Package ‘cleaver’

March 13, 2024

Version 1.40.0
Title Cleavage of Polypeptide Sequences
Maintainer Sebastian Gibb <mail@sebastiangibb.de>
Depends R (>= 3.0.0), methods, Biostrings (>= 1.29.8)
Imports S4Vectors, IRanges
Suggests testthat (>= 0.8), knitr, BiocStyle (>= 0.0.14), rmarkdown, BRAIN, UniProt.ws (>= 2.36.5)
Description In-silico cleavage of polypeptide sequences. The cleavage rules are taken from:
License GPL (>= 3)
URL https://github.com/sgibb/cleaver/
BugReports https://github.com/sgibb/cleaver/issues/
LazyLoad yes
VignetteBuilder knitr
biocViews Proteomics
git_url https://git.bioconductor.org/packages/cleaver
git_branch RELEASE_3_18
git_last_commit 180eed4
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-13
Author Sebastian Gibb [aut, cre] (<https://orcid.org/0000-0001-7406-4443>)

R topics documented:
cleaver-package ... 2
cleave-methods ... 2

Index 9
Description

This package cleaves polypeptide sequences. It provides three functions: `cleave`, `cleavageRanges` and `cleavageSites`.

Details

The cleavage rules are taken from: https://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html

Package: cleaver
License: GPL (>= 3)
URL: https://github.com/sgibb/cleaver/

Author(s)

Sebastian Gibb <mail@sebastian-gibb.de>

References

https://github.com/sgibb/cleaver/

See Also

cleave, cleavageRanges and cleavageSites.
Usage

```r
## S4 method for signature 'character'
cleave(x, enzym = "trypsin", missedCleavages = 0,
       custom = NULL, unique = TRUE)

## S4 method for signature 'AAString'
cleave(x, enzym = "trypsin", missedCleavages = 0,
       custom = NULL, unique = TRUE)

## S4 method for signature 'AAStringSet'
cleave(x, enzym = "trypsin", missedCleavages = 0,
       custom = NULL, unique = TRUE)

## S4 method for signature 'character'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
                custom = NULL)

## S4 method for signature 'AAString'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
                custom = NULL)

## S4 method for signature 'AAStringSet'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
                custom = NULL)

## S4 method for signature 'character'
cleavageSites(x, enzym = "trypsin", custom = NULL)

## S4 method for signature 'AAString'
cleavageSites(x, enzym = "trypsin", custom = NULL)

## S4 method for signature 'AAStringSet'
cleavageSites(x, enzym = "trypsin", custom = NULL)
```

Arguments

- `x` polypeptide sequences.
- `enzym` character, cleavage rule.
- `missedCleavages` numeric, number of missed cleavages.
- `custom` character, of length 1 or 2. Could be used to define own cleavage rules. The first element would be the pattern and the optional second element would be an exception (non-cleavage) pattern. Perl-like regular expressions are supported, see `gregexpr` for details. If `custom` is set the `enzym` is ignored.
- `unique` logical, if TRUE all duplicated cleavage products per peptide are removed.
Details

The cleavage rules are taken from: https://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html

Cleavage rules (cleavage between P1 and P1'):

