Package ‘clst’

March 27, 2024

Type Package
Title Classification by local similarity threshold
Version 1.50.0
Depends R (>= 2.10)
Imports ROC, lattice
Suggests RUnit
LazyLoad yes
LazyData yes
Author Noah Hoffman
Maintainer Noah Hoffman <ngh2@uw.edu>
Description Package for modified nearest-
neighbor classification based on calculation of a similarity threshold distinguishing within-
group from between-group comparisons.
License GPL-3
biocViews Classification
git_url https://git.bioconductor.org/packages/clst
git_branch RELEASE_3_18
git_last_commit 203089b
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27

R topics documented:

clst-package ... 2
actino ... 3
bvseqs ... 4
classify ... 5
findThreshold ... 7
plotDistances .. 9
Classification by local similarity threshold

Package for modified nearest-neighbor classification based on calculation of a similarity threshold distinguishing within-group from between-group comparisons.

Details

Package: clst
Type: Package
License: GPL-3
Author: Noah Hoffman <ngh2@uw.edu>

Index:

Further information is available in the following vignettes:

clstDemo clst (source, pdf)

TODO: write package overview.

Author(s)

Noah Hoffman
Maintainer: <ngh2@uw.edu>

See Also

cmdscale
Examples

```r
library(clst)
packageDescription("clst")
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
i <- 1
cc <- classify(dmat, groups, dvect=dmat[i,])
cat('query at i =',i,'is species',paste('I.', groups[i]),'\n')
printClst(cc)
i <- 125
cc <- classify(dmat, groups, dvect=dmat[i,])
cat('query at i =',i,'is species',paste('I.', groups[i]),'\n')
printClst(cc)
```

actino Actinomyces data set

Description

Square matrices describing pairwise distances among 16s rRNA sequences.

Usage

data(actino)

Format

List of 5

$ dmat1 : num [1:146, 1:146] 0 0.763 1.25 10.345 12.771 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:146] "200" "201" "202" "203" ...
 $: chr [1:146] "200" "201" "202" "203" ...
$ dmat2 : num [1:146, 1:146] 0 0.574 1.044 5.669 8.409 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:146] "200" "201" "202" "203" ...
 $: chr [1:146] "200" "201" "202" "203" ...
$ dmat3 : num [1:146, 1:146] 0 0.763 1.25 8.571 11.233 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:146] "200" "201" "202" "203" ...
 $: chr [1:146] "200" "201" "202" "203" ...
$ taxa : Factor w/ 33 levels "Actinomyces bowdenii",...: 12 12 12 23 20 20 8 22 12 20 ...
$ abbrev: Factor w/ 33 levels "A bowdenii","A canis",...: 12 12 12 23 20 20 8 22 12 20 ...

Details

The matrices $dmat1$, $dmat2$, and $dmat3$ contain percent nucleotide difference with indels penalized heavily, little, and somewhat, respectively.

$taxa$ is a factor of species names; abbreviations of the same names are found in $abbrev$.
Examples

```r
data(actino)
```

bvseqs

BV reference set.

Description

Tree-derived pairwise distances and taxonomic assignments among 16S rRNA sequences representing bacteria represented in the vaginal mucosa.

Usage

```r
data(bvseqs)
```

Format

The format is:

List of 3

- `dmat`: num [1:448, 1:448] 0 0.0494 0.0968 0.1002 0.1606 ...

 attr(*, "dimnames")=List of 2

 ..$: chr [1:448] "S001098970" "S000859776" "S000539896" "S001352901" ...

 ..$: chr [1:448] "S001098970" "S000859776" "S000539896" "S001352901" ...

- `groupTab`: data.frame: 448 obs. of 12 variables:

 ..$ superkingdom: chr [1:448] "2" "2" "2" "2" ...

 ..$ superphylum: chr [1:448] NA NA NA NA ...

 ..$ phylum: chr [1:448] "1224" "1224" "1224" "1224" ...

 ..$ class: chr [1:448] "1236" "1236" "1236" "1236" ...

 ..$ subclass: chr [1:448] NA NA NA NA ...

 ..$ order: chr [1:448] "72274" "72274" "72274" "72274" ...

 ..$ suborder: chr [1:448] NA NA NA NA ...

 ..$ family: chr [1:448] "468" "468" "468" "468" ...

 ..$ genus: chr [1:448] "469" "469" "469" "469" ...

