Package ‘clusterProfiler’

May 2, 2024

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A universal enrichment tool for interpreting omics data</td>
</tr>
<tr>
<td>Version</td>
<td>4.12.0</td>
</tr>
</tbody>
</table>

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Depends R (>= 3.5.0)

Imports AnnotationDbi, downloader, DOSE (>= 3.23.2), dplyr, enrichplot (>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr, igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr, utils, yulab.utils (>= 0.0.7)

Suggests AnnotationHub, knitr, jsonlite, readr, rmarkdown, org.Hs.eg.db, prettystem, BiocManager, testthat

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

BugReports https://github.com/GuangchuangYu/clusterProfiler/issues

biocViews Annotation, Clustering, GeneSetEnrichment, GO, KEGG, MultipleComparison, Pathways, Reactome, Visualization

Encoding UTF-8

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/clusterProfiler

git_branch RELEASE_3_19
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clusterProfiler-package</td>
<td>3</td>
</tr>
<tr>
<td>append_kegg_category</td>
<td>4</td>
</tr>
<tr>
<td>bitr</td>
<td>5</td>
</tr>
<tr>
<td>bitr_kegg</td>
<td>5</td>
</tr>
<tr>
<td>browseKEGG</td>
<td>6</td>
</tr>
<tr>
<td>compareCluster</td>
<td>6</td>
</tr>
<tr>
<td>DataSet</td>
<td>8</td>
</tr>
<tr>
<td>download_KEGG</td>
<td>8</td>
</tr>
<tr>
<td>dropGO</td>
<td>9</td>
</tr>
<tr>
<td>enrichDAVID</td>
<td>9</td>
</tr>
<tr>
<td>enricher</td>
<td>10</td>
</tr>
<tr>
<td>enrichGO</td>
<td>11</td>
</tr>
<tr>
<td>enrichKEGG</td>
<td>13</td>
</tr>
<tr>
<td>enrichMKEGG</td>
<td>14</td>
</tr>
<tr>
<td>enrichPC</td>
<td>15</td>
</tr>
<tr>
<td>enrichWP</td>
<td>16</td>
</tr>
<tr>
<td>getPPI</td>
<td>16</td>
</tr>
<tr>
<td>getTaxID</td>
<td>18</td>
</tr>
<tr>
<td>getTaxInfo</td>
<td>18</td>
</tr>
<tr>
<td>get_wp_organisms</td>
<td>19</td>
</tr>
<tr>
<td>Gff2GeneTable</td>
<td>19</td>
</tr>
<tr>
<td>go2ont</td>
<td>20</td>
</tr>
<tr>
<td>go2term</td>
<td>20</td>
</tr>
<tr>
<td>gofilter</td>
<td>21</td>
</tr>
<tr>
<td>groupGO</td>
<td>21</td>
</tr>
<tr>
<td>groupGOResult-class</td>
<td>22</td>
</tr>
<tr>
<td>GSEA</td>
<td>23</td>
</tr>
<tr>
<td>gseGO</td>
<td>24</td>
</tr>
<tr>
<td>gseKEGG</td>
<td>25</td>
</tr>
<tr>
<td>gseMKEGG</td>
<td>26</td>
</tr>
</tbody>
</table>
clusterProfiler-package

Description

This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [copyright holder]

Other contributors:

- Li-Gen Wang <reeganwang020@gmail.com> [contributor]
- Erqiang Hu <woshihuierqiang@qq.com> [contributor]
- Xiao Luo <17788085331490163.com> [contributor]
- Meijun Chen <mjchen1996@outlook.com> [contributor]
- Giovanni Dall’Olio <giovanni.dallolio@upf.edu> [contributor]
- Wanqian Wei <altair_wei@outlook.com> [contributor]
- Chun-Hui Gao <gaospecial@gmail.com> (ORCID) [contributor]
append_kegg_category

See Also

Useful links:

- Report bugs at https://github.com/GuangchuangYu/clusterProfiler/issues

Description

add KEGG pathway category information

Usage

append_kegg_category(x)

Arguments

x KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of `enrichKEGG` or `gseKEGG`)

Value

update KEGG enrichment result with category information

Author(s)

