log fold changes from the output of the differential abundance detection methods and count the True Positives (TP) and the False Positives (FP).

Usage

createPositives(
 object,
 priorKnowledge,
 enrichmentCol,
 namesCol = NULL,
 slot = "pValMat",
 colName = "adjP",
 type = "pvalue",
 direction = NULL,
 threshold_pvalue = 1,
 threshold_logfc = 0,
 top = NULL,
 alternative = "greater",
 verbose = FALSE,
 TP,
 FP
)
Arguments

- **object**: Output of differential abundance detection methods. `pValMat`, `statInfo` matrices, and method's name must be present (See vignette for detailed information).
- **priorKnowledge**: data frame (with feature names as row.names) containing feature level metadata.
- **enrichmentCol**: name of the column containing information for enrichment analysis.
- **namesCol**: name of the column containing new names for features (default `namesCol = NULL`).
- **slot**: A character vector with 1 or number-of-methods-times repeats of the slot names where to extract values for each method (default `slot = "pValMat"`).
- **colName**: A character vector with 1 or number-of-methods-times repeats of the column name of the slot where to extract values for each method (default `colName = "rawP"`).
- **type**: A character vector with 1 or number-of-methods-times repeats of the value type of the column selected where to extract values for each method. Two values are possible: "pvalue" or "logfc" (default `type = "pvalue"`).
- **direction**: A character vector with 1 or number-of-methods-times repeats of the `statInfo`'s column name containing information about the signs of differential abundance (usually log fold changes) for each method (default `direction = NULL`).
- **threshold_pvalue**: A single or a numeric vector of thresholds for p-values. If present, features with p-values lower than `threshold_pvalue` are considered differentially abundant. Set `threshold_pvalue = 1` to not filter by p-values.
- **threshold_logfc**: A single or a numeric vector of thresholds for log fold changes. If present, features with log fold change absolute values higher than `threshold_logfc` are considered differentially abundant. Set `threshold_logfc = 0` to not filter by log fold change values.
- **top**: If not null, the top number of features, ordered by p-values or log fold change values, are considered as differentially abundant (default `top = NULL`).
- **alternative**: indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 × 2 case.
- **verbose**: Boolean to display the kind of extracted values (default `verbose = FALSE`).

TP and **FP**

- **TP**: A list of length-2 vectors. The entries in the vector are the direction ("UP Abundant", "DOWN Abundant", or "non-DA") in the first position, and the level of the enrichment variable (enrichmentCol) which is expected in that direction, in the second position.
- **FP**: A list of length-2 vectors. The entries in the vector are the direction ("UP Abundant", "DOWN Abundant", or "non-DA") in the first position, and the level of the enrichment variable (enrichmentCol) which is not expected in that direction, in the second position.

Value

A data.frame object which contains the number of TPs and FPs features for each method and for each threshold of the `top` argument.
See Also

getPositives, plotPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,
 "Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
 object = ps_plaque_16S)
Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
 coef = "HMP_BODY_SUBSITESupragingival Plaque",
 norm = c("TMM", "CSS"))

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
 phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Count TPs and FPs, from the top 1 to the top 20 features.
As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(object = Plaque_16S_DA,
 priorKnowledge = priorInfo, enrichmentCol = "Type",
 namesCol = "newNames", slot = "pValMat", colName = "rawP",
 type = "pvalue", direction = "logFC", threshold_pvalue = 1,
 threshold_logfc = 0, top = 1:20, alternative = "greater",
 verbose = FALSE,
 TP = list(c("DOWN Abundant", "Anaerobic"), c("UP Abundant", "Aerobic")),
 FP = list(c("DOWN Abundant", "Aerobic"), c("UP Abundant", "Anaerobic")))

Plot the TP-FP differences for each threshold
plotPositives(positives = positives)
createSplits

Description

Given a phyloseq or TreeSummarizedExperiment object from which the random splits should be created, this function produces a list of 2 `data.frame` objects: `Subset1` and `Subset2` with as many rows as the number of splits and as many columns as the half of the number of samples.

Usage

```r
createSplits(
  object,
  assay_name = "counts",
  varName = NULL,
  paired = NULL,
  balanced = TRUE,
  N = 1000
)
```

Arguments

- `object`: a phyloseq or TreeSummarizedExperiment object.
- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- `varName`: name of a factor variable of interest.
- `paired`: name of the unique subject identifier variable. If specified, paired samples will remain in the same split. (default = NULL).
- `balanced`: If TRUE a balanced design will be created for the splits (default balanced = TRUE).
- `N`: number of splits to generate.

Value

A list of 2 `data.frame` objects: `Subset1` and `Subset2` containing N rows and half of the total number of samples columns. Each cell contains a unique sample identifier.

Examples

```r
data(ps_plaque_16S)
set.seed(123)

# Balanced design for repeated measures

# Balanced design for independent samples
splits_df <- createSplits(
```
object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE, N = 100)

Unbalanced design
splits_df <- createSplits(
 object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = FALSE, N = 100)

createTIEC

Description

Extract the list of p-values from the outputs of the differential abundance detection methods to compute several statistics to study the ability to control the type I error and the p-values distribution.

Usage

createTIEC(object)

Arguments

object Output of the differential abundance tests on mock comparisons. Must follow a specific structure with comparison, method, matrix of p-values, and method’s name (See vignette for detailed information).

Value

A list of data.frames:

- df_pval 5 columns per number_of_features x methods x comparisons rows data.frame. The four columns are called Comparison, Method, variable (containing the feature names), pval, and padj;
- df_FPR 5 columns per methods x comparisons rows data.frame. For each set of method and comparison, the proportion of false positives, considering 3 thresholds (0.01, 0.05, 0.1) are reported;
- df_FDR 4 columns per methods rows data.frame. For each method, the average proportion of mock comparisons where false positives are found, considering 3 thresholds (0.01, 0.05, 0.1), are reported. Each value is an estimate of the nominal False Discovery Rate (FDR);
- df_QQ contains the coordinates to draw the QQ-plot to compare the mean observed p-value distribution across comparisons, with the theoretical uniform distribution;
- df_KS 5 columns and methods x comparisons rows data.frame. For each set of method and comparison, the Kolmogorov-Smirnov test statistics and p-values are reported in KS and KS_pval columns respectively.
See Also

createMocks

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotFDR(df_FDR = TIEC_summary$df_FDR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)
plotLogP(df_QQ = TIEC_summary$df_QQ)

Description

Fast run for the ALDEx2’s differential abundance detection method. Support for Welch’s t, Wilcoxon,
Kruskal-Wallace, Kruskal-Wallace glm ANOVA-like, and glm tests.

Usage

DA_ALDEx2(
 object,
assay_name = "counts",
pseudo_count = FALSE,
design = NULL,
mc.samples = 128,
test = c("t", "wilcox", "kw", "kw_glm", "glm"),
paired.test = FALSE,
denom = "all",
contrast = NULL,
verbose = TRUE
}

Arguments

object a phyloseq or TreeSummarizedExperiment object.

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design a character with the name of a variable to group samples and compare them or a formula to compute a model.matrix (when test = "glm").

mc.samples an integer. The number of Monte Carlo samples to use when estimating the underlying distributions. Since we are estimating central tendencies, 128 is usually sufficient.

test a character string. Indicates which tests to perform. "t" runs Welch’s t test while "wilcox" runs Wilcoxon test. "kw" runs Kruskal-Wallace test while "kw_glm" runs glm ANOVA-like test. "glm" runs a generalized linear model.

paired.test A boolean. Toggles whether to do paired-sample tests. Applies to effect = TRUE and test = "t".

denom An any variable (all, iqlr, zero, lvha, median, user) indicating features to use as the denominator for the Geometric Mean calculation. The default "all" uses the geometric mean abundance of all features. Using "median" returns the median abundance of all features. Using "iqlr" uses the features that are between the first and third quartile of the variance of the clr values across all samples. Using "zero" uses the non-zero features in each grop as the denominator. This approach is an extreme case where there are many nonzero features in one condition but many zeros in another. Using "lvha" uses features that have low variance (bottom quartile) and high relative abundance (top quartile in every sample). It is also possible to supply a vector of row indices to use as the denominator. Here, the experimentalist is determining a-priori which rows are thought to be invariant. In the case of RNA-seq, this could include ribosomal protein genes and other house-keeping genes. This should be used with caution because the offsets may be different in the original data and in the data used by the function because features that are 0 in all samples are removed by aldex.clr.

contrast character vector with exactly three elements: the name of a variable used in "design", the name of the level of interest, and the name of the reference level. If "kw" or "kw_glm" as test, contrast vector is not used.

verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.
Value

A list object containing the matrix of p-values 'pValMat', the matrix of summary statistics for each tag 'statInfo', and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also

`aldex` for the Dirichlet-Multinomial model estimation. Several and more complex tests are present in the ALDEx2 framework.

Examples

```r
set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 300, size = 3, prob = 0.5), nrow = 50, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                        "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                        phyloseq::sample_data(metadata))
# Differential abundance with t test and denom defined by the user
DA_t <- DA_ALDEx2(ps, design = "group", test = "t", denom = c(1,2,3),
                   paired.test = FALSE, contrast = c("group", "B", "A"))
# Differential abundance with wilcox test and denom = "iqlr"
DA_w <- DA_ALDEx2(ps, design = "group", test = "wilcox", denom = "iqlr",
                   paired.test = FALSE, contrast = c("group", "B", "A"))
# Differential abundance with kw test and denom = "zero"
# mc.samples = 2 to speed up (128 suggested)
DA_kw <- DA_ALDEx2(ps, design = "group", test = "kw", denom = "zero",
                   mc.samples = 2)
# Differential abundance with kw_glm test and denom = "median"
DA_kw_glm <- DA_ALDEx2(ps, design = "group", test = "kw", denom = "median",
                      mc.samples = 2)
# Differential abundance with glm test and denom = "all"
DA_glm <- DA_ALDEx2(ps, design = ~ group, test = "glm", denom = "all",
                    mc.samples = 2, contrast = c("group", "B", "A"))
```

Description

Fast run for ANCOM and ANCOM-BC2 differential abundance detection methods.

Usage

```r
DA_ANCOM(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
)```
fix_formula = NULL,
adj_formula = NULL,
rand_formula = NULL,
lme_control = lme4::lmerControl(),
contrast = NULL,
alPHA = 0.05,
p_adj_method = "BH",
struc_zero = FALSE,
BC = TRUE,
n_cl = 1,
verbose = TRUE
}

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
fix_formula Used when BC = TRUE (ANCOM-BC2). The character string expresses how the microbial absolute abundances for each taxon depend on the fixed effects in metadata.
adj_formula Used when BC = FALSE (ANCOM). The character string represents the formula for covariate adjustment. Default is NULL.
rand_formula Optionally used when BC = TRUE or BC = FALSE. The character string expresses how the microbial absolute abundances for each taxon depend on the random effects in metadata. ANCOMB and ANCOM-BC2 follows the lmerTest package in formulating the random effects. See ?lmerTest::lmer for more details. Default is rand_formula = NULL.
lme_control a list of control parameters for mixed model fitting. See ?lme4::lmerControl for details.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
alpha numeric. Level of significance. Default is 0.05.
struc_zero logical. Whether to detect structural zeros based on group. Default is FALSE. See Details for a more comprehensive discussion on structural zeros.
BC boolean for ANCOM method to use. If TRUE the bias correction (ANCOM-BC2) is computed (default BC = TRUE). When BC = FALSE computational time may increase and p-values are not computed.
n_cl numeric. The number of nodes to be forked. For details, see ?parallel::makeCluster. Default is 1 (no parallel computing).
### Value

A list object containing the matrix of p-values 'pValMat', a matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function. ANCOM (BC = FALSE) does not produce p-values but W statistics. Hence, 'pValMat' matrix is filled with \(1 - W / (n\text{features} - 1)\) values which are not p-values. To find DA features a threshold on this statistic can be used (liberal < 0.4, < 0.3, < 0.2, < 0.1 conservative).

### See Also

ancombc for analysis of microbiome compositions with bias correction or without it ancom.

### Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Differential abundance
DA_ANCOM(object = ps, pseudo_count = FALSE, fix_formula = "group", contrast = c("group", "B", "A"), verbose = FALSE)
```

### Description

Fast run for basic differential abundance detection methods such as wilcox and t tests.

### Usage

```r
DA_basic(
 object,
 assay_name = "counts",
 pseudo_count = FALSE,
 contrast = NULL,
 test = c("t", "wilcox"),
 paired = FALSE,
 verbose = TRUE
)
```
Arguments

- **object**: a phyloseq or TreeSummarizedExperiment object.
- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- **pseudo_count**: add 1 to all counts if TRUE (default `pseudo_count = FALSE`).
- **contrast**: character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
- **test**: name of the test to perform. Choose between "t" or "wilcox".
- **paired**: boolean. Choose whether the test is paired or not (default `paired = FALSE`). If `paired = TRUE` be sure to provide the object properly ordered (by the grouping variable).
- **verbose**: an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default `verbose = TRUE`.

Value

A list object containing the matrix of p-values 'pValMat', a matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function.