 ..$ species_group: chr [1:448] NA NA NA NA ...

 ..$ species_subgroup: chr [1:448] NA NA NA NA ...

 ..$ species: chr [1:448] "470" "470" "471" "470" ...

- `taxNames`: Named chr [1:212] "Actinomyces urogenitalis" "Lactobacillus jensenii" "Proteobacteria" "Gammaproteobacteria" ...

Details

(Describe creation of this data set)

Source

Sequences were assembled from both the RDP 16S rRNA database and from the laboratory of Dr. David Fredricks.
classify

References

RDP url here.

Examples

data(bvseqs)
maybe str(bvseqs); plot(bvseqs) ...

classify classify

Description

Functions to perform classification by local similarity threshold.

Usage

classify(dmat, groups, dvect, method = "mutinfo", minScore = 0.45,
doffset = 0.5, dStart = NA, maxDepth = 10, minGroupSize = 2,
objNames = names(dvect), keep.data = TRUE, ..., verbose = FALSE)
classifyIter(dmat, groupTab, dvect, dStart = NA, multiple = FALSE,
keep.data = TRUE, ..., verbose = FALSE)
classifier(dmat, groups, dvect, method = 'mutinfo', minScore = 0.45,
doffset = 0.5, dStart = NA, minGroupSize = 2,
objNames = names(dvect), keep.data = TRUE, ..., verbose = FALSE,
depth = 1)
pull(dmat, groups, index)
pullTab(dmat, groupTab, index)

Arguments

dmat Square matrix of pairwise distances.
groups Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
groupTab a data.frame representing a taxonomy, with columns in increasing order of specificity from left to right (ie, Kingdom -> Species). Column names are used to name taxonomic ranks. Rows correspond to margins of dmat.
dvect numeric vector of distance from query sequence to each reference corresponding to margins of dmat.
method The method for calculating the threshold; only 'mutinfo' is currently implemented.
minScore Threshold value for the match score to define a match.
doffset Offset used in the denominator of the expression to calculate match score to penalize very small groups of reference objects.
dStart Start with this value of D.
multiple If TRUE, stops at the rank that yields at least one match; if FALSE, continues to perform classification until exactly one match is identified.
maxDepth Maximum number of iterations that will be attempted to perform classification.
minGroupSize The minimal number of members comprising at least one group required to attempt classification.
objNames Optional character identifiers for objects corresponding to margin of dmat.
keep.data Populates thresh$distances (see findThreshold) if TRUE.
verbose Terminal output is produced if TRUE.
index An integer specifying an element in dmat
... see Details
depth Specifies iteration number (not meant to be user-defined)

details The function pull and pullTab are used to remove a single element of dmat for the purpose of performing classification agains the remaining elements. The value of these two functions (a list) can be passed directly to classify or classifyIter directly (see examples).

Value

classify and classifyIter return x, a list of lists, one for each iteration of the classifier. Each sub-list contains the following named elements:

- depth An integer indicating the number of the iteration (where x[[i]]$depth == i)
- tally A data frame with one row for each group or reference objects. Columns below and above contain counts of reference objects with distance values greater than or less than D, respectively; score, containing match score S; match is 1 if S ≥ minScore, 0 otherwise; and the minimum, median, and maximum values of distances to all members of the indicated group.
- details A list of two matrices, named "below" and "above", itemizing each object with index i in the reference set with distances below or above the distance threshold D, respectively. Columns include index, the index i; dist, the distance between the object and the query; and group, indicating the classification of the object.
- matches Character vector naming groups to which query object belongs.
- thresh Object returned by findThreshold
- params A list of input arguments and their values
- input List containing copies of dvect and groups
Author(s)
Noah Hoffman

See Also
findThreshold

Examples

illustrate classification using the Iris data set

data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species

remove one element from the data set and perform classification using
the remaining elements as the reference set
ind <- 1
cat(paste('class of "unknown" sample is Iris', groups[ind]), fill=TRUE)
c <- classify(dmat[-ind,-ind], groups[-ind], dvect=dmat[ind, -ind])
printClst(c)

this operation can be performed conveniently using the `pull` function
ind <- 51
cat(paste('class of "unknown" sample is Iris', groups[ind]), fill=TRUE)
c <- do.call(classify, pull(dmat, groups, ind))
printClst(c)
str(c)

findThreshold
findThreshold

Description

Identify a distance threshold predicting whether a pairwise distance represents a comparison between objects in the same class (within-group comparison) or different classes (between-group comparison) given a matrix providing distances between objects and the group membership of each object.

