Package ‘cellity’

March 22, 2024

Type Package
Title Quality Control for Single-Cell RNA-seq Data
Version 1.30.0
Date 2016-02-22
Author Tomislav Illicic, Davis McCarthy
Maintainer Tomislav Ilicic <ti243@cam.ac.uk>
Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
License GPL (>= 2)
Depends R (>= 3.3)
Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils
Suggests BiocStyle, caret, knitr, testthat, rmarkdown
VignetteBuilder knitr
LazyData true
biocViews ImmunoOncology, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine
RoxygenNote 5.0.1
git_url https://git.bioconductor.org/packages/cellity
git_branch RELEASE_3_18
git_last_commit 7c96f28
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-22
R topics documented:

- cellity-package
- assess_cell_quality_PCA
- assess_cell_quality_SVM
- extract_features
- extra_human_genes
- extra_mouse_genes
- feature_generation
- feature_info
- mES1_features
- mES1_labels
- multiplot
- normalise_by_factor
- param_mES_all
- param_mES_common
- plot_pca
- sample_counts
- sample_stats
- simple_cap
- sum_prop
- training_mES_features
- training_mES_labels
- uni.plot

Index

- cellity-package
- Quality Control for Single-Cell RNA-seq Data

Description

celltity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

assess_cell_quality_PCA

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Description

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Usage

assess_cell_quality_PCA(features, file = "")
assess_cell_quality_SVM

Arguments

features
Input dataset containing features (cell x features)

file
Output file where plot is saved

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

Examples

data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
testing_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)

assess_cell_quality_SVM

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

assess_cell_quality_SVM(training_set_features, training_set_labels,
ensemble_param, test_set_features)

Arguments

training_set_features
A training set containing features (cells x features) for prediction

training_set_labels
Annotation of each individual cell if high or low quality (1 or 0 respectively)

ensemble_param
Dataframe of parameters for SVM

test_set_features
Dataset to predict containing features (cells x features)

Details

This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised.
extract_features

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)
data.frame with decision on quality of cells

Examples

data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM(training_mES_features_all,
training_mES_labels[,2], param_mES_all, mES1_features_all)

extract_features

Extracts biological and technical features for given dataset

Description

Extracts biological and technical features for given dataset

Usage

extract_features(counts_nm, read_metrics, prefix = "", output_dir = "",
common_features = NULL, GO_terms = NULL, extra_genes = NULL,
organism = "mouse")

Arguments

counts_nm Gene expression counts dataframe (genes x cells). Either normalised by library
size or TPM values
read_metrics Dataframe with mapping statistics produced by python pipeline
prefix Prefix of output files
output_dir Output directory of files
common_features Subset of features that are applicable within one species, but across cell types
GO_terms DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes Additional genes used for feature extraction
organism The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and
technical features, which than can be used for quality data analysis
extra_human_genes

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```r
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)
```

Description

This list contains human genes that are used for feature extraction of biological features

Usage

```r
extra_human_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute
extra_mouse_genes
Additional mouse genes that are used in feature extraction

Description

This list contains mouse genes that are used for feature extraction of biological features.

Usage

```r
extra_mouse_genes
```

Format

A list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata.

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

feature_generation
Helper Function to create all features

Description

Helper Function to create all features.

Usage

```r
feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism)
```

Arguments

- **counts_nm**: Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values.
- **read_metrics**: Dataframe with mapping statistics produced by python pipeline.
- **GO_terms**: DataFrame with gene ontology term IDs, that will be used in feature extraction.
- **extra_genes**: Additional genes used for feature extraction.
- **organism**: The target organism to generate the features for.
feature_info

Value

Returns the entire set of features in a data.frame

Description

This list contains metadata information that is used to extract features from in the function `extract_features`.

Usage

```
feature_info
```

Format

```
a list with 2 elements (GO_terms,common_features).
```

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_features

Real test dataset containing all and common features from the paper (mES1)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

```
mES1_features
```
Format

A list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_labels

Real test dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

mES1_labels

Format

A dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute
multiplot

Internal multiplot function to combine plots onto a grid

Description

Internal multiplot function to combine plots onto a grid

Usage

`multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)`

Arguments

- `...` individual plots to combine into a single plot
- `plotlist` a vector with names of plots to use in the plot
- `file` string giving filename to which pdf of plots is to be saved
- `cols` integer giving number of columns for the plot
- `layout` matrix defining the layout for the plots

Value

a plot object

normalise_by_factor

Internal function to normalize by library size

Description

Internal function to normalize by library size

Usage

`normalise_by_factor(counts, norm_factor)`

Arguments

- `counts` matrix of counts
- `norm_factor` vector of normalisation factors

Value

a matrix with normalized gene counts
Examples

```r
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
```

param_mES_all

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data

Usage

```r
param_mES_all
```

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

param_mES_common

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data

Usage

```r
param_mES_common
```
plot_pca

Format

- a dataframe with 3 columns (gamma, cost, class.weights).

Value

- NULL, but makes available a dataframe with parameters

Author(s)

- Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

- Wellcome Trust Sanger Institute

plot_pca

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```r
plot_pca(features, annot, pca, col, output_file)
```

Arguments

- `features`: Input dataset containing features (cell x features)
- `annot`: Matrix annotation of each cell
- `pca`: PCA of features
- `col`: color code indicating what color high and what low quality cells
- `output_file`: where plot is stored

Details

- This function plots PCA of all features + most informative features

Value

- Plots of PCA
sample_counts

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts.

Usage

```
sample_counts
```

Format

```
a dataframe with genes x cells
```

Value

NULL, but makes available a dataframe with raw read counts.

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

sample_stats

Description

This data frame contains read metrics (columns) and cells (rows).

Usage

```
sample_stats
```

Format

```
a dataframe with cells x metrics
```

Value

NULL, but makes available a dataframe with read statistics.
simple_cap

Description

Converts all first letters to capital letters

Usage

```r
simple_cap(x)
```

Arguments

- **x**
 - string

Value

a character vector in title case

sum_prop

Sums up normalised values of genes to groups.

Description

Supports TPM and proportion of mapped reads.

Usage

```r
sum_prop(counts, genes_interest)
```

Arguments

- **counts**
 - Normalised gene expression count matrix
- **genes_interest**
 - dataframe of genes of interest to merge

Value

a vector of sums per group
training_mES_features
Original training dataset containing all and common features from the paper (training mES)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

```
training_mES_features
```

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Illicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

training_mES_labels
Original training dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

```
training_mES_labels
```

Format

a dataframe with 2 columns (cell_names, label).
uni.plot

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

uni.plot

Internal function to detect outliers from the mvoutlier package Modified slightly so that plots are not printed

Description

Internal function to detect outliers from the mvoutlier package Modified slightly so that plots are not printed

Usage

`uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)`

Arguments

- `x` A matrix containing counts
- `symb` Symbols
- `quan` quan
- `alpha` alpha

Value

a list of outlier indicators
Index

assess_cell_quality_PCA, 2
assess_cell_quality_SVM, 3

cellity-package, 2
extra_human_genes, 5
extra_mouse_genes, 6
extract_features, 4

feature_generation, 6
feature_info, 7

mES1_features, 7
mES1_labels, 8
multiplot, 9

normalise_by_factor, 9

param_mES_all, 10
param_mES_common, 10
plot_pca, 11

sample_counts, 12
sample_stats, 12
simple_cap, 13
sum_prop, 13

training_mES_features, 14
training_mES_labels, 14

uni.plot, 15