See Also

- **DA_Seurat** for a similar implementation of basic tests.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
"group" = as.factor(c("A", "A", "A", "B", "B", "B"))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
phyloseq::sample_data(metadata))
Differential abundance
DA_basic(object = ps, pseudo_count = FALSE, contrast = c("group", "B", "A"),
test = "t", verbose = FALSE)
```

Description

Fast run for dearseq differential abundance detection method.
DA_dearseq

Usage

DA_dearseq(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
  covariates = NULL,
  variables2test = NULL,
  sample_group = NULL,
  test = c("permutation", "asymptotic"),
  preprocessed = FALSE,
  n_perm = 1000,
  verbose = TRUE
)

Arguments

object       a phyloseq or TreeSummarizedExperiment object.
assay_name   the name of the assay to extract from the TreeSummarizedExperiment object
             (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
covariates   a character vector containing the colnames of the covariates to include in the
             model.
variables2test a character vector containing the colnames of the variable of interest.
sample_group a vector of length n indicating whether the samples should be grouped (e.g.
             paired samples or longitudinal data). Coerced to be a factor. Default is NULL
             in which case no grouping is performed.
test         a character string indicating which method to use to approximate the variance
             component score test, either 'permutation' or 'asymptotic' (default test = "permutation").
preprocessed  a logical flag indicating whether the expression data have already been prepro-
             cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
              contain raw counts and is normalized into log(counts) per million.
n_perm       the number of perturbations. Default is 1000
verbose      an optional logical value. If TRUE, information about the steps of the algorithm
             is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat’, a matrix of summary statistics for each tag
‘statInfo’ which are still the p-values as this method does not produce other values, and a suggested
‘name’ of the final object considering the parameters passed to the function.

See Also

dear_seq for analysis of differential expression/abundance through a variance component test.
Examples

```
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Differential abundance
DA_dearseq(object = ps, pseudo_count = FALSE, covariates = NULL,
 variables2test = "group", sample_group = NULL, test = "asymptotic",
 preprocessed = FALSE, verbose = TRUE)
```

Description

Fast run for DESeq2 differential abundance detection method.

Usage

```
DA_DESeq2(
 object,
 assay_name = "counts",
 pseudo_count = FALSE,
 design = NULL,
 contrast = NULL,
 alpha = 0.05,
 norm = c("ratio", "poscounts", "iterate"),
 weights,
 verbose = TRUE
)
```

Arguments

- **object**
  a phyloseq or TreeSummarizedExperiment object.
- **assay_name**
  the name of the assay to extract from the TreeSummarizedExperiment object
  (default assayName = "counts"). Not used if the input object is a phyloseq.
- **pseudo_count**
  add 1 to all counts if TRUE (default pseudo_count = FALSE).
- **design**
  character or formula to specify the model matrix.
- **contrast**
  character vector with exactly three elements: the name of a factor in the design
  formula, the name of the numerator level for the fold change, and the name of
  the denominator level for the fold change.
- **alpha**
  the significance cutoff used for optimizing the independent filtering (by default
  0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha
  should be set to that value.
norm

name of the normalization method to use in the differential abundance analysis. Choose between the native DESeq2 normalization methods, such as ratio, poscounts, or iterate. Alternatively (only for advanced users), if norm is equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", or "none" from norm_edgeR, "CSS" from norm_CSS, or "TSS" from norm_TSS, the normalization factors are automatically transformed into size factors. If custom factors are supplied, make sure they are compatible with DESeq2 size factors.

weights

an optional numeric matrix giving observational weights.

verbose

an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat’, the dispersion estimates ‘dispEsts’, the matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also

phyloseq_to_deseq2 for phyloseq to DESeq2 object conversion, DESeq and results for the differential abundance method.

Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
  "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
  phyloseq::sample_data(metadata))
# Calculate the poscounts size factors
ps_NF <- norm_DESeq2(object = ps, method = "poscounts")
# The phyloseq object now contains the size factors:
sizeFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts"]
head(sizeFacts)
# Differential abundance
DA_DESeq2(object = ps_NF, pseudo_count = FALSE, design = ~ group, contrast =
  c("group", "B", "A"), norm = "poscounts")
Usage

DA_edgeR(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
  group_name = NULL,
  design = NULL,
  robust = FALSE,
  coef = 2,
  norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
  weights,
  verbose = TRUE
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
group_name character giving the name of the column containing information about experimental
group/condition for each sample/library.
design character or formula to specify the model matrix.
robust logical, should the estimation of prior.df be robustified against outliers?
coef integer or character index vector indicating which coefficients of the linear model are to be
tested equal to zero.
norm name of the normalization method to use in the differential abundance analysis.
Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile,
posupperquartile, or none. Alternatively (only for advanced users), if norm is equal to "ratio", "poscounts",
or "iterate" from norm_DESeq2, "CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are
automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible
with edgeR normalization factors.
weights an optional numeric matrix giving observational weights.
verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values pValMat, the dispersion estimates dispEsts, the
matrix of summary statistics for each tag statInfo, and a suggested name of the final object considering
the parameters passed to the function.
See Also

DGEList for the edgeR DEG object creation, estimateDisp and estimateGLMRobustDisp for dispersion estimation, and glmQLFit and glmQLFTest for the quasi-likelihood negative binomial model fit.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
phyloseq::sample_data(metadata))

Calculate the TMM normalization factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")
The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(normFacts)

Differential abundance
DA_edgeR(object = ps_NF, pseudo_count = FALSE, group_name = "group",
design = ~ group, coef = 2, robust = FALSE, norm = "TMM")
```

Description

Fast run for limma voom differential abundance detection method.

Usage

```r
DA_limma(
 object,
 assay_name = "counts",
 pseudo_count = FALSE,
 design = NULL,
 coef = 2,
 norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
 weights,
 verbose = TRUE
)
```
Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default = FALSE).
design character name of the metadata columns, formula, or design matrix with rows corresponding to samples and columns to coefficients to be estimated.
coef integer or character index vector indicating which coefficients of the linear model are to be tested equal to zero.
norm name of the normalization method to use in the differential abundance analysis. Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile, posupperquartile, or none. Alternatively (only for advanced users), if norm is equal to "ratio", "poscounts", or "iterate" from norm_DESeq2, "CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible with edgeR normalization factors.
weights an optional numeric matrix giving observational weights.
verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat’, the matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also

voom for the mean-variance relationship estimation, lmFit for the linear model framework.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE), phyloseq::sample_data(metadata))
Calculate the TMM normalization factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")
The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(normFacts)
Differential abundance
DA_limma(object = ps_NF, pseudo_count = FALSE, design = ~ group, coef = 2, norm = "TMM")
```
Description

Fast run for linda differential abundance detection method.

Usage

\[
\text{DA\_linda(}
\text{object,}
\text{assay\_name = "counts",}
\text{formula = NULL,}
\text{contrast = NULL,}
\text{is\_winsor = TRUE,}
\text{outlier\_pct = 0.03,}
\text{zero\_handling = c("pseudo\_count", "imputation"),}
\text{pseudo\_cnt = 0.5,}
\text{alpha = 0.05,}
\text{p\_adj\_method = "BH",}
\text{verbose = TRUE)}
\]

Arguments

object: a phyloseq or TreeSummarizedExperiment object.
assay\_name: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
formula: a character string for the formula. The formula should conform to that used by \text{lm} (independent data) or \text{lmer} (correlated data). For example: \text{formula = \text{"~x1\*x2+x3+(1|id)"}}. At least one fixed effect is required.
contrast: character vector with exactly three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
is\_winsor: a logical value indicating whether winsorization should be performed to replace outliers (high values). The default is TRUE.
outlier\_pct: the expected percentage of outliers. These outliers will be winsorized. The default is 0.03.
zero\_handling: a character string of 'pseudo\_count' or 'imputation' indicating the zero handling method used when \text{feature\_dat} is 'count'. If 'pseudo\_count', \text{pseudo\_cnt} will be added to each value in \text{feature\_dat}. If 'imputation', then we use the imputation approach using the formula in the referenced paper. Basically, zeros are imputed with values proportional to the sequencing depth. When \text{feature\_dat} is 'proportion', this parameter will be ignored and zeros will be imputed by half of the minimum for each feature.
pseudo.cnt a positive numeric value for the pseudo-count to be added if zero.handling is 'pseudo-count'. Default is 0.5.

alpha a numerical value between 0 and 1 indicating the significance level for declaring differential features. Default is 0.05.

p.adj.method a character string indicating the p-value adjustment approach for addressing multiple testing. See R function p.adjust. Default is 'BH'.

verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value
A list object containing the matrix of p-values 'pValMat', a matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function.

See Also
linda.

Examples
set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
  "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
  phyloseq::sample_data(metadata))
# Differential abundance
DA_linda(object = ps, formula = "~ group", contrast = c("group", "B", "A"),
  is.winsor = TRUE, zero.handling = "pseudo-count", verbose = FALSE)

DA_Maaslin2

Description
Fast run for Maaslin2 differential abundance detection method.

Usage
DA_Maaslin2(
  object,
  assay_name = "counts",
  normalization = c("TSS", "CLR", "CSS", "NONE", "TMM"),
  transform = c("LOG", "LOGIT", "AST", "NONE"),
  analysis_method = c("LM", "CPLM", "ZICP", "NEGBIN", "ZINB"),
  correction = "BH"
random_effects = NULL,
fixed_effects = NULL,
contrast = NULL,
reference = NULL,
verbose = TRUE)
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object
(default assayName = "counts"). Not used if the input object is a phyloseq.
normalization The normalization method to apply.
transform The transform to apply.
analysis_method The analysis method to apply.
correction The correction method for computing the q-value.
random_effects The random effects for the model, comma-delimited for multiple effects.
fixed_effects The fixed effects for the model, comma-delimited for multiple effects.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
reference The factor to use as a reference for a variable with more than two levels provided as a string of 'variable,reference' semi-colon delimited for multiple variables.
verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat’, a matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also

Maaslin2.

Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                        "group" = as.factor(c("A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                        phyloseq::sample_data(metadata))
# Differential abundance
DA_Maaslin2(object = ps, normalization = "CLR", transform = "NONE",
analysis_method = "LM", correction = "BH", random_effects = NULL,
fixed_effects = "group", contrast = c("group", "B", "A"),
verbose = FALSE)

Description

Fast run for MAST differential abundance detection method.

Usage

DA_MAST(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
  rescale = c("median", "default"),
  design,
  coefficient = NULL,
  verbose = TRUE
)

Arguments

- **object**: a phyloseq or TreeSummarizedExperiment object.
- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- **pseudo_count**: add 1 to all counts if TRUE (default pseudo_count = FALSE).
- **rescale**: Rescale count data, per million if 'default', or per median library size if 'median' ('median' is suggested for metagenomics data).
- **design**: The model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula, or a 'model.matrix' object.
- **coefficient**: The coefficient of interest as a single word formed by the variable name and the non reference level. (e.g.: 'ConditionDisease' if the reference level for the variable 'Condition' is 'control').
- **verbose**: an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values 'pValMat', the matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function.
Description

Fast run for the metagenomeSeq’s differential abundance detection method.

Usage

DA_metagenomeSeq(
  object, 
  assay_name = "counts", 
  pseudo_count = FALSE, 
  design = NULL, 
  coef = 2, 
  norm = "CSS", 
  model = "fitFeatureModel", 
  verbose = TRUE 
)

Arguments

  object       a phyloseq or TreeSummarizedExperiment object.  
  assay_name   the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.  
  pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).  
  design       the model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula.  
  coef         coefficient of interest to grab log fold-changes.
name of the normalization method to use in the differential abundance analysis. Choose the native metagenomeSeq normalization method CSS. Alternatively (only for advanced users), if `norm` is equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", or "none" from `norm_edgeR`, "ratio", "poscounts", or "iterate" from `norm_DESeq2`, or "TSS" from `norm_TSS`, the factors are automatically transformed into scaling factors. If custom factors are supplied, make sure they are compatible with metagenomeSeq normalization factors.

character equal to "fitFeatureModel" for differential abundance analysis using a zero-inflated log-normal model, "fitZig" for a complex mathematical optimization routine to estimate probabilities that a zero for a particular feature in a sample is a technical zero or not. The latter model relies heavily on the limma package (default `model = "fitFeatureModel"`).

an optional logical value. If `TRUE`, information about the steps of the algorithm is printed. Default `verbose = TRUE`.

A list object containing the matrix of p-values ‘pValMat’, the matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also

`fitZig` for the Zero-Inflated Gaussian regression model estimation and `MRfulltable` for results extraction.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B"))
)
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Calculate the CSS normalization factors
ps_NF <- norm_CSS(object = ps, method = "CSS")
The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSS"]
head(normFacts)
Differential abundance
DA_metagenomeSeq(object = ps_NF, pseudo_count = FALSE, design = ~ group,
 coef = 2, norm = "CSS")
```
Description

Fast run for mixMC sPLS-DA method for biomarker identification. It performs a CLR transformation on the 'counts + pseudo_counts' values. Then the sPLS-DA is tuned through a leave-one-out cross validation procedure.

Usage

DA_mixMC(
  object,
  pseudo_count = 1,
  assay_name = "counts",
  contrast = NULL,
  ID_variable = NULL,
  verbose = TRUE
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
pseudo_count a positive numeric value for the pseudo-count to be added. Default is 1.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
ID_variable a character string indicating the name of the variable name corresponding to the repeated measures units (e.g., the subject ID).
verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values 'pValMat', a matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function. mixMC does not produce p-values. The frequency and the importance values are produced instead. The frequency indicates the stability of the features across the folds of the cross validation. The importance indicates the magnitude of the discrimination for the features and their direction. Hence, 'pValMat' matrix is filled with 1 - frequency values which are not p-values. To find discriminant features a threshold on this statistic can be used (liberal < 1, < 0.5, < 0.1 conservative).
See Also
splsda, perf, tune.splsda.

Examples
set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                      "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                        phyloseq::sample_data(metadata))
# Differential abundance
DA_mixMC(object = ps, pseudo_count = 1, contrast = c("group", "B", "A"),
         verbose = FALSE)

DA_NOISeq

Description
Fast run for NOISeqBIO differential abundance detection method. It computes differential expression between two experimental conditions.

Usage
DA_NOISeq(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
  contrast = NULL,
  norm = c("rpkm", "uqua", "tmm", "n"),
  verbose = TRUE
)

Arguments
object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
norm

name of the normalization method to use in the differential abundance analysis. Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile, posupperquartile, or none. Alternatively (only for advanced users), if norm is equal to "ratio", "poscounts", or "iterate" from norm_DESeq2, "CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible with edgeR normalization factors.

verbose

an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat’, a matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function. NOISeq does not produce p-values but an estimated probability of differential expression for each feature. Note that these probabilities are not equivalent to p-values. The higher the probability, the more likely that the difference in abundance is due to the change in the experimental condition and not to chance... Hence, ‘pValMat’ matrix is filled with 1 - prob values which can be interpreted as 1 - FDR. Where FDR can be considered as an adjusted p-value (see NOISeq vignette).