Usage

findThreshold(dmat, groups, distances, method = "mutinfo", prob = 0.5,
na.rm = FALSE, keep.dists = TRUE, roundCuts = 2, minCuts =
20, maxCuts = 300, targetCuts = 100, verbose = FALSE,
depth = 1, ...)

partition(dmat, groups, include, verbose = FALSE)
Arguments

dmat Square matrix of pairwise distances.
groups Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
include vector (numeric or boolean) indicating which elements to retain in the output; comparisons including an excluded element will have a value of NA
distances Optional output of partition provided in the place of dmat and groups
method The method for calculating the threshold; only 'mutinfo' is currently implemented.
prob Sets the upper and lower bounds of D as some quantile of the within class distances and between-class differences, respectively.
na.rm If TRUE, excludes NA elements in groups and corresponding rows and columns in dmat. Ignored if distances is provided.
keep.dists If TRUE, the output will contain the distances element (output of partition).
roundCuts Number of digits to round cutoff values (see Details)
minCuts Minimal length of vector of cutoffs (see Details).
maxCuts Maximal length of vector of cutoffs (see Details)
targetCuts Length of vector of cutoffs if conditions met by minCuts and maxCuts are not met (see Details).
verbose Terminal output is produced if TRUE.
deepth Private argument used to track level of recursion.
... Extra arguments are ignored.

Details

findThreshold is used internally in classify, but may also be used to calculate a starting value of SD$.$

partition is used to transform a square (or lower triangular) distance matrix into a data.frame containing a column of distances ($vals$) along with a factor ($comparison$) defining each distance as a within- or between-group comparison. Columns row and col provide indices of corresponding rows and columns of dmat.

Value

In the case of findThreshold, output is a list with elements described below. In the case of partition, output is the data.frame returned as the element named $distances$ in the output of findThreshold.

D The distance threshold (distance cutoff corresponding to the PMMI).
$pmmi$ Value of the point of maximal mutual information (PMMI)
interval A vector of length 2 indicating the upper and lower bounds over which values for the threshold are evaluated.
plotDistances

breaks A data.frame with columns x and y providing candidate breakpoints and corresponding mutual information values, respectively.
distances If keep.distances is TRUE, a data.frame containing pairwise distances identified as within- or between classes.
method Character corresponding to input argument method.
params Additional input parameters.

Author(s)

Noah Hoffman

See Also

plotDistances, plotMutinfo

Examples

data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
thresh <- findThreshold(dmat, groups, type="mutinfo")
str(thresh)

```r
plotDistances(
  distances, D = NA, interval = NA,
  ylab = "distances", ...)
```

```r
plotMutinfo(
  breaks, D = NA, interval = NA,
  xlab = "distance", ylab = "mutual information", ...)
```

Description

The functions plotDistances and plotMutinfo are used to visualize the distance threshold calculated by findThreshold in the context of pairwise distances among objects in the reference set.

Usage

```r
plotDistances(distances, D = NA, interval = NA,
  ylab = "distances", ...)
```

```r
plotMutinfo(breaks, D = NA, interval = NA,
  xlab = "distance", ylab = "mutual information", ...)
```

Arguments

distances The $distances element of the output value of findThreshold
breaks The $breaks element of the output value of findThreshold
D The distance threshold
interval The range of values over which candidate values of PMMI are evaluated.
xlab Label the x axis of the plot.
printClst

ylab Label the y axis of the plot.
... Additional arguments are passed to bwplot (plotDistances) or xyplot (plotMutinfo)

Details

plotDistances produces a box-and-whisker plot contrasting within- and between-group distances. plotMutinfo produces a plot of cutpoints vs mutual information scores.

Value

Returns a lattice grid object.

Author(s)

Noah Hoffman

See Also

findThreshold

Examples

data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
thresh <- findThreshold(dmat, groups)
do.call(plotDistances, thresh)
do.call(plotMutinfo, thresh)

printClst Print a summary of the classifier output.

Description

Prints a description of the output of classify.