Guangchuang Yu
bitr

Description

Biological Id TReanslator

Usage

```r
bitr(geneID, fromType, toType, OrgDb, drop = TRUE)
```

Arguments

- `geneID`: input gene id
- `fromType`: input id type
- `toType`: output id type
- `OrgDb`: annotation db
- `drop`: drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu

bitr_kegg

Description

convert biological ID using KEGG API

Usage

```r
bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)
```

Arguments

- `geneID`: input gene id
- `fromType`: input id type
- `toType`: output id type
- `organism`: supported organism, can be search using search_kegg_organism function
- `drop`: drop NA or not
Value
data.frame

Author(s)
Guangchuang Yu

browseKEGG

Description
open KEGG pathway with web browser

Usage
browseKEGG(x, pathID)

Arguments
x an instance of enrichResult or gseaResult
pathID pathway ID

Value
url

Author(s)
Guangchuang Yu

compareCluster

Description
Given a list of gene set, this function will compute profiles of each gene cluster.

Usage

```r
compareCluster(
  geneClusters,
  fun = "enrichGO",
  data = "",
  source_from = NULL,
  ...
)
```
compareCluster

Arguments

- `geneClusters` a list of entrez gene id. Alternatively, a formula of type `Entrez ~ group` or a formula of type `Entrez | logFC ~ group` for "gseGO", "gseKEGG" and "GSEA".
- `fun` One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
- `data` if geneClusters is a formula, the data from which the clusters must be extracted.
- `source_from` If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.
- `...` Other arguments.

Value

A clusterProfResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

- `compareClusterResult-class`
- `groupGO`, `enrichGO`

Examples

```r
## Not run:
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
                     organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

## formula interface
mydf <- data.frame(Entrez=c("1", "100", "1000", "100101467",
                            "100127206", "100128071"),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c("A", "A", "A", "B", "B", "B"),
                   othergroup = c("good", "good", "bad", "bad", "good", "bad"))
xx.formula <- compareCluster(Entrez~group, data=mydf,
                             fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula)

## formula interface with more than one grouping variable
xx.formula.twogroups <- compareCluster(Entrez~group+othergroup, data=mydf,
                                        fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula.twogroups)

## End(Not run)
```
Description

Datasets gcSample contains a sample of gene clusters.

Datasets kegg_species contains kegg species information

Datasets kegg_category contains kegg pathway category information

Datasets DE_GSE8057 contains differential expressed genes obtained from GSE8057 dataset

download_KEGG

download the latest version of KEGG pathway/module

Usage

```
download_KEGG(species, keggType = "KEGG", keyType = "kegg")
```

Arguments

- `species`
- `keggType` one of 'KEGG' or 'MKEGG'
- `keyType` supported keyType, see bitr_kegg

Value

list

Author(s)

Guangchuan Yu
dropGO

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

dropGO(x, level = NULL, term = NULL)

Arguments

- **x**: an instance of 'enrichResult' or 'compareClusterResult'
- **level**: GO level
- **term**: GO term

Value

modified version of x

Author(s)

Guangchuang Yu

enrichDAVID

Description

enrichment analysis by DAVID

Usage

enrichDAVID(

gene,
idType = "ENTREZ_GENE_ID",
universe,
minGSSize = 10,
maxGSSize = 500,
annotation = "GOTERM_BP_FAT",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
qvalueCutoff = 0.2,
species = NA,
david.user
)

Arguments

gene input gene
idType id type
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated for testing
maxGSSize maximal size of genes annotated for testing
annotation david annotation
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
species species
david.user david user

Value

A enrichResult instance

Author(s)

Guangchuang Yu

Description

A universal enrichment analyzer

Usage

enricher(
 gene,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe = NULL,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 gson = NULL,
 TERM2GENE,
 TERM2NAME = NA
)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gene</code></td>
<td>a vector of gene id</td>
</tr>
<tr>
<td><code>pvalueCutoff</code></td>
<td>adjusted pvalue cutoff on enrichment tests to report</td>
</tr>
<tr>
<td><code>pAdjustMethod</code></td>
<td>one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"</td>
</tr>
<tr>
<td><code>universe</code></td>
<td>background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.</td>
</tr>
<tr>
<td><code>minGSSize</code></td>
<td>minimal size of genes annotated for testing</td>
</tr>
<tr>
<td><code>maxGSSize</code></td>
<td>maximal size of genes annotated for testing</td>
</tr>
<tr>
<td><code>qvalueCutoff</code></td>
<td>qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.</td>
</tr>
<tr>
<td><code>gson</code></td>
<td>a GSON object, if not NULL, use it as annotation data.</td>
</tr>
<tr>
<td><code>TERM2GENE</code></td>
<td>user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.</td>
</tr>
<tr>
<td><code>TERM2NAME</code></td>
<td>user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.</td>
</tr>
</tbody>
</table>