See Also

noiseqbio for analysis of differential expression/abundance between two experimental conditions from read count data.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Differential abundance
DA_NOISeq(object = ps, pseudo_count = FALSE, contrast = c("group", "B", "A"),
 norm = "tmm", verbose = FALSE)
```

Description

Fast run for Seurat differential abundance detection method.
Usage

DA_Seurat(
  object,
  assay_name = "counts",
  pseudo_count = FALSE,
  norm = "LogNormalize",
  scale.factor = 10000,
  test = "wilcox",
  contrast = NULL,
  verbose = TRUE
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
norm Method for normalization.
  • LogNormalize Feature counts for each sample are divided by the total counts of that sample and multiplied by the scale.factor. This is then natural-log transformed using log1p;
  • CLR Applies a centered log ratio transformation;
  • RC Relative counts. Feature counts for each sample are divided by the total counts of that sample and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6;
  • none No normalization
scale.factor Sets the scale factor for cell-level normalization
test Denotes which test to use. Available options are:
  • "wilcox" Identifies differentially abundant features between two groups of samples using a Wilcoxon Rank Sum test (default).
  • "bimod" Likelihood-ratio test for the feature abundances, (McDavid et al., Bioinformatics, 2013).
  • "roc" Identifies 'markers' of feature abundance using ROC analysis. For each feature, evaluates (using AUC) a classifier built on that feature alone, to classify between two groups of cells. An AUC value of 1 means that abundance values for this feature alone can perfectly classify the two groupings (i.e. Each of the samples in group.1 exhibit a higher level than each of the samples in group.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the feature has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
  • "t" Identify differentially abundant features between two groups of samples using the Student's t-test.
• "negbinom" Identifies differentially abundant features between two groups of samples using a negative binomial generalized linear model.
• "poisson" Identifies differentially abundant features between two groups of samples using a poisson generalized linear model.
• "LR" Uses a logistic regression framework to determine differentially abundant features. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
• "MAST" Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
• "DESeq2" Identifies differentially abundant features between two groups of samples based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).

contrast character vector with exactly three elements: the name of a factor in the design formula, the name of the numerator level for the fold change, and the name of the denominator level for the fold change.
verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value
A list object containing the matrix of p-values ‘pValMat’, the matrix of summary statistics for each tag ‘statInfo’, and a suggested ‘name’ of the final object considering the parameters passed to the function.

See Also
CreateSeuratObject to create the Seurat object, AddMetaData to add metadata information, NormalizeData to compute the normalization for the counts, FindVariableFeatures to estimate the mean-variance trend, ScaleData to scale and center features in the dataset, and FindMarkers to perform differential abundance analysis.

Examples
set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                      "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                        phyloseq::sample_data(metadata))

# Differential abundance
DA_Seurat(object = ps, contrast = c("group","B","A"))

# Perform a simple Wilcoxon test using Seurat on raw data
DA_Seurat(object = ps, contrast = c("group","B","A"), norm = "none",
          test = "wilcox")
DA_ZicoSeq

Description

Fast run for ZicoSeq differential abundance detection method.

Usage

DA_ZicoSeq(
  object,
  assay_name = "counts",
  contrast = NULL,
  strata = NULL,
  adj.name = NULL,
  feature.dat.type = c("count", "proportion", "other"),
  is.winsor = TRUE,
  outlier.pct = 0.03,
  winsor.end = c("top", "bottom", "both"),
  is.post.sample = TRUE,
  post.sample.no = 25,
  perm.no = 99,
  link.func = list(function(x) sign(x) * (abs(x))^0.5),
  ref.pct = 0.5,
  stage.no = 6,
  excl.pct = 0.2,
  verbose = TRUE
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
strata a factor such as subject IDs indicating the permutation strata or characters indicating the strata variable in meta.dat. Permutation will be confined to each stratum. This can be used for paired or some longitudinal designs.
adj.name the name(s) for the variable(s) to be adjusted. Multiple variables are allowed. They could be numeric or categorical; should be in meta.dat.
feature.dat.type the type of the feature data. It could be "count", "proportion" or "other". For "proportion" data type, posterior sampling will not be performed, but the reference-based ratio approach will still be used to address compositional effects. For
"other" data type, neither posterior sampling or reference-base ratio approach will be used.

**is.winsor** a logical value indicating whether winsorization should be performed to replace outliers. The default is TRUE.

**outlier.pct** the expected percentage of outliers. These outliers will be winsorized. The default is 0.03. For count/proportion data, outlier.pct should be less than prev.filter.

**winsor.end** a character indicating whether the outliers at the "top", "bottom" or "both" will be winsorized. The default is "top". If the feature.dat.type is "other", "both" may be considered.

**is.post.sample** a logical value indicating whether to perform posterior sampling of the underlying proportions. Only relevant when the feature data are counts.

**post.sample.no** the number of posterior samples if posterior sampling is used. The default is 25.

**perm.no** the number of permutations. If the raw p values are of the major interest, set perm.no to at least 999.

**link.func** a list of transformation functions for the feature data or the ratios. Based on our experience, square-root transformation is a robust choice for many datasets.

**ref.pct** percentage of reference taxa. The default is 0.5.

**stage.no** the number of stages if multiple-stage normalization is used. The default is 6.

**excl.pct** the maximum percentage of significant features (nominal p-value < 0.05) in the reference set that should be removed. Only relevant when multiple-stage normalization is used.

**verbose** an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

**Value**
A list object containing the matrix of p-values 'pValMat', a matrix of summary statistics for each tag 'statInfo', and a suggested 'name' of the final object considering the parameters passed to the function.

**See Also**
ZicoSeq.

**Examples**

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Differential abundance
DA_ZicoSeq(object = ps, feature.dat.type = "count",
```
enrichmentTest

Description
Perform the Fisher exact test for all the possible 2x2 contingency tables, considering differential abundance direction and enrichment variable.

Usage
enrichmentTest(method, enrichmentCol, alternative = "greater")

Arguments
method Output of differential abundance detection method in which DA information is extracted by the getDA function and the information related to enrichment is appropriately added through the addKnowledge.
enrichmentCol name of the column containing information for enrichment analysis.
alternative indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the $2 \times 2$ case.

Value
a list of objects:
• data a data.frame object with DA directions, statistics, and feature names;
• tables a list of 2x2 contingency tables;
• tests the list of Fisher exact tests’ p-values for each contingency table;
• summaries a list with the first element of each contingency table and its p-value (for graphical purposes);

See Also
extractDA, addKnowledge, and createEnrichment

Examples
data("ps_plaque_16S")
data("microbial_metabolism")
# Extract genera from the phylseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- data.frame(genera,
  "Type" = microbial_metabolism[genera, "Type"])
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
  phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")

# DA analysis

da.limma <- DA_limma(
  object = ps_plaque_16S,
  design = ~ 1 + RSID + HMP_BODY_SUBSITE,
  coef = "HMP_BODY_SUBSITE Supragingival Plaque",
  norm = "TMM"
)

DA <- getDA(method = da.limma, slot = "pValMat", colName = "adjP",
  type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
  threshold_logfc = 1, top = NULL)

# Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorInfo,
  enrichmentCol = "Type", namesCol = "newNames")

# Create contingency tables and compute F tests
DA_info_enriched <- enrichmentTest(method = DA_info, enrichmentCol = "Type",
  alternative = "greater")

---

**Description**

Inspect the list of p-values or/and log fold changes from the output of differential abundance detection methods.

**Usage**

```
extractDA(
 object,
...)
```
slot = "pValMat",
colName = "adjP",
type = "pvalue",
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
verbose = FALSE)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matrices, and method's name must be present (See vignette for detailed information).

colName A character vector with 1 or number-of-methods-times repeats of the column name of the slot where to extract values for each method (default colName = "rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type of the column selected where to extract values for each method. Two values are possible: "pvalue" or "logfc" (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo's column name containing information about the signs of differential abundance (usually log fold changes) for each method (default direction = NULL).

threshold_pvalue A single or a numeric vector of thresholds for p-values. If present, features with p-values lower than threshold_pvalue are considered differentially abundant. Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc A single or a numeric vector of thresholds for log fold changes. If present, features with log fold change absolute values higher than threshold_logfc are considered differentially abundant. Set threshold_logfc = 0 to not filter by log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change values, are considered as differentially abundant (default top = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A data.frame with several columns for each method:

- stat which contains the p-values or the absolute log fold change values;
- direction which is present if direction was supplied, it contains the information about directionality of differential abundance (usually log fold changes);
- DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if direction = NULL, "UP Abundant", "DOWN Abundant", or "non-DA" otherwise.
See Also

getDA, extractStatistics

Examples

```r
data("ps_plaque_16S")
Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
 object = ps_plaque_16S)
Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,
 norm = c("TMM", "CSS"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)
Top 10 features (ordered by 'direction') are DA
DA_1 <- extractDA(
 object = Plaque_16S_DA, slot = "pValMat", colName = "adjP",
 type = "pvalue", direction = "logFC", threshold_pvalue = 1,
 threshold_logfc = 0, top = 10
)
Features with p-value < 0.05 and |logFC| > 1 are DA
DA_2 <- extractDA(
 object = Plaque_16S_DA, slot = "pValMat", colName = "adjP",
 type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
 threshold_logfc = 1, top = NULL
)
```

Description

Extract the list of p-values or/and log fold changes from the outputs of the differential abundance detection methods.

Usage

```r
extractStatistics(
 object,
 slot = "pValMat",
 colName = "rawP",
 type = "pvalue",
 direction = NULL,
 verbose = FALSE
)
```
Arguments

object: Output of differential abundance detection methods. pValMat, statInfo matrices, and method’s name must be present (See vignette for detailed information).

slot: A character vector with 1 or number-of-methods-times repeats of the slot names where to extract values for each method (default slot = "pValMat").

colName: A character vector with 1 or number-of-methods-times repeats of the column name of the slot where to extract values for each method (default colName = "rawP").

type: A character vector with 1 or number-of-methods-times repeats of the value type of the column selected where to extract values for each method. Two values are possible: "pvalue" or "logfc" (default type = "pvalue").

direction: A character vector with 1 or number-of-methods-times repeats of the statInfo’s column name containing information about the signs of differential abundance (usually log fold changes) for each method (default direction = NULL).

verbose: Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A vector or a data.frame for each method. If direction = NULL, the colname column values, transformed according to type (not transformed if type = "pvalue", -abs(value) if type = "logfc"), of the slot are reported, otherwise the direction column of the statInfo matrix is added to the output.

See Also

getStatistics

Examples

data("ps_plaque_16S")
# Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
   method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
   object = ps_plaque_16S)
# Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,
   norm = c("TMM", "CSS"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)
### Extract statistics for concordance analysis:
# Only p-values
extracted_pvalues <- extractStatistics(
   object = Plaque_16S_DA, slot =
   "pValMat", colName = "rawP", type = "pvalue"
)
# Only transformed log fold changes -abs(logFC)
extracted_abslfc <- extractStatistics(
   object = Plaque_16S_DA, slot =
   "statInfo", colName = "logFC", type = "logfc"
fitDM

### Extract statistics for enrichment analysis:

```r
p-values and log fold changes
extracted_pvalues_and_lfc <- extractStatistics(
 object = Plaque_16S_DA,
 slot = "pValMat", colName = "rawP", type = "pvalue", direction = "logFC"
)

transformed log fold changes and untouched log fold changes
extracted_abslfc_and_lfc <- extractStatistics(
 object = Plaque_16S_DA,
 slot = "statInfo", colName = "logFC", type = "logfc", direction = "logFC"
)

Only transformed log fold changes for a method and p-values for the other
extracted_mix <- extractStatistics(
 object = Plaque_16S_DA,
 slot = c("statInfo", "pValMat"), colName = c("logFC", "rawP"), type = c("logfc", "pvalue"), direction = "logFC"
)
```

---

**Description**

Fit a Dirichlet-Multinomial (DM) distribution for each taxon of the count data. The model estimation procedure is performed by MGLM `MGLMreg` function without assuming the presence of any group in the samples (design matrix equal to a column of ones.)

**Usage**

```r
fitDM(object, assay_name = "counts", verbose = TRUE)
```

**Arguments**

- `object`: a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- `verbose`: an optional logical value. If TRUE information on the steps of the algorithm is printed. Default `verbose = TRUE`.
Value

A data frame containing the continuity corrected logarithms of the average fitted values for each row of the matrix of counts in the $Y$ column, and the estimated probability to observe a zero in the $Y0$ column.

Examples

```r
Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
DM <- fitDM(counts)
head(DM)
```

Description

Fit a truncated gaussian hurdle model for each taxon of the count data. The hurdle model estimation procedure is performed by MAST `zlm` function without assuming the presence of any group in the samples (design matrix equal to a column of ones.)

Usage

```r
fitHURDLE(object, assay_name = "counts", scale = "default", verbose = TRUE)
```

Arguments

- **object**: a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- **scale**: Character vector, either median or default to choose between the median of the library size or one million to scale raw counts.
- **verbose**: an optional logical value. If TRUE information on the steps of the algorithm is printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each row of the matrix of counts in the $Y$ column, and the estimated probability to observe a zero in the $Y0$ column.
Examples

```r
Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Fit model on the counts matrix
HURDLE <- fitHURDLE(counts, scale = "median")
head(HURDLE)
```

Description

A wrapper function that fits the specified models for each taxon of the count data and computes the mean difference (MD) and zero probability difference (ZPD) between estimated and observed values.

Usage

```r
fitModels(
 object,
 assay_name = "counts",
 models = c("NB", "ZINB", "DM", "ZIG", "HURDLE"),
 scale_HURDLE = c("default", "median"),
 verbose = TRUE
)
```

Arguments

- `object`: a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- `models`: character vector which assumes the values NB, ZINB, DM, ZIG, and HURDLE.
- `scale_HURDLE`: character vector, either median or default to choose between the median of the library size or one million to scale raw counts for the truncated gaussian hurdle model.
- `verbose`: an optional logical value. If TRUE information on the steps of the algorithm is printed. Default verbose = TRUE.

Value

list of data.frame objects for each model. The first two columns contain the properly transformed observed values for mean and zero proportion, while the third and the fourth columns contain the estimated values for the mean and the zero rate respectively.
See Also

fitNB, fitZINB, fitDM, fitZIG, and fitHURDLE for the model estimations, prepareObserved for raw counts preparation, and meanDifferences for the Mean Difference (MD) and Zero Probability Difference (ZPD) computations.

Examples

# Generate some random counts
counts <- matrix(rnbinom(n = 600, size = 3, prob = 0.5),
    nrow = 100, ncol = 6)
# Estimate the counts assuming several distributions
GOF <- fitModels(
    object = counts, models = c(  
        "NB", "ZINB",  
        "DM", "ZIG", "HURDLE"
    ), scale_HURDLE = c("median", "default")
)
head(GOF)

Description

Fit a Negative Binomial (NB) distribution for each taxon of the count data. The NB estimation procedure is performed by edgeR glmFit function, using TMM normalized counts, tag-wise dispersion estimation, and not assuming the presence of any group in the samples (design matrix equal to a column of ones).