Usage

printClst(cc, rows = 8, nameWidth = 30, groupNames)

Arguments

cc Output of classify
rows Number of rows corresponding to groups of reference objects to show.
nameWidth Character width of group names.
groupNames a named vector containing replacement names for groups keyed by categories in groups (classify) or groupTab (classifyIter).
scaleDistPlot

Value
Output value is NULL; output is to stdout.

Author(s)
Noah Hoffman

See Also
classify, classifyIter

Examples
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species

table

scaleDistPlot Annotated multidimensional scaling plots.

Description
Produces annotated representations of two-dimensional multidimensional scaling plots using cmdscale.

Usage
scaleDistPlot(dmat, groups, fill, X, O, indices = "no",
include, display, labels,
shuffleGlyphs = NA, key = "top",
keyCols = 4, glyphs,
xflip = FALSE, yflip = FALSE, ...)

Arguments
dmat Square matrix of pairwise distances.
groups Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
fill vector (logical or indices) of points to fill
X vector of points to mark with an X
O vector of points to mark with a circle
indices label points with indices (all points if 'yes', or a subset indicated by a vector)
include boolean or numeric vector of elements to include in call to cmdscale
display boolean or numeric vector of elements to include in call to display
labels list or data frame with parameters i indicating indices and $text$ containing labels.

shuffleGlyphs modify permutation of shapes and colors given an integer to serve as a random seed.

key 'right' (single column), 'top' (variable number of columns), or NULL for no key

keyCols number of columns in key

glyphs a data.frame with columns named col and pch corresponding to elements of unique(groups)

xflip if TRUE, flip orientation of x-axis

yflip if TRUE, flip orientation of y-axis

... additional arguments are passed to xyplot

Value

Returns a lattice grid object.

Author(s)

Noah Hoffman

See Also

cmdscale, xyplot

Examples

data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species

visualize pairwise euclidean dstances among items in the Iris data set
fig <- scaleDistPlot(dmat, groups)
plot(fig)

leave-one-out analysis of the classifier
loo <- lapply(seq_along(groups), function(i){
 do.call(classify, pull(dmat, groups, i))
})
matches <- lapply(loo, function(x) rev(x)[[1]]$matches)
result <- sapply(matches, paste, collapse='-')
confusion <- sapply(matches, length) > 1
no_match <- sapply(matches , length) < 1
plot(scaleDistPlot(dmat, groups, fill=confusion, O=confusion, X=no_match))
Streptococcus data set.

Description

Square matrices describing pairwise distances among 16s rRNA sequences.

Usage

data(strep)

Format

List of 5

$ dmat1 : num [1:150, 1:150] 0 5.81 8.38 10.28 10.64 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:150] "197" "199" "207" "208" ...
 $: chr [1:150] "197" "199" "207" "208" ...

$ dmat2 : num [1:150, 1:150] 0 5.09 3.82 7.21 7.59 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:150] "197" "199" "207" "208" ...
 $: chr [1:150] "197" "199" "207" "208" ...

$ dmat3 : num [1:150, 1:150] 0 5.63 5.81 8.77 9.14 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:150] "197" "199" "207" "208" ...
 $: chr [1:150] "197" "199" "207" "208" ...

$ taxa : Factor w/ 50 levels "Streptococcus acidominimus", ...
 : 31 44 26 4 31 ...

$ abbrev: Factor w/ 50 levels "S acidominimus", ...
 : 31 44 26 4 31 ...

Details

The matrices $dmat1, dmat2,$ and $dmat3$ contain percent nucleotide difference with indels penalized heavily, little, and somewhat, respectively.

$taxa$ is a factor of species names; abbreviations of the same names are found in $abbrev$.

Examples

data(strep)
Index

* **classif**
 classify, 5
 clst-package, 2
 findThreshold, 7
 plotDistances, 9

* **datasets**
 actino, 3
 bvseqs, 4
 strep, 13

* **package**
 clst-package, 2

actino, 3

bvseqs, 4

bwplot, 10

classifier (classify), 5
classify, 5, 8, 10, 11
classifyIter, 10, 11
classifyIter (classify), 5
clst (clst-package), 2
clst-package, 2
cmdscale, 2, 11, 12

findThreshold, 6, 7, 7, 9, 10

partition, 8

partition (findThreshold), 7

plotDistances, 9, 9

plotMutinfo, 9

plotMutinfo (plotDistances), 9

printClst, 10

pull (classify), 5

pullTab (classify), 5

scaleDistPlot, 11

strep, 13

xyplot, 10, 12