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top

enrichGO

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

```r
enrichGO(
  gene,
  OrgDb,
  keyType = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
)```
qvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 500,
readable = FALSE,
pool = FALSE
)

Arguments

gene a vector of entrez gene id.
OrgDb OrgDb
type keytype of input gene
ont One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE
table) will be used as background.
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of genes annotated for testing
readable whether mapping gene ID to gene Name
pool If ont='ALL', whether pool 3 GO sub-ontologies

Value

An enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

## Not run:
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]

yy <- enrichGO(de, 'org.Hs.eg.db', ont='BP', pvalueCutoff=0.01)

head(yy)

## End(Not run)
enrichKEGG

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage

enrichKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  minGSSize = 10,
  maxGSSize = 500,
  qvalueCutoff = 0.2,
  use_internal_data = FALSE
)

Arguments

gene a vector of entrez gene id.
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
use_internal_data logical, use KEGG.db or latest online KEGG data

Value

A enrichResult instance.
enrichMKEGG

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

Usage

enrichMKEGG(
  gene, organism = "hsa", keyType = "kegg", pvalueCutoff = 0.05, pAdjustMethod = "BH", universe, minGSSize = 10, maxGSSize = 500, qvalueCutoff = 0.2
)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene</td>
<td>a vector of entrez gene id.</td>
</tr>
<tr>
<td>organism</td>
<td>supported organism listed in '<a href="https://www.genome.jp/kegg/catalog/org_list.html">https://www.genome.jp/kegg/catalog/org_list.html</a>'</td>
</tr>
<tr>
<td>keyType</td>
<td>one of &quot;kegg&quot;, 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'</td>
</tr>
<tr>
<td>pvalueCutoff</td>
<td>adjusted pvalue cutoff on enrichment tests to report</td>
</tr>
</tbody>
</table>

Examples

```r
Not run:
data(geneList, package='DOSE')
de <- names(geneList)[1:100]
yy <- enrichKEGG(de, pvalueCutoff=0.01)
head(yy)

End(Not run)
```
enrichPC

- `pAdjustMethod`: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe`: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- `minGSSize`: minimal size of genes annotated by Ontology term for testing.
- `maxGSSize`: maximal size of genes annotated for testing
- `qvalueCutoff`: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) `pvalueCutoff` on unadjusted pvalues, ii) `pvalueCutoff` on adjusted pvalues and iii) `qvalueCutoff` on qvalues to be reported.

Value

A enrichResult instance.

Description

ORA analysis for Pathway Commons

Usage

enrichPC(gene, source, keyType = "hgnc", ...)

Arguments

gene: a vector of genes (either hgnc symbols or uniprot IDs)
source: Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'netpath', 'panther', etc.
keyType: specify the type of input 'gene' (one of 'hgnc' or 'uniprot')

...: additional parameters, see also the parameters supported by the enricher() function

Details

This function performs over-representation analysis using Pathway Commons

Value

A enrichResult instance
enrichWP

Description
ORA analysis for WikiPathways

Usage
enrichWP(gene, organism, ...)

Arguments
- gene: a vector of entrez gene id
- organism: supported organisms, which can be accessed via the get_wp_organisms() function
- ... additional parameters, see also the parameters supported by the enricher() function

Details
This function performs over-representation analysis using WikiPathways

Value
A enrichResult instance

Author(s)
Guangchuang Yu

getPPI

Description
getPPI
getPPI

Usage

getPPI(
  x,
  ID = 1,
  taxID = "auto",
  required_score = NULL,
  network_type = "functional",
  add_nodes = 0,
  show_query_node_labels = 0,
  output = "igraph"
)

Arguments

x an 'enrichResult' object or a vector of proteins, e.g. `c("PTCH1", "TP53", "BRCA1", "BRCA2")`

ID ID or index to extract genes in the enriched term(s) if 'x' is an 'enrichResult' object

taxID NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-db.org/cgi/input.pl?input_page_active_form=organisms)).

required_score threshold of significance to include a interaction, a number between 0 and 1000 (default depends on the network)

network_type network type: functional (default), physical

add_nodes adds a number of proteins with to the network based on their confidence score (default:1)

show_query_node_labels when available use submitted names in the preferredName column when (0 or 1) (default:0)

output one of `data.frame` or `igraph`

Details

[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrBk7).

Value

a 'data.frame' or an 'igraph' object

Author(s)

Yonghe Xia and modified by Guangchuang Yu
getTaxID

Description
Convert species scientific name to taxonomic ID

Usage
getTaxID(species)

Arguments
species scientific name of a species

Value
taxonomic ID

Author(s)
Guangchuang Yu

getTaxInfo

Description
Query taxonomy information from 'stringdb' or 'ensembl' web services

Usage
goingInfo(species, source = "stringdb")

Arguments
species scientific name of a species
source one of 'stringdb' or 'ensembl'

Value
a 'data.frame' of query information

Author(s)
Guangchuang Yu
**get_wp_organisms**

---

**Description**

list supported organism of WikiPathways

**Usage**