Usage

fitNB(object, assay_name = "counts", verbose = TRUE)

Arguments

object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each row of the 'counts' matrix in the 'Y' column, and the estimated probability to observe a zero in the 'Y0' column.
Examples

# Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

# Fit model on the matrix of counts
NB <- fitNB(counts)
head(NB)

Description

Fit a Zero-Inflated Gaussian (ZIG) distribution for each taxon of the count data. The model estimation procedure is performed by metagenomeSeq fitZig function without assuming the presence of any group in the samples (design matrix equal to a column of ones.)

Usage

fitZIG(object, assay_name = "counts", verbose = TRUE)

Arguments

object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
verbose an optional logical value. If TRUE information on the steps of the algorithm is printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the Y0 column.

Examples

# Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

# Fit model on the counts matrix
ZIG <- fitZIG(counts)
head(ZIG)
Description

Fit a Zero-Inflated Negative Binomial (ZINB) distribution for each taxon of the countdata. The ZINB estimation procedure is performed by zinbwave `zinbFit` function with common dispersion `commonDispersion = FALSE`, regularization parameter `epsilon = 1e10`, and not assuming the presence of any group in the samples (design matrix equal to a column of ones.)

Usage

`fitZINB(object, assay_name = "counts", verbose = TRUE)`

Arguments

- `object`: a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- `verbose`: an optional logical value. If TRUE information on the steps of the algorithm is printed. Default `verbose = TRUE`.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the Y0 column.

Examples

```r
Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
Fit model on the counts matrix
ZINB <- fitZINB(counts)
head(ZINB)
```

getDA

Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance detection method.
getDA

Usage

getDA(
    method,
    slot = "pValMat",
    colName = "rawP",
    type = "pvalue",
    direction = NULL,
    threshold_pvalue = 1,
    threshold_logfc = 0,
    top = NULL,
    verbose = FALSE
)

Arguments

method          Output of a differential abundance detection method. pValMat, statInfo matrices, and method's name must be present (See vignette for detailed information).
slot            The slot name where to extract values (default slot = "pValMat").
colName         The column name of the slot where to extract values (default colName = "rawP").
type            The value type of the column selected where to extract values. Two values are possible: "pvalue" or "logfc" (default type = "pvalue").
direction       statInfo's column name containing information about the signs of differential abundance (usually log fold changes) (default direction = NULL).
threshold_pvalue Threshold value for p-values. If present, features with p-values lower than threshold_pvalue are considered differentially abundant. Set threshold_pvalue = 1 to not filter by p-values.
threshold_logfc  Threshold value for log fold changes. If present, features with log fold change absolute values higher than threshold_logfc are considered differentially abundant. Set threshold_logfc = 0 to not filter by log fold change values.

Value

A data.frame with several columns:

- stat which contains the p-values or the absolute log fold change values;
- direction which is present if method was a data.frame object, it contains the information about directionality of differential abundance (usually log fold changes);
- DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if method object was a vector, "UP Abundant", "DOWN Abundant", or "non-DA" if method was a data.frame.
See Also

getStatistics, extractDA

Examples

data("ps_plaque_16S")
# Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
# DA analysis
da.limma <- DA_limma(
  object = ps_plaque_16S,
  design = ~ 1 + HMP_BODY_SUBSITE,
  coef = 2,
  norm = "TMM"
)
# features with p-value < 0.1 as DA
getDA(
  method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
  direction = NULL, threshold_pvalue = 0.1, threshold_logfc = 0, top = NULL
)
# top 10 feature with highest logFC are DA
getDA(
  method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
  direction = "logFC", threshold_pvalue = 1, threshold_logfc = 0, top = 10
)
# features with p-value < 0.1 and |logFC| > 1 are DA
getDA(
  method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
  direction = "logFC", threshold_pvalue = 0.1, threshold_logfc = 1, top = NULL
)
# top 10 features with |logFC| > 1 are DA
getDA(
  method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
  direction = "logFC", threshold_pvalue = 1, threshold_logfc = 1, top = 10
)

getPositives

Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance detection method and count the True Positives (TP) and the False Positives (FP).

Usage

getPositives(method, enrichmentCol, TP, FP)
getPositives

Arguments

method Output of differential abundance detection method in which DA information is extracted by the getDA function, information related to enrichment is appropriately added through the addKnowledge function and the Fisher exact tests is performed for the contingency tables by the enrichmentTests function.

enrichmentCol name of the column containing information for enrichment analysis.

TP A list of length-2 vectors. The entries in the vector are the direction ("UP Abundant", "DOWN Abundant", or "non-DA") in the first position, and the level of the enrichment variable (enrichmentCol) which is expected in that direction, in the second position.

FP A list of length-2 vectors. The entries in the vector are the direction ("UP Abundant", "DOWN Abundant", or "non-DA") in the first position, and the level of the enrichment variable (enrichmentCol) which is not expected in that direction, in the second position.

Value

A named vector containing the number of TPs and FPs.

See Also

createPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")
# Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)$GENUS
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- data.frame(genera,
    "Type" = microbial_metabolism[, "Type"]
)
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# DA Analysis
# Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
# DA analysis
da.limma <- DA_limma(
    object = ps_plaque_16S,
    design = ~ 1 + HMP_BODY_SUBSITE,
    coef = 2,
norm = "TMM"
)

DA <- getDA(
    method = da.limma, slot = "pValMat", colName = "adjP",
    type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
    threshold_logfc = 1, top = NULL
)

# Add a priori information
DA_info <- addKnowledge(
    method = DA, priorKnowledge = priorInfo,
    enrichmentCol = "Type", namesCol = "newNames"
)

# Create contingency tables and compute F tests
DA_info_enriched <- enrichmentTest(
    method = DA_info, enrichmentCol = "Type",
    alternative = "greater"
)

# Count True and False Positives
DA_TP_FP <- getPositives(
    method = DA_info_enriched, enrichmentCol = "Type",
    TP = list(c("UP Abundant", "Aerobic"), c("DOWN Abundant", "Anaerobic")),
    FP = list(c("UP Abundant", "Anaerobic"), c("DOWN Abundant", "Aerobic"))
)

---

getStatistics

Description

Extract the list of p-values or/and log fold changes from the output of a differential abundance detection method.

Usage

getStatistics(
    method,
    slot = "pValMat",
    colName = "rawP",
    type = "pvalue",
    direction = NULL,
    verbose = FALSE
)

Arguments

method Output of a differential abundance detection method. pValMat, statInfo matrices, and method’s name must be present (See vignette for detailed information).

slot The slot name where to extract values (default slot = "pValMat").
getStatistics

colnName The column name of the slot where to extract values (default colName = "rawP").

type The value type of the column selected where to extract values. Two values are possible: "pvalue" or "logfc" (default type = "pvalue").

direction statInfo’s column name containing information about the signs of differential abundance (usually log fold changes) (default direction = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A vector or a data.frame. If direction = NULL, the colname column values, transformed according to type (not transformed if type = "pvalue", -abs(value) if type = "logfc"), of the slot are reported, otherwise the direction column of the statInfo matrix is added to the output.

See Also

extractStatistics

Examples

data("ps_plaque_16S")
# Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
# DA analysis
da.limma <- DA_limma(
  object = ps_plaque_16S,
  design = ~ 1 + HMP_BODY_SUBSITE,
  coef = 2,
  norm = "TMM"
)
# get p-values
getStatistics(
  method = da.limma, slot = "pValMat", colName = "rawP",
  type = "pvalue", direction = NULL
)
# get negative abs(logFC) values
getStatistics(
  method = da.limma, slot = "statInfo", colName = "logFC",
  type = "logfc", direction = NULL
)
# get p-values and logFC
getStatistics(
  method = da.limma, slot = "pValMat", colName = "rawP",
  type = "pvalue", direction = "logFC"
)
get_counts_metadata

Description

Check whether the input object is a phyloseq or a TreeSummarizedExperiment, then extract the requested data slots.

Usage

get_counts_metadata(
  object,
  assay_name = "counts",
  min_counts = 0,
  min_samples = 0
)

Arguments

- object: a phyloseq or TreeSummarizedExperiment object.
- assay_name: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- min_counts: Parameter to filter taxa. Set this number to keep features with more than min_counts counts in more than min_samples samples (default min_counts = 0).
- min_samples: Parameter to filter taxa. Set this number to keep features with a min_counts counts in more than min_samples samples (default min_samples = 0).

Value

A list of results:

- counts: the otu_table slot or assayName assay of the phyloseq or TreeSummarizedExperiment object;
- metadata: the sample_data or colData slot of the phyloseq or TreeSummarizedExperiment object;
- is_phyloseq: a boolean equal to TRUE if the input is a phyloseq object.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
get_counts_metadata(ps)
```
# Or with a TreeSummarizedExperiment

tse <- TreeSummarizedExperiment::TreeSummarizedExperiment::TreeSummarizedExperiment(
  assays = list("counts" = counts), colData = metadata)
get_counts_metadata(tse)

---

**iterative_ordering**

**iterativeOrdering**

---

**Description**

Turn the chosen columns (factor) of the input data.frame into ordered factors. For each factor, the order is given by the number of elements in each level of that factor.

**Usage**

```r
iterative_ordering(df, var_names, i = 1, decreasing = TRUE)
```

**Arguments**

- `df` a data.frame object.
- `var_names` character vector containing the names of one or more columns of df.
- `i` iteration index (default `i = 1`).
- `decreasing` logical value or a vector of them. Each value should be associated to a `var_name` vector's element. Should the sort order be increasing or decreasing?

**Value**

the input data.frame with the var_names variables as ordered factors.

**See Also**

`plotMutualFindings`

**Examples**

```r
From a dataset with some factor columns
mpg <- data.frame(ggplot2::mpg)
Order the levels of the desired factors based on the cardinality of each level.
ordered_mpg <- iterative_ordering(df = mpg,
 var_names = c("manufacturer", "model"),
 decreasing = c(TRUE, TRUE))
Now the levels of the factors are ordered in a decreasing way
levels(ordered_mpg$manufacturer)
levels(ordered_mpg$model)
```
Description

Compute the differences between the estimated and the observed continuity corrected logarithms of the average count values (MD), and between the estimated average probability to observe a zero and the the observed zero rate (ZPD).

Usage

meanDifferences(estimated, observed)

Arguments

estimated
a two column data.frame, output of fitNB, fitZINB, fitDM, fitZIG, or fitHURODE functions. More in general, a data frame containing the continuity corrected logarithm for the average of the fitted values for each row of a matrix of counts in the Y column, and the estimated probability to observe a zero in the Y0 column.

observed
a two column data.frame, output of prepareObserved function. More in general, a data frame containing the continuity corrected logarithm for the average of the observed values for each row of a matrix of counts in the Y column, and the estimated proportion of zeroes in the Y0 column.

Value

a data.frame containing the differences between the estimated and the observed continuity corrected logarithms of the average count values in the MD column, and between the estimated average probability to observe a zero and the the observed zero rate in the ZPD column.

See Also

prepareObserved.

Examples

# Randomly generate the observed and estimated data.frames
observed <- data.frame(Y = rpois(10, 5), Y0 = runif(10, 0, 1))
estimated <- data.frame(Y = rpois(10, 5), Y0 = runif(10, 0, 1))

# Compute the mean differences between estimated and observed data.frames
meanDifferences(estimated, observed)
**microbial_metabolism** (Data) Microbial metabolism

### Description
Aerobic, Anaerobic, or Facultative Anaerobic microbes by genus (NYC-HANES study).

### Usage
```r
data(microbial_metabolism)
```

### Format
A data.frame object

<table>
<thead>
<tr>
<th>norm_CSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm_CSS</td>
</tr>
</tbody>
</table>

### Description
Calculate normalization factors from a phyloseq or TreeSummarizedExperiment object. Inherited from metagenomeSeq `calcNormFactors` function which performs the Cumulative Sum Scaling normalization.

### Usage
```r
norm_CSS(object, assay_name = "counts", method = "CSS", verbose = TRUE)
```

### Arguments
- `object`: a phyloseq or TreeSummarizedExperiment object.
- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- `method`: normalization method to be used (only CSS).
- `verbose`: an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default `verbose = TRUE`.

### Value
A new column containing the CSS normalization factors is added to the `sample_data` slot of the phyloseq object or the `colData` slot of the TreeSummarizedExperiment object.

### See Also
- `calcNormFactors` for details. `setNormalizations` and `runNormalizations` to fastly set and run normalizations.
Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                        "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                        phyloseq::sample_data(metadata))

# Calculate the normalization factors
ps_NF <- norm_CSS(object = ps, method = "CSS")
# The phyloseq object now contains the normalization factors:
CSSFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSS"]
head(CSSFacts)

# VERY IMPORTANT: metagenomeSeq uses scaling factors to normalize counts
# (even though they are called normalization factors). These factors are used
# internally by a regression model. To make CSS size factors available for
# edgeR, we need to transform them into normalization factors. This is
# possible by dividing the factors for the library sizes and renormalizing.
normCSSFacts = CSSFacts / colSums(phyloseq::otu_table(ps_stool_16S))
# Renormalize: multiply to 1
normFacts = normCSSFacts/exp(colMeans(log(normCSSFacts)))

Description

Calculate size factors from a phyloseq or TreeSummarizedExperiment object. Inherited from DESeq2 estimateSizeFactors function.

Usage

norm_DESeq2(
  object,
  assay_name = "counts",
  method = c("ratio", "poscounts", "iterate"),
  verbose = TRUE,
  ...
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
Method for estimation: either "ratio", "poscounts", or "iterate". "ratio" uses the standard median ratio method introduced in DESeq. The size factor is the median ratio of the sample over a "pseudosample": for each gene, the geometric mean of all samples. "poscounts" and "iterate" offer alternative estimators, which can be used even when all features contain a sample with a zero (a problem for the default method, as the geometric mean becomes zero, and the ratio undefined). The "poscounts" estimator deals with a feature with some zeros, by calculating a modified geometric mean by taking the n-th root of the product of the non-zero counts. This evolved out of use cases with Paul McMurdie’s phyloseq package for metagenomic samples. The "iterate" estimator iterates between estimating the dispersion with a design of ~1, and finding a size factor vector by numerically optimizing the likelihood of the ~1 model.

verbose

an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

... other parameters for DESeq2 estimateSizeFactors function.

Value

A new column containing the chosen DESeq2-based size factors is added to the sample_data slot of the phyloseq object or the colData slot of the TreeSummarizedExperiment object.

See Also

estimateSizeFactors for details. setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))

Calculate the size factors
ps_NF <- norm_DESeq2(object = ps, method = "poscounts")
The phyloseq object now contains the size factors:
sizeFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts"]
head(sizeFacts)

VERY IMPORTANT: DESeq2 uses size factors to normalize counts.
These factors are used internally by a regression model. To make DEseq2
size factors available for edgeR, we need to transform them into
normalization factors. This is possible by dividing the factors by the
library sizes and renormalizing.
normSizeFacts = sizeFacts / colSums(phyloseq::otu_table(ps_stool_16S))
Renormalize: multiply to 1
normFacts = normSizeFacts/exp(colMeans(log(normSizeFacts)))
```
Description

Calculate normalization factors from a phyloseq or TreeSummarizedExperiment object. Inherited from edgeR `calcNormFactors` function.

