Package ‘cellity’

May 29, 2024

Type Package
Title Quality Control for Single-Cell RNA-seq Data
Version 1.32.0
Date 2016-02-22
Author Tomislav Illicic, Davis McCarthy
Maintainer Tomislav Illicic <ti243@cam.ac.uk>
Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
License GPL (>= 2)
Depends R (>= 3.3)
Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils
Suggests BiocStyle, caret, knitr, testthat, rmarkdown
VignetteBuilder knitr
LazyData true
biocViews ImmunoOncology, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine
RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/cellity
git_branch RELEASE_3_19
git_last_commit cc1ebc6
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Description

cellity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

Usage

assess_cell_quality_PCA(features, file = "")
assess_cell_quality_SVM

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>features</td>
<td>Input dataset containing features (cell x features)</td>
</tr>
<tr>
<td>file</td>
<td>Output file where plot is saved</td>
</tr>
</tbody>
</table>

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality.

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively).

Examples

```r
data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)
```

assess_cell_quality_SVM

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

```r
assess_cell_quality_SVM(training_set_features, training_set_labels, 
ensemble_param, test_set_features)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>training_set_features</td>
<td>A training set containing features (cells x features) for prediction</td>
</tr>
<tr>
<td>training_set_labels</td>
<td>Annotation of each individual cell if high or low quality (1 or 0 respectively)</td>
</tr>
<tr>
<td>ensemble_param</td>
<td>Dataframe of parameters for SVM</td>
</tr>
<tr>
<td>test_set_features</td>
<td>Dataset to predict containing features (cells x features)</td>
</tr>
</tbody>
</table>

Details

This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised.
extract_features

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

data.frame with decision on quality of cells

Examples

data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM(
training_mES_features_all, training_mES_labels[,2], param_mES_all, mES1_features_all)

data("")
data("")
data("")
data("")
data("")

extract_features Extracts biological and technical features for given dataset

Description

Extracts biological and technical features for given dataset

Usage

extract_features(counts_nm, read_metrics, prefix = "", output_dir = "",
common_features = NULL, GO_terms = NULL, extra_genes = NULL,
organism = "mouse")

Arguments

counts_nm Gene expression counts dataframe (genes x cells). Either normalised by library
size or TPM values
read_metrics Dataframe with mapping statistics produced by python pipeline
prefix Prefix of output files
output_dir Output directory of files
common_features Subset of features that are applicable within one species, but across cell types
GO_terms Dataframe with gene ontology term IDs, that will be used in feature extraction
extra_genes Additional genes used for feature extraction
organism The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and
technical features, which than can be used for quality data analysis
extra_human_genes

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```r
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)
```

extra_human_genes
Additional human genes that are used in feature extraction

Description

This list contains human genes that are used for feature extraction of biological features.

Usage

```r
extra_human_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute
extra_mouse_genes
Additional mouse genes that are used in feature extraction

Description
This list contains mouse genes that are used for feature extraction of biological features.

Usage
```r
extra_mouse_genes
```

Format
a list containing vectors of genes. Name indicates which GO category.

Value
NULL, but makes available a list with metadata.

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

feature_generation
Helper Function to create all features

Description
Helper Function to create all features

Usage
```r
feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism)
```

Arguments
- `counts_nm`: Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values.
- `read_metrics`: Dataframe with mapping statistics produced by python pipeline.
- `GO_terms`: DataFrame with gene ontology term IDs, that will be used in feature extraction.
- `extra_genes`: Additional genes used for feature extraction.
- `organism`: The target organism to generate the features for.
feature_info

Value

Returns the entire set of features in a data.frame

Description

Information which genes and GO categories should be included as features. Also defines which features are cell-type independent (common features)

Usage

feature_info

Format

A list with 2 elements (GO_terms, common_features).

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_features

Real test dataset containing all and common features from the paper (mES1)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

mES1_features
Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

mES1_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute
multiplot

Internal multiplot function to combine plots onto a grid

Description

Internal multiplot function to combine plots onto a grid

Usage

multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)

Arguments

... individual plots to combine into a single plot
plotlist a vector with names of plots to use in the plot
file string giving filename to which pdf of plots is to be saved
cols integer giving number of columns for the plot
layout matrix defining the layout for the plots

Value

a plot object

normalise_by_factor

Internal function to normalize by library size

Description

Internal function to normalize by library size

Usage

normalise_by_factor(counts, norm_factor)

Arguments

counts matrix of counts
norm_factor vector of normalisation factors

Value

a matrix with normalized gene counts
param_mES_common

Examples

data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))

param_mES_all
Parameters used for SVM classification

Description
This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data

Usage
param_mES_all

Format
a dataframe with 3 columns (gamma, cost, class.weights).

Value
NULL, but makes available a dataframe with parameters

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

param_mES_common
Parameters used for SVM classification

Description
This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data

Usage
param_mES_common
plot_pca

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

| plot_pca | Plots PCA of all features. Colors high and low quality cells based on outlier detection. |

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```r
plot_pca(features, annot, pca, col, output_file)
```

Arguments

- `features`: Input dataset containing features (cell x features)
- `annot`: Matrix annotation of each cell
- `pca`: PCA of features
- `col`: color code indicating what color high and what low quality cells
- `output_file`: where plot is stored

Details

This function plots PCA of all features + most informative features

Value

Plots of PCA
Sample Counts

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts.

Usage

`sample_counts`

Format

a dataframe with genes x cells

Value

NULL, but makes available a dataframe with raw read counts

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

Sample Stats

Description

This data frame contains read metrics (columns) and cells (rows).

Usage

`sample_stats`

Format

a dataframe with cells x metrics

Value

NULL, but makes available a dataframe with read statistics
simple_cap

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

simple_cap
Converts all first letters to capital letters

Description
Converts all first letters to capital letters

Usage
simple_cap(x)

Arguments
x string

Value
a character vector in title case

sum_prop
Sums up normalised values of genes to groups.

Description
Supports TPM and proportion of mapped reads.

Usage
sum_prop(counts, genes_interest)

Arguments
counts Normalised gene expression count matrix
genes_interest dataframe of genes of interest to merge

Value
a vector of sums per group
training_mES_features Original training dataset containing all and common features from the paper (training mES)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

training_mES_features

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

training_mES_labels Original training dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

training_mES_labels

Format

a dataframe with 2 columns (cell_names, label).
uni.plot

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

uni.plot

Internal function to detect outliers from the mvoutlier package Modified slightly so that plots are not printed

Description

Internal function to detect outliers from the mvoutlier package Modified slightly so that plots are not printed

Usage

uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)

Arguments

- x
 A matrix containing counts
- symb
 Symbols
- quan
 quan
- alpha
 alpha

Value

a list of outlier indicators
Index

assess_cell_quality_PCA, 2
assess_cell_quality_SVM, 3

cellity-package, 2

extra_human_genes, 5
extra_mouse_genes, 6
extract_features, 4

feature_generation, 6
feature_info, 7

mES1_features, 7
mES1_labels, 8
multiplot, 9

normalise_by_factor, 9

param_mES_all, 10
param_mES_common, 10
plot_pca, 11

sample_counts, 12
sample_stats, 12
simple_cap, 13
sum_prop, 13

training_mES_features, 14
training_mES_labels, 14

uni.plot, 15