```r
get_wp_organisms()
```

**Details**

This function extracts information from 'https://data.wikipathways.org/current/gmt/' and lists all supported organisms

**Value**

supported organism list

**Author(s)**

Guangchuang Yu

---

**Gff2GeneTable**

---

**Description**

read GFF file and build gene information table

**Usage**

```r
Gff2GeneTable(gffFile, compress = TRUE)
```

**Arguments**

- `gffFile` GFF file
- `compress` compress file or not

**Details**

given a GFF file, this function extracts information from it and save it in working directory

**Value**

file save.
go2ont

Description
convert goid to ontology (BP, CC, MF)

Usage
go2ont(goid)

Arguments
goid a vector of GO IDs

Value
data.frame

Author(s)
Guangchuang Yu

Description
convert goid to descriptive term

Usage
go2term(goid)

Arguments
goid a vector of GO IDs

Value
data.frame

Author(s)
Guangchuang Yu
gofilter

Description
filter GO enriched result at specific level

Usage
gofilter(x, level = 4)

Arguments
x            output from enrichGO or compareCluster
level        GO level

Value
updated object

Author(s)
Guangchuang Yu

---

groupGO

Functional Profile of a gene set at specific GO level. Given a vector of
genes, this function will return the GO profile at a specific level.

Description
Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Usage
groupGO(
gene,
OrgDb,
keyType = "ENTREZID",
ont = "CC",
level = 2,
readable = FALSE
)
Arguments

- **gene**: a vector of entrez gene id.
- **OrgDb**: OrgDb
- **keyType**: key type of input gene
- **ont**: One of "MF", "BP", and "CC" subontologies.
- **level**: Specific GO Level.
- **readable**: if readable is TRUE, the gene IDs will mapping to gene symbols.

Value

A `groupGOResult` instance.

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

See Also

`groupGOResult-class`, `compareCluster`

Examples