Usage

```r
norm_edgeR(object,
 assay_name = "counts",
 method = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
 refColumn = NULL,
 logratioTrim = 0.3,
 sumTrim = 0.05,
 doWeighting = TRUE,
 Acutoff = -1e+10,
 p = 0.75,
 verbose = TRUE,
 ...
)
```

Arguments

- **object**: a phyloseq or TreeSummarizedExperiment object.
- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- **method**: normalization method to be used. Choose between TMM, TMMwsp, RLE, upperquartile, posupperquartile or none.
- **refColumn**: column to use as reference for method="TMM". Can be a column number or a numeric vector of length nrow(object).
- **logratioTrim**: the fraction (0 to 0.5) of observations to be trimmed from each tail of the distribution of log-ratios (M-values) before computing the mean. Used by method="TMM" for each pair of samples.
- **sumTrim**: the fraction (0 to 0.5) of observations to be trimmed from each tail of the distribution of A-values before computing the mean. Used by method="TMM" for each pair of samples.
- **doWeighting**: logical, whether to use (asymptotic binomial precision) weights when computing the mean M-values. Used by method="TMM" for each pair of samples.
- **Acutoff**: minimum cutoff applied to A-values. Count pairs with lower A-values are ignored. Used by method="TMM" for each pair of samples.
- **p**: numeric value between 0 and 1 specifying which quantile of the counts should be used by method="upperquartile".
norm_TSS

verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

... other arguments are not currently used.

Value

A new column containing the chosen edgeR-based normalization factors is added to the sample_data slot of the phyloseq object or the colData slot of the TreeSummarizedExperiment object.

See Also

calcNormFactors for details.
setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
    "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
    phyloseq::sample_data(metadata))

# Calculate the normalization factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")

# The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(normFacts)

# VERY IMPORTANT: edgeR uses normalization factors to normalize library sizes
# not counts. They are used internally by a regression model. To make edgeR
# normalization factors available for other methods, such as DESeq2 or other
# DA methods based on scaling or size factors, we need to transform them into
# size factors. This is possible by multiplying the factors for the library
# sizes and renormalizing.
normLibSize = normFacts * colSums(phyloseq::otu_table(ps_stool_16S))
# Renormalize: multiply to 1
sizeFacts = normLibSize/exp(colMeans(log(normLibSize)))

norm_TSS

Description

Calculate the Total Sum Scaling (TSS) factors for a phyloseq or a TreeSummarizedExperiment object, i.e. the library sizes. If the counts are divided by the scaling factors, a relative abundance is obtained.
Usage

```r
norm_TSS(object, assay_name = "counts", method = "TSS", verbose = TRUE)
```

Arguments

- **object**: a phyloseq or TreeSummarizedExperiment object.
- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- **method**: normalization method to be used.
- **verbose**: an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default `verbose = TRUE`.

Value

A new column containing the TSS scaling factors is added to the `sample_data` slot of the phyloseq object or the `colData` slot of the TreeSummarizedExperiment object.

See Also

- `setNormalizations` and `runNormalizations` to fastly set and run normalizations.

Examples

```r
set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
 "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))

Calculate the scaling factors
ps_NF <- norm_TSS(object = ps)
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.TSS"]
head(scaleFacts)
```

Description

Produce a list of graphical outputs summarizing the between and within method concordance.

Usage

```r
plotConcordance(concordance, threshold = NULL, cols = NULL)
```
Arguments

- **concordance**: A long format data.frame produced by `createConcordance` function.
- **threshold**: The threshold for rank (x-axis upper limit if all methods have a higher number of computed statistics).
- **cols**: A named vector containing the color hex codes.

Value

A 2 elements list of `ggplot2` class objects:

- `concordanceDendrogram` which contains the vertically directioned dendrogram for the methods involved in the concordance analysis;
- `concordanceHeatmap` which contains the heatmap of between and within method concordances.

See Also

`createConcordance`

Examples

data(ps_plaque_16S)

# Balanced design
my_splits <- createSplits(
  object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
  paired = "RSID", N = 10 # N = 100 suggested
)

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
  phyloseq::sample_data(ps_plaque_16S)[["RSID"]]
)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
  coef = "HMP_BODY_SUBSITESupragingival Plaque",
  norm = c("TMM", "CSS"))

# Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
  method = c("TMM", "CSS"))

# Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
  normalization_list = my_norm, object = ps_plaque_16S)

# Concordance for p-values
concordance_pvalues <- createConcordance(
  object = results, slot = "pValMat", colName = "rawP", type = "pvalue")
# plot concordances from rank 1 to 50.
plotConcordance(
    concordance = concordance_pvalues,
    threshold = 50
)

plotConcordanceDendrogram

Description
Plots the method’s dendrogram of concordances.

Usage
plotConcordanceDendrogram(hc, direction = "v", cols)

Arguments
- **hc**: Hierarchical clustering results produced in `plotConcordance` function.
- **direction**: vertical (default direction = "v") or horizontal (direction = "h").
- **cols**: A named vector containing the color hex codes.

Value
a `ggplot2` object

See Also
`createConcordance` and `plotConcordance`

plotConcordanceHeatmap

Description
Plots the heatmap of concordances.

Usage
plotConcordanceHeatmap(c_df, threshold, cols)
Arguments

- **c_df**: A simplified concordance data.frame produced in `plotConcordance` function.
- **threshold**: The threshold for rank (x-axis upper limit if all methods have a higher number of computed statistics).
- **cols**: A named vector containing the color hex codes.

Value

A `ggplot2` object

See Also

`createConcordance` and `plotConcordance`

Description

Plot of the contingency tables for the chosen method. The top-left cells are colored, according to Fisher exact tests' p-values, if the number of features in those cells are enriched.

Usage

`plotContingency(enrichment, method, levels_to_plot)`

Arguments

- **enrichment**: enrichment object produced by `createEnrichment` function.
- **method**: name of the method to plot.
- **levels_to_plot**: A character vector containing the levels of the enrichment variable to plot.

Value

A `ggplot2` object.

See Also

`createEnrichment`, `plotEnrichment`, and `plotMutualFindings`.
Examples

data("ps_plaque_16S")
data("microbial_metabolism")

# Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- data.frame(genera, 
    "Type" = microbial_metabolism[genera, "Type"])
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"), 
    method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm, 
                                   object = ps_plaque_16S)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE, 
    coef = "HMP_BODY_SUBSITESupragingival Plaque", 
    norm = c("TMM", "CSS"))

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(
    phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

# Enrichment analysis
enrichment <- createEnrichment(object = Plaque_16S_DA, 
    priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS", 
    slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC", 
    threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

# Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
# Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
# Mutual findings
plotMutualFindings(
    enrichment = enrichment, enrichmentCol = "Type", 
    n_methods = 1)
Description

Summary plot for the number of differentially abundant (DA) features and their association with enrichment variable. If some features are UP-Abundant or DOWN-Abundant (or just DA), several bars will be represented in the corresponding direction. Significance thresholds are reported over/under each bar, according to the Fisher exact tests.

Usage

plotEnrichment(enrichment, enrichmentCol, levels_to_plot)

Arguments

enrichment enrichment object produced by createEnrichment function.
enrichmentCol name of the column containing information for enrichment analysis.
levels_to_plot A character vector containing the levels of the enrichment variable to plot.

Value

a ggplot2 object.

See Also

createEnrichment, plotContingency, and plotMutualFindings.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

# Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- as.data.frame(genera,
    "Type" = microbial_metabolism[genera, "Type"])
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
    method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
    object = ps_plaque_16S)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
    coef = "HMP_BODY_SUBSITESupragingival Plaque",
    norm = c("TMM", "CSS"))

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

# Enrichment analysis
enrichment <- createEnrichment(object = Plaque_16S_DA,
    priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
    slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
    threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

# Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
# Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
# Mutual findings
plotMutualFindings(
    enrichment = enrichment, enrichmentCol = "Type",
    n_methods = 1
)

---

plotFDR

### Description

Draw the nominal false discovery rates for the 0.01, 0.05, and 0.1 levels.

### Usage

```r
plotFDR(df_FDR, cols = NULL)
```

### Arguments

- **df_FDR**: a data.frame produced by the `createTIEC` function, containing the FDR values.
- **cols**: a named vector of colors.
Value

A ggplot object.

Examples

```r
Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotFDR(df_FDR = TIEC_summary$df_FDR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)
plotLogP(df_QQ = TIEC_summary$df_QQ)
```

Description

Draw the boxplots of the proportions of p-values lower than 0.01, 0.05, and 0.1 thresholds for each method.

Usage

```r
plotFPR(df_FPR, cols = NULL)
```
Arguments

df_FPR a data.frame produced by the createTIEC function, containing the FPR values.
cols named vector of colors.

Value

A ggplot object.

Examples

# Load some data
data(ps_stool_16S)

# Generate the patterns for 10 mock comparison for an experiment
# (N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
                                method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
                                  object = ps_stool_16S)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
                       norm = c("TMM", "CSS"))

# Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
                    object = ps_stool_16S)

# Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

# Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotFDR(df_FDR = TIEC_summary$df_FDR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)
plotLogP(df_QQ = TIEC_summary$df_QQ)

Description

Draw the boxplots of the Kolmogorov-Smirnov test statistics for the p-value distributions across the mock comparisons.
**plotKS**

**Usage**

plotKS(df_KS, cols = NULL)

**Arguments**

- **df_KS**: A data frame produced by the `createTIEC` function containing the KS statistics and their p-values.
- **cols**: A named vector of colors.

**Value**

A ggplot object.

**Examples**

```r
Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
 object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
 norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
 object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotFDR(df_FDR = TIEC_summary$df_FDR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)
plotLogP(df_QQ = TIEC_summary$df_QQ)
```
plotLogP

**Description**

Draw the p-values or the average p-values distribution across the mock comparisons in logarithmic scale.

**Usage**

```r
plotLogP(df_pval = NULL, df_QQ = NULL, cols = NULL)
```

**Arguments**

- `df_pval`: a data.frame produced by the `createTIEC` function, containing the p-values for each taxon, method, and mock comparison. It is used to draw the negative log10 p-values distribution. If `df_pval` is supplied, let `df_QQ = NULL`.
- `df_QQ`: a data.frame produced by the `createTIEC` function, containing the average p-values for each quantile and method. It is used to draw the negative log10 average p-values distribution. If `df_QQ` is supplied, let `df_pval = NULL`.
- `cols`: named vector of colors.

**Value**

A ggplot object.

**Examples**

```r
Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalization(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_stool_16S <- runNormalization(normalization_list = my_norm,
object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
...)
```
object = ps_stool_16S)

# Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

# Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
pplotFDR(df_FDR = TIEC_summary$df_FDR)
pplotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
pplotKS(df_KS = TIEC_summary$df_KS)
pplotLogP(df_QQ = TIEC_summary$df_QQ)

----------
plotMD
----------

Description

A function to plot mean difference (MD) and zero probability difference (ZPD) values between estimated and observed values.

Usage

plotMD(data, difference = NULL, split = TRUE)

Arguments

data a list, output of the `fitModels` function. Each element of the list is a `data.frame` object with Model, Y, Y0, MD, and ZPD columns containing the model name, the observed values for the mean and the zero proportion and the differences between observed and estimated values.

difference character vector, either MD or ZPD to plot the differences between estimated and observed mean counts or the differences between estimated zero probability and observed zero proportion.

split Display each model mean differences in different facets (default split = TRUE). If FALSE, points are not displayed for more clear representation.

Value

a `ggplot` object.

See Also

`fitModels` and `RMSE` for the model estimations and the RMSE computations respectively. `plotRMSE` for the graphical evaluation of the RMSE values.
Examples

```r
Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(
 object = counts, models = c(
 "NB", "ZINB", "DM", "ZIG", "HURDLE"
), scale_HURDLE = c("median", "default")
)

Plot the results
plotMD(data = GOF, difference = "MD", split = TRUE)
plotMD(data = GOF, difference = "ZPD", split = TRUE)
```

Description

Plot and filter the features which are considered differentially abundant, simultaneously, by a specified number of methods.

Usage

```r
plotMutualFindings(enrichment, enrichmentCol, levels_to_plot, n_methods = 1)
```

Arguments

- `enrichment` enrichment object produced by `createEnrichment` function.
- `enrichmentCol` name of the column containing information for enrichment analysis.
- `levels_to_plot` A character vector containing the levels of the enrichment variable to plot.
- `n_methods` minimum number of method that mutually find the features.

Value

a ggplot2 object.

See Also

`createEnrichment`, `plotEnrichment`, and `plotContingency`. 
Examples

data("ps_plaque_16S")
data("microbial_metabolism")

# Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- data.frame(genera,
    "Type" = microbial_metabolism[genera, "Type"])
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
    method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
    object = ps_plaque_16S)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
    coef = "HMP_BODY_SUBSITESupragingival Plaque",
    norm = c("TMM", "CSS"))

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

# Enrichment analysis
enrichment <- createEnrichment(object = Plaque_16S_DA,
    priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
    slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
    threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

# Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
# Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
# Mutual findings
plotMutualFindings(
    enrichment = enrichment, enrichmentCol = "Type",
    n_methods = 1
)
plotPositives

Description
Plot the difference between the number of true positives (TP) and false positives (FP) for each method and for each 'top' threshold provided by the createPositives() function.

Usage
plotPositives(positives, cols = NULL)

Arguments
positives data.frame object produced by createPositives() function.
cols named vector of cols (default cols = NULL).