<table>
<thead>
<tr>
<th>Rule name</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>arg-c proteinase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>asp-n endopeptidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>bnps-skatole-c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>caspase2</td>
<td>D</td>
<td>V</td>
<td>A</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase3</td>
<td>D</td>
<td>M</td>
<td>Q</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase4</td>
<td>L</td>
<td>E</td>
<td>V</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase5</td>
<td>L,W</td>
<td>E</td>
<td>H</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>caspase6</td>
<td>V</td>
<td>E</td>
<td>H,I</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase7</td>
<td>D</td>
<td>E</td>
<td>V</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase8</td>
<td>I,L</td>
<td>E</td>
<td>T</td>
<td>D</td>
<td>not P,E,D,Q,K,R</td>
</tr>
<tr>
<td>caspase9</td>
<td>L</td>
<td>E</td>
<td>H</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>caspase10</td>
<td>I</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>chymotrypsin-high</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F,Y</td>
<td>not P</td>
</tr>
<tr>
<td>chymotrypsin-low</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F,L,Y</td>
<td>not P</td>
</tr>
<tr>
<td>clostripain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>not M,P</td>
</tr>
<tr>
<td>cnbr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>enterokinase</td>
<td>D,E</td>
<td>D,E</td>
<td>D,E</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>factor xa</td>
<td>A,F,G,I,L,T,V,M</td>
<td>D,E</td>
<td>G</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>glutamyl endopeptidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>granzyme-b</td>
<td>I</td>
<td>E</td>
<td>P</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>hydroxylamine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N</td>
<td>G</td>
</tr>
<tr>
<td>iodosobenzoic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>lycsc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>lysn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>neutrophil elastase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A,V</td>
<td>-</td>
</tr>
<tr>
<td>ntcb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>pepsin1.3</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>not R</td>
</tr>
<tr>
<td>pepsin</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>not R</td>
</tr>
<tr>
<td>proline endopeptidase</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>not P</td>
</tr>
<tr>
<td>proteinase k</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>not P</td>
</tr>
<tr>
<td>staphylococcal peptidase i</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A,E,F,I,L,T,V,W,Y</td>
<td>-</td>
</tr>
<tr>
<td>thrombin</td>
<td>-</td>
<td>-</td>
<td>not E</td>
<td>E</td>
<td>not D,E</td>
</tr>
<tr>
<td>Rule name</td>
<td>Enzyme name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trypsin</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K,R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exceptions:

<table>
<thead>
<tr>
<th>Rule name</th>
<th>Enzyme name</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P1’</th>
<th>P2’</th>
</tr>
</thead>
<tbody>
<tr>
<td>trypsin</td>
<td>-</td>
<td>C,D</td>
<td>K</td>
<td>D</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>C</td>
<td>K</td>
<td>H,Y</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>C</td>
<td>R</td>
<td>K</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>H,R</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule name Enzyme name
arg-c proteinase Arg-C proteinase
asp-n endopeptidase Asp-N endopeptidase
bnps-skatole-c BNPS-Skatole
caspase1 Caspase 1
caspase2 Caspase 2
caspase3 Caspase 3
caspase4 Caspase 4
caspase5 Caspase 5
caspase6 Caspase 6
caspase7 Caspase 7
caspase8 Caspase 8
caspase9 Caspase 9
caspase10 Caspase 10
chymotrypsin-high Chymotrypsin-high specificity (C-term to [FYW], not before P)
chymotrypsin-low Chymotrypsin-low specificity (C-term to [FYWML], not before P)
clostripain Clostripain (Clostridiopeptidase B)
cnbr CNBr
enterokinase Enterokinase
factor xa Factor Xa
formic acid Formic acid
glutamyl endopeptidase Glutamyl endopeptidase
granzyme-b Granzyme B
hydroxylamine Hydroxylamine
iodosobenzoic acid Iodosobenzoic acid
lysc LysC
lysn LysN
neutrophil elastase Neutrophil elastase
ntcb NTCB (2-nitro-5-thiocyanobenzoic acid)
pepsin1.3 Pepsin (pH == 1.3)
pepsin Pepsin (pH > 2)
proline endopeptidase Proline-endopeptidase
proteinase k Proteinase K
Value

cleave If x is a character it returns a list of the same length as x. Each element contains a character vector with the corresponding cleavage products of the polypeptides. If x is an AAString or an AAStringSet an AAStringSet or an AAStringSetList instance of the same length as x is returned. Each element contains an AAString or an AAStringSet instance with the corresponding cleavage products of the polypeptides.

cleavageRanges If x is a character it returns a list of the same length as x. Each element contains a two-column matrix with the start and end positions of the peptides. If x is an AAString or an AAStringSet instance an IRanges or an IRangesList of the same length as x is returned.

cleavageSites Returns a list of the same length as x. Each element contains an integer vector with the cleavage positions.