Value
a ggplot2 object.

See Also
getPositives, createPositives.

Examples
data("ps_plaque_16S")
data("microbial_metabolism")

# Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
# Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
# Match OTUs to their metabolism
priorInfo <- data.frame(genera,
    "Type" = microbial_metabolism[genera, "Type"])
# Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
# Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
    method = c("TMM", "CSS"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,
    object = ps_plaque_16S)
# Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + RSID + HMP_BODY_SUBSITE,
                      coef = "HMP_BODY_SUBSITE:Supragingival Plaque",
                      norm = c("TMM", "CSS"))

# Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

# Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

# Count TPs and FPs, from the top 1 to the top 20 features.
# As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(object = Plaque_16S_DA,
                              priorKnowledge = priorInfo,
                              enrichmentCol = "Type",
                              namesCol = "newNames", slot = "pValMat",
                              type = "pvalue", direction = "logFC", threshold_pvalue = 1,
                              threshold_logfc = 0, top = 1:20,
                              alternative = "greater",
                              verbose = FALSE,
                              TP = list(c("DOWN Abundant", "Anaerobic"), c("UP Abundant", "Aerobic")),
                              FP = list(c("DOWN Abundant", "Aerobic"), c("UP Abundant", "Anaerobic")))

# Plot the TP-FP differences for each threshold
plotPositives(positives = positives)

---

**plotQQ**

**plotQQ**

**Description**

Draw the average QQ-plots across the mock comparisons.

**Usage**

```
plotQQ(df_QQ, cols = NULL, zoom = c(0, 0.1), split = FALSE)
```

**Arguments**

- `df_QQ` Coordinates to draw the QQ-plot to compare the mean observed p-value distribution across comparisons, with the theoretical uniform distribution.
- `cols` named vector of colors.
- `zoom` 2-dimesional vector containing the starting and the final coordinates (default: `c(0, 0.1)`)  
- `split` boolean value. If TRUE, the qq-plots are reported separately for each method (default `split = FALSE`). Setting it to TRUE is hardly suggested when the number of methods is high or when their colors are similar.
Value

A ggplot object.

Examples

```r
Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples =phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
 object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,
 norm = c("TMM", "CSS"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
 object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotFDR(df_FDR = TIEC_summary$df_FDR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)
plotLogP(df_QQ = TIEC_summary$df_QQ)
```

Description

A function to plot RMSE values computed for mean difference (MD) and zero probability difference (ZPD) values between estimated and observed values.

Usage

```r
plotRMSE(data, difference = NULL, plotIt = TRUE)
```
Arguments

- **data**: a list, output of the `fitModels` function. Each element of the list is a ‘data.frame’ object with Model, Y, Y0, MD, and ZPD columns containing the model name, the observed values for the mean and the zero proportion and the differences between observed and estimated values.

- **difference**: character vector, either MD or ZPD to plot the differences between estimated and observed mean counts or the differences between estimated zero probability and observed zero proportion.

- **plotIt**: logical. Should plotting be done? (default plotIt = TRUE)

Value

a `ggplot` object.

See Also

`fitModels` and `RMSE` for the model estimations and the RMSE computations respectively. `plotMD` for the graphical evaluation.

Examples

```r
Generate some random counts
counts = matrix(rnbinom(n = 600, size = 3, prob = 0.5), nrow = 100, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(
 object = counts, models = c(
 "NB", "ZINB",
 "DM", "ZIG", "HURDLE"
), scale_HURDLE = c("median", "default")
)

Plot the RMSE results
plotRMSE(data = GOF, difference = "MD")
plotRMSE(data = GOF, difference = "ZPD")
```

Description

Continuity corrected logarithms of the average counts and fraction of zeroes by feature.

Usage

```r
prepareObserved(object, assay_name = "counts", scale = NULL)
```
Arguments

object a phyloseq object, a TreeSummarizedExperiment object, or a matrix of counts.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
scale If specified it refers to the character vector used in fitHURDLE function. Either median or default to choose between the median library size or one million as scaling factors for raw counts.

Value

A data frame containing the continuity corrected logarithm for the raw count mean values for each taxon of the matrix of counts in the Y column and the observed zero rate in the Y0 column. If scale is specified the continuity corrected logarithm for the mean CPM (scale = "default") or the mean counts per median library size (scale = "median") is computed instead.

See Also

meanDifferences

Examples

# Generate some random counts
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

observed1 <- prepareObserved(counts)
# For the comparison with HURDLE model
observed2 <- prepareObserved(counts, scale = "median")

Description

A demonstrative purpose dataset containing microbial abundances for a total of 88 OTUs. The 60 Gingival Plaque paired samples belong to the Human Microbiome Project. This particular subset contains 30 Supragingival and 30 Subgingival Plaque samples from the SEX = "Male", RUN_CENTER = "WUCG", and VISITNO = "1" samples. It is possible to obtain the same dataset after basic filters (remove taxa with zero counts) and collapsing the counts to the genus level; HMP16SData Bioconductor package was used to download the data.

Usage

data(ps_plaque_16S)

Format

An object of class phyloseq
Description

A demonstrative purpose dataset containing microbial abundances for a total of 71 OTUs. The 32 Stool samples belong to the Human Microbiome Project. This particular subset contains the SEX = "Male", RUN_CENTER = "BI", and VISITNO = "1" samples. It is possible to obtain the same dataset after basic filters (remove taxa with zero counts) and collapsing the counts to the genus level; HMP16Data Bioconductor package was used to download the data.

Usage

data(ps_stool_16S)

Format

An object of class phyloseq

RMSE

Description

Computes the Root Mean Square Error (RMSE) from a vector of differences.

Usage

RMSE(differences)

Arguments

differences a vector of differences.

Value

RMSE value

See Also

prepareObserved and meanDifferences.
Examples

# Generate the data.frame of Mean Differences and Zero Probability Difference
MD_df <- data.frame(MD = rpois(10, 5), ZPD = runif(10, -1, 1))

# Calculate RMSE for MD and ZPD values
RMSE(MD_df[, "MD"])
RMSE(MD_df[, "ZPD"])

runDA

Description
Run the differential abundance detection methods.

Usage
runDA(method_list, object, weights = NULL, verbose = TRUE)

Arguments
method_list a list object containing the methods and their parameters.
object a phyloseq object.
weights an optional numeric matrix giving observational weights.
verbose an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default verbose = TRUE.

Value
A named list containing the results for each method.

Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
phyloseq::sample_data(metadata))

# Set some simple normalizations
my_norm <- setNormalizations()

# Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_norm, object = ps)

# Set some limma instances
my_methods <- set_limma(design = ~ group, coef = 2,
                 norm = c("TMM", "poscounts", "CSS"))

# Run the methods
results <- runDA(method_list = my_methods, object = ps)

---

### Description

Run the differential abundance detection methods on mock datasets.

### Usage

```r
runMocks(
 mocks,
 method_list,
 object,
 weights = NULL,
 verbose = TRUE,
 BPPARAM = BiocParallel::SerialParam()
)
```

### Arguments

- **mocks**  
  a `data.frame` containing `N` rows and `nsamples` columns (if even). Each cell of the data frame contains the "grp1" or "grp2" characters which represent the mock groups pattern. Produced by the `createMocks` function.

- **method_list**  
  a list object containing the methods and their parameters.

- **object**  
  a `phyloseq` or `TreeSummarizedExperiment` object.

- **weights**  
  an optional numeric matrix giving observational weights.

- **verbose**  
  an optional logical value. If `TRUE`, information about the steps of the algorithm is printed. Default `verbose = TRUE`.

- **BPPARAM**  
  An optional `BiocParallelParam` instance defining the parallel back-end to be used during evaluation.

### Value

A named list containing the results for each method.
Examples

# Load some data
data(ps_stool_16S)

# Generate the pattern for 10 mock comparisons
# (N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

# Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
method = c("TMM", "CSS"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,
object = ps_stool_16S)

# Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2, norm = c("TMM", "CSS"))

# Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,
object = ps_stool_16S)

Description

Add normalization/scaling factors to a phyloseq object

Usage

runNormalizations(
   normalization_list,
   object,
   assay_name = "counts",
   verbose = TRUE
)

Arguments

normalization_list
  a list object containing the normalization methods and their parameters.
object
  a phyloseq or TreeSummarizedExperiment object.
assay_name
  the name of the assay to extract from the TreeSummarizedExperiment object
  (default assayName = "counts"). Not used if the input object is a phyloseq.
verbose
  an optional logical value. If TRUE, information about the steps of the algorithm
  is printed. Default verbose = TRUE.
runSplits

Value

A phyloseq object containing the normalization/scaling factors.

See Also

setNormalizations

Examples

set.seed(1)
# Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
                         "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
                         phyloseq::sample_data(metadata))

# Set some simple normalizations
my_normalizations <- setNormalizations()

# Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_normalizations, object = ps)

runSplits

Description

Run the differential abundance detection methods on split datasets.

Usage

runSplits(
  split_list,
  method_list,
  normalization_list,
  object,
  assay_name = "counts",
  min_counts = 0,
  min_samples = 0,
  verbose = TRUE,
  BPPARAM = BiocParallel::SerialParam()
)
Arguments

- **split_list**: A list of 2 `data.frame` objects: Subset1 and Subset2 produced by the `createSplits` function.
- **method_list**: a list object containing the methods and their parameters.
- **normalization_list**: a list object containing the normalization method names and their parameters produced by `setNormalizations`.
- **object**: a `phyloseq` object.
- **assay_name**: the name of the assay to extract from the `TreeSummarizedExperiment` object (default `assayName = "counts"`). Not used if the input object is a `phyloseq`.
- **min_counts**: Parameter to filter taxa. Set this number to keep features with more than `min_counts` counts in more than `min_samples` samples (default `min_counts = 0`).
- **min_samples**: Parameter to filter taxa. Set this number to keep features with a `min_counts` counts in more than `min_samples` samples (default `min_samples = 0`).
- **verbose**: an optional logical value. If TRUE, information about the steps of the algorithm is printed. Default `verbose = TRUE`.
- **BPPARAM**: An optional `BiocParallelParam` instance defining the parallel back-end to be used during evaluation.

Value

A named list containing the results for each method.

Examples

```r
data(ps_plaque_16S)

Balanced design
my_splits <- createSplits(
 object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
 paired = "RSID", N = 10 # N = 100 suggested
)

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[,"RSID"] <- as.factor(
 phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

Initialize some limma based methods
my_limma <- set_limma(design = ~ RSID + HMP_BODY_SUBSITE,
 coef = "HMP_BODY_SUBSITESupragingival Plaque",
 norm = c("TMM", "CSS"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
 method = c("TMM", "CSS"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,
 normalization_list = my_norm, object = ps_plaque_16S)
```

setNormalizations

Description

Set the methods and parameters to compute normalization/scaling factors.

Usage

setNormalizations(
  fun = c("norm_edgeR", "norm_DESeq2", "norm_CSS"),
  method = c("TMM", "poscounts", "CSS")
)

Arguments

  fun a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2", "norm_CSS"...).
  method a character with the normalization method (e.g. "TMM", "upperquartile"... if the fun is "norm_edgeR").

Value

a list object containing the normalization methods and their parameters.

See Also

runNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

  # Set a TMM normalization
  my_TMM_normalization <- setNormalizations(fun = "norm_edgeR", method = "TMM")

  # Set some simple normalizations
  my_normalizations <- setNormalizations()

  # Add a custom normalization
  my_normalizations <- c(my_normalizations,
    myNormMethod1 = list("myNormMethod", "parameter1", "parameter2"))
Description

Set the parameters for ALDEx2 differential abundance detection method.

Usage

```r
set_ALDEx2(
 assay_name = "counts",
 pseudo_count = FALSE,
 design = NULL,
 mc.samples = 128,
 test = "t",
 paired.test = FALSE,
 denom = "all",
 contrast = NULL,
 expand = TRUE
)
```

Arguments

- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- **pseudo_count**: add 1 to all counts if TRUE (default `pseudo_count = FALSE`).
- **design**: a character with the name of a variable to group samples and compare them or a formula to compute a model.matrix (when `test = "glm"`).
- **mc.samples**: an integer. The number of Monte Carlo samples to use when estimating the underlying distributions. Since we are estimating central tendencies, 128 is usually sufficient.
- **test**: a character string. Indicates which tests to perform. "t" runs Welch’s t test while "wilcox" runs Wilcoxon test. "kw" runs Kruskal-Wallace test while "kw(glm)" runs glm ANOVA-like test. "glm" runs a generalized linear model.
- **paired.test**: A boolean. Toggles whether to do paired-sample tests. Applies to `effect = TRUE` and `test = "t"`.
- **denom**: An any variable (all, iqlr, zero, lvha, median, user) indicating features to use as the denominator for the Geometric Mean calculation. The default "all" uses the geometric mean abundance of all features. Using "median" returns the median abundance of all features. Using "iqlr" uses the features that are between the first and third quartile of the variance of the clr values across all samples. Using "zero" uses the non-zero features in each group as the denominator. This approach is an extreme case where there are many nonzero features in one condition but many zeros in another. Using "lvha" uses features that have low variance (bottom quartile) and high relative abundance (top quartile in every sample). It is
also possible to supply a vector of row indices to use as the denominator. Here, the experimentalist is determining a-priori which rows are thought to be invariant. In the case of RNA-seq, this could include ribosomal protein genes and and other house-keeping genes. This should be used with caution because the offsets may be different in the original data and in the data used by the function because features that are 0 in all samples are removed by `aldex.clr`.

### contrast
character vector with exactly three elements: the name of a variable used in "design", the name of the level of interest, and the name of the reference level. If "kw" or "kw_glm" as test, contrast vector is not used.

### expand
logical, if TRUE create all combinations of input parameters (default `expand = TRUE`)

#### Value
A named list containing the set of parameters for `DA_ALDEx2` method.

#### See Also
`DA_ALDEx2`

#### Examples
```
Set some basic combinations of parameters for ALDEx2
base_ALDEx2 <- set_ALDEx2(design = "group",
 contrast = c("group", "grp2", "grp1"))
Set a specific set of normalization for ALDEx2 (even of other # packages!)
setNorm_ALDEx2 <- set_ALDEx2(design = "group",
 contrast = c("group", "grp2", "grp1"))
Set many possible combinations of parameters for ALDEx2
all_ALDEx2 <- set_ALDEx2(design = "group", denom = c("iqlr", "zero"),
 test = c("t", "wilcox"), contrast = c("group", "grp2", "grp1"))
```
lme_control = lme4::lmerControl(),
contrast = NULL,
alpha = 0.05,
p_adj_method = "BH",
struc_zero = FALSE,
BC = TRUE,
n_cl = 1,
expand = TRUE)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
fix_formula Used when BC = TRUE (ANCOM-BC2). The character string expresses how the microbial absolute abundances for each taxon depend on the fixed effects in metadata.
adj_formula Used when BC = FALSE (ANCOM). The character string represents the formula for covariate adjustment. Default is NULL.
rand_formula Optionally used when BC = TRUE or BC = FALSE. The character string expresses how the microbial absolute abundances for each taxon depend on the random effects in metadata. ANCOMB and ANCOM-BC2 follows the lmerTest package in formulating the random effects. See ?lmerTest::lmer for more details. Default is rand_formula = NULL.
lme_control a list of control parameters for mixed model fitting. See ?lme4::lmerControl for details.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
alpha numeric. Level of significance. Default is 0.05.
struc_zero logical. Whether to detect structural zeros based on group. Default is FALSE. See Details for a more comprehensive discussion on structural zeros.
BC boolean for ANCOM method to use. If TRUE the bias correction (ANCOM-BC2) is computed (default BC = TRUE). When BC = FALSE computational time may increase and p-values are not computed.
n_cl numeric. The number of nodes to be forked. For details, see ?parallel::makeCluster. Default is 1 (no parallel computing).
expand logical, if TRUE create all combinations of input parameters (default expand = TRUE).
Value

A named list containing the set of parameters for DA_ANCOM method.

See Also

DA_ANCOM

Examples

```r
Set some basic combinations of parameters for ANCOM with bias correction
base_ANCOMBC <- set_ANCOM(pseudo_count = FALSE, fix_formula = "group",
contrast = c("group", "B", "A"), BC = TRUE, expand = FALSE)
many_ANCOMs <- set_ANCOM(pseudo_count = c(TRUE, FALSE),
fix_formula = "group", contrast = c("group", "B", "A"),
struc_zero = c(TRUE, FALSE), BC = c(TRUE, FALSE))
```

Description

Set the parameters for basic differential abundance detection methods such as t and wilcox.

Usage

```r
set_basic(
 assay_name = "counts",
 pseudo_count = FALSE,
 contrast = NULL,
 test = c("t", "wilcox"),
 paired = FALSE,
 expand = TRUE
)
```

Arguments

- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- **pseudo_count**: add 1 to all counts if TRUE (default pseudo_count = FALSE).
- **contrast**: character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
- **test**: name of the test to perform. Choose between "t" or "wilcox".
- **paired**: boolean. Choose whether the test is paired or not (default paired = FALSE). If paired = TRUE be sure to provide the object properly ordered (by the grouping variable).
- **expand**: logical, if TRUE create all combinations of input parameters (default expand = TRUE).
Value
A named list containing the set of parameters for DA_basic method.

See Also
DA_basic

Examples

# Set some basic methods
basic_methods <- set_basic(pseudo_count = FALSE, test = c("t", "wilcox"),
                         contrast = c("group", "B", "A"), expand = TRUE)

set_dearseq

Description
Set the parameters for dearseq differential abundance detection method.

Usage

set_dearseq(
  assay_name = "counts",
  pseudo_count = FALSE,
  covariates = NULL,
  variables2test = NULL,
  sample_group = NULL,
  test = c("permutation", "asymptotic"),
  preprocessed = FALSE,
  n_perm = 1000,
  expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object
             (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
covariates a character vector containing the colnames of the covariates to include in the
             model.
variables2test a character vector containing the colnames of the variable of interest.
sample_group a vector of length n indicating whether the samples should be grouped (e.g.
               paired samples or longitudinal data). Coerced to be a factor. Default is NULL
               in which case no grouping is performed.
Description

Set the parameters for DESeq2 differential abundance detection method.

Usage

```r
set_DESeq2(
 assay_name = "counts",
 pseudo_count = FALSE,
 design = NULL,
 contrast = NULL,
 alpha = 0.05,
 norm = c("ratio", "poscounts", "iterate"),
 weights_logical = FALSE,
 expand = TRUE
)
```
Arguments

- **assay_name**: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- **pseudo_count**: add 1 to all counts if TRUE (default `pseudo_count = FALSE`).
- **design**: character or formula to specify the model matrix.
- **contrast**: character vector with exactly three elements: the name of a factor in the design formula, the name of the numerator level for the fold change, and the name of the denominator level for the fold change.
- **alpha**: the significance cutoff used for optimizing the independent filtering (by default 0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha should be set to that value.
- **norm**: name of the normalization method to use in the differential abundance analysis. Choose between the native DESeq2 normalization methods, such as `ratio`, `poscounts`, or `iterate`. Alternatively (only for advanced users), if `norm` is equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", or "none" from `norm_edgeR`, "CSS" from `norm_CSS`, or "TSS" from `norm_TSS`, the normalization factors are automatically transformed into size factors. If custom factors are supplied, make sure they are compatible with DESeq2 size factors.
- **weights_logical**: logical vector, if TRUE a matrix of observational weights will be used for differential abundance analysis (default `weights_logical = FALSE`).
- **expand**: logical, if TRUE create all combinations of input parameters (default `expand = TRUE`).

Value

A named list containing the set of parameters for DA_DESeq2 method.

See Also

- **DA_DESeq2**

Examples

# Set some basic combinations of parameters for DESeq2
base_DESeq2 <- set_DESeq2(design = ~ group, contrast = c("group", "B", "A"))

# Set a specific set of normalization for DESeq2
setNorm_DESeq2 <- set_DESeq2(design = ~ group, contrast = c("group", "B", "A"), norm = c("ratio", "poscounts"))

# Set many possible combinations of parameters for DESeq2
all_DESeq2 <- set_DESeq2(pseudo_count = c(TRUE, FALSE), design = ~ group, contrast = c("group", "B", "A"), weights_logical = c(TRUE,FALSE))
set_edgeR

Description

Set the parameters for edgeR differential abundance detection method.

Usage

set_edgeR(
  assay_name = "counts",
  pseudo_count = FALSE,
  group_name = NULL,
  design = NULL,
  robust = FALSE,
  coef = 2,
  norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
  weights_logical = FALSE,
  expand = TRUE
)

Arguments

  assay_name        the name of the assay to extract from the TreeSummarizedExperiment object
                    (default assayName = "counts"). Not used if the input object is a phyloseq.
  pseudo_count      add 1 to all counts if TRUE (default pseudo_count = FALSE).
  group_name        character giving the name of the column containing information about experimental group/condition for each sample/library.
  design            character or formula to specify the model matrix.
  robust            logical, should the estimation of prior.df be robustified against outliers?
  coef              integer or character index vector indicating which coefficients of the linear model
                    are to be tested equal to zero.
  norm              name of the normalization method to use in the differential abundance analysis.
                    Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile, posupperquartile, or none. Alternatively (only for advanced users), if norm is equal to "ratio", "poscounts", or "iterate" from norm_DESeq2, "CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible with edgeR normalization factors.
  weights_logical   logical vector, if TRUE a matrix of observation weights must be supplied (default weights_logical = FALSE).
  expand            logical, if TRUE create all combinations of input parameters (default expand = TRUE).
Value

A named list containing the set of parameters for DA_edgeR method.

See Also

DA_edgeR

Examples

# Set some basic combinations of parameters for edgeR
base_edgeR <- set_edgeR(group_name = "group", design = ~ group, coef = 2)

# Set a specific set of normalization for edgeR
setNorm_edgeR <- set_edgeR(group_name = "group", design = ~ group, coef = 2,
                           norm = c("TMM", "RLE"))

# Set many possible combinations of parameters for edgeR
all_edgeR <- set_edgeR(pseudo_count = c(TRUE, FALSE), group_name = "group",
                        design = ~ group, robust = c(TRUE, FALSE), coef = 2,
                        weights.logical = c(TRUE, FALSE))

Description

Set the parameters for limma differential abundance detection method.

Usage

set_limma(
  assay_name = "counts",
  pseudo_count = FALSE,
  design = NULL,
  coef = 2,
  norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
  weights.logical = FALSE,
  expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
design character name of the metadata columns, formula, or design matrix with rows corresponding to samples and columns to coefficients to be estimated.
**set_linda**

**Description**

Set the parameters for linda differential abundance detection method.

**Usage**

```r
set_linda(
 assay_name = "counts",
 formula = NULL,
 contrast = NULL,
)```

Arguments

- `assay_name` (character): Name of the assay.
- `formula` (formula): Formula to use in the model.
- `contrast` (character): Contrast to be tested.
- `coef` (integer): Integer or character index vector indicating which coefficients of the linear model are to be tested equal to zero.
- `norm` (character): Name of the normalization method to use in the differential abundance analysis. Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile, posupperquartile, or none. Alternatively (only for advanced users), if `norm` is equal to "ratio", "poscounts", or "iterate" from `norm_DESeq2`, "CSS" from `norm_CSS`, or "TSS" from `norm_TSS`, the scaling factors are automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible with edgeR normalization factors.
- `weights_logical` (logical): Logical vector, if TRUE a matrix of observational weights will be used for differential abundance analysis (default `weights_logical = FALSE`).
- `expand` (logical): Logical, if TRUE create all combinations of input parameters (default `expand = TRUE`).

Value

A named list containing the set of parameters for `DA_limma` method.

See Also

`DA_limma`

Examples

```r
# Set some basic combinations of parameters for limma
base_limma <- set_linda(design = ~ group, coef = 2)
# Set a specific set of normalization for limma (even of other packages!)
setNorm_limma <- set_linda(design = ~ group, coef = 2,
                           norm = c("TMM", "upperquartile"))
# Set many possible combinations of parameters for limma
all_limma <- set_linda(pseudo_count = c(TRUE, FALSE), design = ~ group,
                        coef = 2, weights_logical = c(TRUE, FALSE))
```
is.winsor = TRUE,
outlier.pct = 0.03,
zero.handling = c("pseudo-count", "imputation"),
pseudo.cnt = 0.5,
alpha = 0.05,
p.adj.method = "BH",
expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.

formula a character string for the formula. The formula should conform to that used by lm (independent data) or lmer (correlated data). For example: formula = '^x1*x2+x3+(1|id)'. At least one fixed effect is required.

contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.

is.winsor a logical value indicating whether winsorization should be performed to replace outliers (high values). The default is TRUE.

outlier.pct the expected percentage of outliers. These outliers will be winsorized. The default is 0.03.

zero.handling a character string of 'pseudo-count' or 'imputation' indicating the zero handling method used when feature.dat is 'count'. If 'pseudo-count', apseudo.cnt will be added to each value in feature.dat. If 'imputation', then we use the imputation approach using the formula in the referenced paper. Basically, zeros are imputed with values proportional to the sequencing depth. When feature.dat is 'proportion', this parameter will be ignored and zeros will be imputed by half of the minimum for each feature.

pseudo.cnt a positive numeric value for the pseudo-count to be added if zero.handling is 'pseudo-count'. Default is 0.5.

alpha a numerical value between 0 and 1 indicating the significance level for declaring differential features. Default is 0.05.

p.adj.method a character string indicating the p-value adjustment approach for addressing multiple testing. See R function p.adjust. Default is 'BH'.

expand logical, if TRUE create all combinations of input parameters (default expand = TRUE).

Value

A named list containing the set of parameters for DA_linda method.

See Also

DA_linda
Examples

Set some basic combinations of parameters for ANCOM with bias correction
base_linda <- set_linda(formula = "~ group", contrast = c("group", "B", "A"),
zero_handling = "pseudo-count", expand = TRUE)
many_linda <- set_linda(formula = "~ group", contrast = c("group", "B", "A"),
is.winsor = c(TRUE, FALSE),
zero_handling = c("pseudo-count", "imputation"), expand = TRUE)

Description

Set the parameters for Maaslin2 differential abundance detection method.

Usage

set_Maaslin2(
 assay_name = "counts",
normalization = c("TSS", "CLR", "CSS", "NONE", "TMM"),
transform = c("LOG", "LOGIT", "AST", "NONE"),
analysis_method = c("LM", "CPLM", "ZICP", "NEGBIN", "ZINB"),
correction = "BH",
random_effects = NULL,
fixed_effects = NULL,
contrast = NULL,
reference = NULL,
expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
normalization The normalization method to apply.
transform The transform to apply.
analysis_method The analysis method to apply.
correction The correction method for computing the q-value.
random_effects The random effects for the model, comma-delimited for multiple effects.
fixed_effects The fixed effects for the model, comma-delimited for multiple effects.
contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
The factor to use as a reference for a variable with more than two levels provided as a string of 'variable,reference' semi-colon delimited for multiple variables.

expand logical, if TRUE create all combinations of input parameters (default expand = TRUE).

Value

A named list containing the set of parameters for DA_Maaslin2 method.

See Also

DA_Maaslin2

Examples

Set some basic combinations of parameters for Maaslin2
base_Maaslin2 <- set_Maaslin2(normalization = "TSS", transform = "LOG",
 analysis_method = "LM", fixed_effects = "group",
 contrast = c("group", "B", "A"))

many_Maaslin2 <- set_Maaslin2(normalization = c("TSS", "CLR", "CSS", "TMM",
 "NONE"), transform = c("LOG", "NONE"),
 analysis_method = c("LM", "NEGBIN"), fixed_effects = "group",
 contrast = c("group", "B", "A"))

Description

Set the parameters for MAST differential abundance detection method.

Usage

set_MAST(
 assay_name = "counts",
 pseudo_count = FALSE,
 rescale = c("median", "default"),
 design = NULL,
 coefficient = NULL,
 expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phylseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
rescale Rescale count data, per million if 'default', or per median library size if 'median' ('median' is suggested for metagenomics data).

design The model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula, or a 'model.matrix' object.

coefficient The coefficient of interest as a single word formed by the variable name and the non reference level. (e.g.: 'ConditionDisease' if the reference level for the variable 'Condition' is 'control').

expand logical, if TRUE create all combinations of input parameters (default expand = TRUE)

Value

A named list containing the set of parameters for DA_MAST method.

See Also

DA_MAST

Examples

Set some basic combinations of parameters for MAST
base_MAST <- set_MAST(design = ~ group, coefficient = "groupB")

Set many possible combinations of parameters for MAST
all_MAST <- set_MAST(pseudo_count = c(TRUE, FALSE), rescale = c("median", "default"), design = ~ group, coefficient = "groupB")
Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design the model for the count distribution. Can be the variable name, or a character similar to "~ 1 + group", or a formula.

coef coefficient of interest to grab log fold-changes.

norm name of the normalization method to use in the differential abundance analysis. Choose the native metagenomeSeq normalization method CSS. Alternatively (only for advanced users), if norm is equal to "TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", or "none" from norm_edgeR, "ratio", "poscounts", or "iterate" from norm_DESeq2, or "TSS" from norm_TSS, the factors are automatically transformed into scaling factors. If custom factors are supplied, make sure they are compatible with metagenomeSeq normalization factors.

model character equal to "fitFeatureModel" for differential abundance analysis using a zero-inflated log-normal model, "fitZig" for a complex mathematical optimization routine to estimate probabilities that a zero for a particular feature in a sample is a technical zero or not. The latter model relies heavily on the limma package (default model = "fitFeatureModel").

expand logical, if TRUE create all combinations of input parameters (default expand = TRUE)

Value

A named list containing the set of parameters for DA_metagenomeSeq method.

See Also

DA_metagenomeSeq

Examples

Set a basic combination of parameters for metagenomeSeq
base_mgs <- set_metagenomeSeq(design = ~ group, coef = 2)

Set a specific model for metagenomeSeq
setModel_mgs <- set_metagenomeSeq(design = ~ group, coef = 2, model = "fitZig")

Set many possible combinations of parameters for metagenomeSeq
all_mgs <- set_metagenomeSeq(pseudo_count = c(TRUE, FALSE), design = ~ group, coef = 2, model = c("fitFeatureModel", "fitZig"), norm = "CSS")
Description

Set the parameters for mixMC sPLS-DA.

Usage