Overview:

<table>
<thead>
<tr>
<th>Input</th>
<th>cleave</th>
<th>cleavageRanges</th>
<th>cleavageSites</th>
</tr>
</thead>
<tbody>
<tr>
<td>character</td>
<td>list of character</td>
<td>list of matrix</td>
<td>list of integer</td>
</tr>
<tr>
<td>AAString</td>
<td>AAStringSet</td>
<td>IRanges</td>
<td>list of integer</td>
</tr>
<tr>
<td>AAStringSet</td>
<td>AAStringSetList</td>
<td>IRangesList</td>
<td>list of integer</td>
</tr>
</tbody>
</table>

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

See Also

AAString, AAStringSet, AAStringSetList, IRanges, IRangesList

Examples

library("cleaver")

Gastric juice peptide 1 (UniProtKB/Swiss-Prot: GAJU_HUMAN/P01358)
gaju <- "LAAGKVEDSD"
cleeve-methods

cleeve(gaju, "trypsin")
$LAAGKVEDSD
[1] "LAAGK" "VEDSD"

cleeavageRanges(gaju, "trypsin")
$LAAGKVEDSD
start end
[1,] 1 5
[2,] 6 10

cleeavageSites(gaju, "trypsin")
$LAAGKVEDSD
[1] 5

cleeve(gaju, "trypsin", missedCleavages=1)
$LAAGKVEDSD
[1] "LAAGKVEDSD"

cleeavageRanges(gaju, "trypsin", missedCleavages=1)
$LAAGKVEDSD
start end
[1,] 1 10

cleeve(gaju, "trypsin", missedCleavages=0:1)
$LAAGKVEDSD
[1] "LAAGK" "VEDSD" "LAAGKVEDSD"

cleeavageRanges(gaju, "trypsin", missedCleavages=0:1)
$LAAGKVEDSD
start end
[1,] 1 5
[2,] 6 10
[3,] 1 10

cleeve(gaju, "pepsin")
$LAAGKVEDSD
[1] "LAAGKVEDSD"
(no cleavage)

use AAStringSet
gaju <- AAStringSet("LAAGKVEDSD")

cleeve(gaju)
AAStringSetList of length 1
[["LAAGKVEDSD"] LAAGK VEDSD

Beta-enolase (UniProtKB/Swiss-Prot: ENOB_THUAL/P86978)
enob <- "SITIKAREILD"

cleeve(enob, "trypsin")
$SITKIKAREILD
[1] "SITK" "IK" "AR" "EILD"

cleave(enob, "trypsin", missedCleavages=2)
$SITKIKAREILD
[1] "SITKIKAR" "IKAREILD"

cleave(enob, "trypsin", missedCleavages=0:2)
$SITKIKAREILD
[1] "SITK" "IK" "AR" "EILD" "SITKIK" "IKAR" "AREILD" "SITKIKAR" "IKAREILD"

define own cleavage rule: cleave at K

cleave(enob, custom="K")
$SITKIKAREILD
[1] "SITK" "IK" "AREILD"

cleavageRanges(enob, custom="K")
$SITKIKAREILD
start end
[1,] 1 4
[2,] 5 6
[3,] 7 12

define own cleavage rule: cleave at K but not if followed by A

cleave(enob, custom=c("K", "K(?=A)"))
$SITKIKAREILD
[1] "SITK" "IKAREILD"

cleavageRanges(enob, custom=c("K", "K(?=A)"))
$SITKIKAREILD
start end
[1,] 1 4
[2,] 5 12

cleavageSites(enob, custom=c("K", "K(?=A)"))
$SITKIKAREILD
[1] 4
Index

* methods
 cleave-methods, 2
* package
 cleaver-package, 2

AAString, 6
AAStringSet, 6
AAStringSetList, 6
cleavageRanges, 2
cleavageRanges (cleave-methods), 2
cleavageRanges, AAString-method
 (cleave-methods), 2
cleavageRanges, AAStringSet-method
 (cleave-methods), 2
cleavageRanges, character-method
 (cleave-methods), 2
cleavageSites, 2
cleavageSites (cleave-methods), 2
cleavageSites, AAString-method
 (cleave-methods), 2
cleavageSites, AAStringSet-method
 (cleave-methods), 2
cleavageSites, character-method
 (cleave-methods), 2
cleave, 2
cleave (cleave-methods), 2
cleave, AAString-method
 (cleave-methods), 2
cleave, AAStringSet-method
 (cleave-methods), 2
cleave, character-method
 (cleave-methods), 2
cleave-methods, 2
cleaver-package, 2
gregexpr, 3
IRanges, 6
IRangesList, 6