```r
description = set_mixMC(
    assay_name = "counts",
    pseudo_count = 1,
    contrast = NULL,
    ID_variable = NULL,
    expand = TRUE
)
```

Arguments

- `assay_name`: the name of the assay to extract from the TreeSummarizedExperiment object (default `assayName = "counts"`). Not used if the input object is a phyloseq.
- `pseudo_count`: a positive numeric value for the pseudo-count to be added. Default is 1.
- `contrast`: character vector with exactly three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
- `ID_variable`: a character string indicating the name of the variable name corresponding to the repeated measures units (e.g., the subject ID).
- `expand`: logical, if TRUE create all combinations of input parameters (default `expand = TRUE`).

Value

A named list containing the set of parameters for `DA_mixMC` method.

See Also

`DA_mixMC`

Examples

```r
# Set some basic combinations of parameters for mixMC
base_mixMC <- set_mixMC(pseudo_count = 1, contrast = c("group", "B", "A"))
many_mixMC <- set_mixMC(pseudo_count = c(0.1, 0.5, 1),
                        contrast = c("group", "B", "A"))
```
set_NOISeq

Description
Set the parameters for NOISeq differential abundance detection method.

Usage
set_NOISeq(
 assay_name = "counts",
 pseudo_count = FALSE,
 contrast = NULL,
 norm = c("rpkm", "uqua", "tmm", "n"),
 expand = TRUE
)

Arguments

 assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.

 pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

 contrast character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.

 norm name of the normalization method to use in the differential abundance analysis. Choose between the native edgeR normalization methods, such as TMM, TMMwsp, RLE, upperquartile, posupperquartile, or none. Alternatively (only for advanced users), if norm is equal to "ratio", "poscounts", or "iterate" from norm_DESeq2, "CSS" from norm_CSS, or "TSS" from norm_TSS, the scaling factors are automatically transformed into normalization factors. If custom factors are supplied, make sure they are compatible with edgeR normalization factors.

 expand logical, if TRUE create all combinations of input parameters (default expand = TRUE).

Value
A named list containing the set of parameters for DA_NOISeq method.

See Also
DA_NOISeq
Examples

Set a basic combination of parameters for NOISeq with 'tmm' normalization
base_NOISeq <- set_NOISeq(pseudo_count = FALSE, norm = "tmm",
contrast = c("group", "B", "A"), expand = FALSE)

try many normalizations
many_NOISeq <- set_NOISeq(pseudo_count = FALSE,
 norm = c("tmm", "uqua", "rpkm", "n"), contrast = c("group", "B", "A"))

Description

Set the parameters for Seurat differential abundance detection method.

Usage

set_Seurat(
 assay_name = "counts",
pseudo_count = FALSE,
test = "wilcox",
contrast = NULL,
norm = "LogNormalize",
scale.factor = 10000,
expand = TRUE
)

Arguments

assay_name the name of the assay to extract from the TreeSummarizedExperiment object.
(default assayName = "counts"). Not used if the input object is a phyloseq.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
test Denotes which test to use. Available options are:
 • "wilcox" Identifies differentially abundant features between two groups of
 samples using a Wilcoxon Rank Sum test (default).
 • "bimod" Likelihood-ratio test for the feature abundances, (McDavid et al.,
 Bioinformatics, 2013).
 • "roc" Identifies 'markers' of feature abundance using ROC analysis. For
 each feature, evaluates (using AUC) a classifier built on that feature alone,
 to classify between two groups of cells. An AUC value of 1 means that
 abundance values for this feature alone can perfectly classify the two group-
 ings (i.e. Each of the samples in group.1 exhibit a higher level than each of
 the samples in group.2). An AUC value of 0 also means there is perfect
 classification, but in the other direction. A value of 0.5 implies that the
 feature has no predictive power to classify the two groups. Returns a 'pre-
 dictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially
 expressed genes.
• "t" Identify differentially abundant features between two groups of samples using the Student’s t-test.
• "negbinom" Identifies differentially abundant features between two groups of samples using a negative binomial generalized linear model.
• "poisson" Identifies differentially abundant features between two groups of samples using a poisson generalized linear model.
• "LR" Uses a logistic regression framework to determine differentially abundant features. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
• "MAST" Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
• "DESeq2" Identifies differentially abundant features between two groups of samples based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).

contrast
character vector with exactly three elements: the name of a factor in the design formula, the name of the numerator level for the fold change, and the name of the denominator level for the fold change.

norm
Method for normalization.
- LogNormalize Feature counts for each sample are divided by the total counts of that sample and multiplied by the scale.factor. This is then natural-log transformed using log1p;
- CLR Applies a centered log ratio transformation;
- RC Relative counts. Feature counts for each sample are divided by the total counts of that sample and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6;
- none No normalization

scale.factor
Sets the scale factor for cell-level normalization

expand
logical, if TRUE create all combinations of input parameters (default expand = TRUE)

Value
A named list containing the set of parameters for DA_Seurat method.

See Also
DA_Seurat

Examples
Set some basic combinations of parameters for Seurat
base_Seurat <- set_Seurat(contrast = c("group", "B", "A"))
Set many possible combinations of parameters for Seurat
all_Seurat <- set_Seurat(test = c("wilcox", "t", "negbinom", "poisson"),
Description

Set the parameters for ZicoSeq differential abundance detection method.

Usage

```r
set_ZicoSeq(
  assay_name = "counts",
  contrast = NULL,
  strata = NULL,
  adj.name = NULL,
  feature.dat.type = c("count", "proportion", "other"),
  is.winsor = TRUE,
  outlier.pct = 0.03,
  winsor.end = c("top", "bottom", "both"),
  is.post.sample = TRUE,
  post.sample.no = 25,
  perm.no = 99,
  link.func = list(function(x) sign(x) * (abs(x))^0.5),
  ref.pct = 0.5,
  stage.no = 6,
  excl.pct = 0.2,
  expand = TRUE
)
```

Arguments

- `assay_name` the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
- `contrast` character vector with exactly, three elements: a string indicating the name of factor whose levels are the conditions to be compared, the name of the level of interest, and the name of the other level.
- `strata` a factor such as subject IDs indicating the permutation strata or characters indicating the strata variable in meta.dat. Permutation will be confined to each stratum. This can be used for paired or some longitudinal designs.
- `adj.name` the name(s) for the variable(s) to be adjusted. Multiple variables are allowed. They could be numeric or categorical; should be in meta.dat.
- `feature.dat.type` the type of the feature data. It could be "count", "proportion" or "other". For "proportion" data type, posterior sampling will not be performed, but the reference-based ratio approach will still be used to address compositional effects.
"other" data type, neither posterior sampling or reference-base ratio approach
will be used.

is.winsor a logical value indicating whether winsorization should be performed to replace
outliers. The default is TRUE.

outlier.pct the expected percentage of outliers. These outliers will be winsorized. The
default is 0.03. For count/proportion data, outlier.pct should be less than
prev.filter.

winsor.end a character indicating whether the outliers at the "top", "bottom" or "both" will
be winsorized. The default is "top". If the feature.dat.type is "other", "both"
may be considered.

is.post.sample a logical value indicating whether to perform posterior sampling of the underly-
ing proportions. Only relevant when the feature data are counts.

post.sample.no the number of posterior samples if posterior sampling is used. The default is 25.

perm.no the number of permutations. If the raw p values are of the major interest, set
perm.no to at least 999.

link.func a list of transformation functions for the feature data or the ratios. Based on our
experience, square-root transformation is a robust choice for many datasets.

ref.pct percentage of reference taxa. The default is 0.5.

stage.no the number of stages if multiple-stage normalization is used. The default is 6.

excl.pct the maximum percentage of significant features (nominal p-value < 0.05) in the
reference set that should be removed. Only relevant when multiple-stage nor-
malization is used.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value
A named list containing the set of parameters for DA_ZicoSeq method.

See Also

DA_ZicoSeq

Examples

Set some basic combinations of parameters for ZicoSeq
 feature.dat.type = "count", winsor.end = "top")
many_ZicoSeq <- set.ZicoSeq(contrast = c("group", "B", "A"),
 feature.dat.type = "count", outlier.pct = c(0.03, 0.05),
 winsor.end = "top", is.post.sample = c(TRUE, FALSE))
weights_ZINB

Description

Computes the observational weights of the counts under a zero-inflated negative binomial (ZINB) model. For each count, the ZINB distribution is parametrized by three parameters: the mean value and the dispersion of the negative binomial distribution, and the probability of the zero component.

Usage

weights_ZINB(
 object,
 assay_name = "counts",
 design,
 K = 0,
 commondispersion = TRUE,
 zeroinflation = TRUE,
 verbose = FALSE,
 ...
)

Arguments

object a phyloseq or TreeSummarizedExperiment object.
assay_name the name of the assay to extract from the TreeSummarizedExperiment object (default assayName = "counts"). Not used if the input object is a phyloseq.
design character name of the metadata columns, formula, or design matrix with rows corresponding to samples and columns to coefficients to be estimated (the user needs to explicitly include the intercept in the design).
K integer. Number of latent factors.
commondispersion Whether or not a single dispersion for all features is estimated (default TRUE).
zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial model is fitted instead.
verbose Print helpful messages.
... Additional parameters to describe the model, see zinbModel.

Value

A matrix of weights.

See Also

zinbFit for zero-inflated negative binomial parameters' estimation and computeObservationalWeights for weights extraction.
Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
 phyloseq::sample_data(metadata))
Calculate the ZINB weights
zinbweights <- weights_ZINB(object = ps, K = 0, design = "- 1")
Index

* datasets
 microbial_metabolism, 63
 ps_plaque_16S, 86
 ps_stool_16S, 87
* internal
 plotConcordanceDendrogram, 70
 plotConcordanceHeatmap, 70
addKnowledge, 4, 12, 44
AddMetaData, 41
aldex, 21
ancom, 23
ancombc, 23
areaCAT, 5, 10
BiocParallelParam, 89, 92
calcNormFactors, 63, 66, 67
CAT, 7
checkNormalization, 8
computeObservationalWeights, 115
createColors, 8
createConcordance, 5–7, 9, 69–71
createEnrichment, 4, 11, 44, 71, 73, 80
createMocks, 13, 19, 89
createPositives, 14, 57, 82
CreateSeuratObject, 41
createSplits, 17, 92
createTIEC, 18, 74, 76–78
DA_ALDEx2, 19, 95
DA_ANCOM, 21, 97
DA_basic, 23, 98
DA_dearseq, 24, 99
DA_DESeq2, 26, 100
DA_edgeR, 27, 102
DA_limma, 29, 103
DA_linda, 31, 104
DA_Maaslin2, 32, 106
DA_MAST, 34, 107
DA_metagenomeSeq, 35, 108
DA_mixMC, 37, 109
DA_NOISeq, 38, 110
DA_Seurat, 24, 39, 112
DA_ZicoSeq, 42, 114
dear_seq, 25
DESeq, 27
DGEList, 29
enrichmentTest, 12, 44
estimateDisp, 29
estimateGLMRobustDisp, 29
estimateSizeFactors, 64, 65
extractDA, 12, 44, 45, 56
extractStatistics, 10, 47, 47, 59
FindMarkers, 41
FindVariableFeatures, 41
fitDM, 49, 52, 62
fitHURDLE, 50, 52, 62, 86
fitModels, 51, 79, 85
fitNB, 52, 52, 62
fitZIG, 52, 53, 62
fitZig, 36, 53
fitZINB, 52, 54, 62
get_counts_metadata, 60
getDA, 47, 54
getPositives, 16, 56, 82
getStatistics, 48, 56, 58
glmFit, 52
glmQLFit, 29
glmQLFTest, 29
iterative_ordering, 61
linda, 32
lmFit, 30
Maaslin2, 33
meanDifferences, 52, 62, 86, 87

117
set_linda, 103
set_Maaslin2, 105
set_MAST, 106
set_metagenomeSeq, 107
set_mixMC, 109
set_NOISeq, 110
set_Seurat, 111
set_ZicoSeq, 113
setNormalizations, 8, 63, 65, 67, 68, 91, 92, 93
splsda, 38
tune.splsda, 38
voom, 30
weights_ZINB, 115
ZicoSeq, 43
zinbFit, 54, 115
zinbModel, 115
zlm, 35, 50

results, 27
RMSE, 79, 85, 87
runDA, 88
runMocks, 89
runNormalizations, 63, 65, 67, 68, 90, 93
runSplits, 91
ScaleData, 41
set_ALDEex2, 94
set_ANCOM, 95
set_basic, 97
set_dearseq, 98
set_DESeq2, 99
set_edgeR, 101
set_limma, 102