```r
data(gcSample)
yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
head(summary(yy))
#plot(yy)
```

---

**groupGOResult-class**

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots

- **result**: GO classification result
- **ontology**: Ontology
- **level**: GO level
- **organism**: one of "human", "mouse" and "yeast"
- **gene**: Gene IDs
- **readable**: logical flag of gene ID in symbol or not.
Description

a universal gene set enrichment analysis tool

Usage

GSEA(
  geneList,
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  gson = NULL,
  TERM2GENE,
  TERM2NAME = NA,
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

  geneList   order ranked geneList
  exponent   weight of each step
  minGSSize  minimal size of each geneSet for analyzing
  maxGSSize  maximal size of genes annotated for testing
  eps        This parameter sets the boundary for calculating the p value.
  pvalueCutoff adjusted pvalue cutoff
  pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
  gson       a GSON object, if not NULL, use it as annotation data.
  TERM2GENE  user input annotation of TERM TO GENE mapping, a data.frame of 2 column
              with term and gene. Only used when gson is NULL.
gseGO

TERM2NAME: user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.

verbose: logical

seed: logical

by: one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

Description

Gene Set Enrichment Analysis of Gene Ontology

Usage

gseGO(
  geneList,
  ont = "BP",
  OrgDb,
  keyType = "ENTREZID",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)
**Arguments**

- **geneList**: order ranked geneList
- **ont**: one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
- **OrgDb**: OrgDb
- **keyType**: keytype of gene
- **exponent**: weight of each step
- **minGSSize**: minimal size of each geneSet for analyzing
- **maxGSSize**: maximal size of genes annotated for testing
- **eps**: This parameter sets the boundary for calculating the p value.
- **pvalueCutoff**: pvalue Cutoff
- **pAdjustMethod**: pvalue adjustment method
- **verbose**: print message or not
- **seed**: logical
- **by**: one of 'fgsea' or 'DOSE'
- **...**: other parameter

**Value**

gseaResult object

**Author(s)**

Yu Guangchuang

---

**Description**

Gene Set Enrichment Analysis of KEGG

**Usage**

gseKEGG(
    geneList,
    organism = "hsa",
    keyType = "kegg",
    exponent = 1,
    minGSSize = 10,
    maxGSSize = 500,
    eps = 1e-10,
    pvalueCutoff = 0.05,
    pAdjustMethod = "BH",
)
Arguments

geneList          order ranked geneList
organism          supported organism listed in ’https://www.genome.jp/kegg/catalog/org_list.html’
keyType           one of "kegg", 'ncbi-geneid', 'ncbi-proteinid’ and ‘uniprot’
exponent          weight of each step
minGSSize         minimal size of each geneSet for analyzing
maxGSSize         maximal size of genes annotated for testing
eps               This parameter sets the boundary for calculating the p value.
pvalueCutoff      pvalue Cutoff
pAdjustMethod     pvalue adjustment method
verbose           print message or not
use_internal_data logical, use KEGG.db or latest online KEGG data
seed              logical
by                one of 'fgsea’ or 'DOSE'
...               other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG Module
Usage

gseMKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList order ranked geneList
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter

Value
gseaResult object

Author(s)
Yu Guangchuang
Description
GSEA analysis for Pathway Commons

Usage

gsePC(geneList, source, keyType, ...)

Arguments

geneList: a ranked gene list
source: Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'net-path', 'panther', etc.
keyType: specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
... additional parameters, see also the parameters supported by the GSEA() function

Details
This function performs GSEA using Pathway Commons

Value
A gseaResult instance

Description
GSEA analysis for WikiPathways

Usage

gseWP(geneList, organism, ...)

Arguments

geneList: ranked gene list
organism: supported organisms, which can be accessed via the get_wp_organisms() function
... additional parameters, see also the parameters supported by the GSEA() function
Details
This function performs GSEA using WikiPathways

Value
A gseaResult instance

Author(s)
Guangchuang Yu

gson_GO

description
Download the latest version of KEGG pathway and stored in a 'GSON' object

Usage
gson_GO(OrgDb, keytype = "ENTREZID", ont = "BP")

Arguments
OrgDb OrgDb
keytype keytype of genes.
ont one of "BP", "MF", "CC", and "ALL"

Value
A 'GSON' object

gson_KEGG

description
Download the latest version of KEGG pathway and stored in a 'GSON' object

Usage
gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")
Arguments

- **species**

- **KEGG_Type**
  one of "KEGG" and "MKEGG"

- **keyType**
  one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

Value

- a 'GSON' object

Author(s)

Guangchuang Yu

---

### gson\_KEGG\_mapper

**Build KEGG annotation for novel species using KEGG Mapper**

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in `clusterProfiler`

Usage

```r
gson_KEGG_mapper(
 file,
 format = c("BLAST", "Ghost", "Kofam"),
 type = c("pathway", "module"),
 species = NULL,
 ...
)
```

Arguments

- **file**
  the name of the file which comes from the KEGG Mapper service, see Details for file format

- **format**
  string indicate format of KEGG Mapper result

- **type**
  string indicate annotation database

- **species**
  your species, NULL if ignored

- **...**
  pass to gson::gson()
Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user’s identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG’s internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user’s sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance

Examples

```r
Not run:
file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
gson_KEGG_mapper(file, format = "BLAST", type = "pathway")

End(Not run)
```

Description

Download the latest version of WikiPathways data and stored in a 'GSON' object

Usage

gson_WP(organism)

Arguments

organism supported organism, which can be accessed via the get_wp_organisms() function.
idType

**Description**

list ID types supported by annoDb

**Usage**

```r
idType(OrgDb = "org.Hs.eg.db")
```

**Arguments**

- **OrgDb**
  
  annotation db

**Value**

character vector

**Author(s)**

Guangchuang Yu

---

ko2name

**Description**

convert ko ID to descriptive name

**Usage**

```r
ko2name(ko)
```

**Arguments**

- **ko**
  
  ko ID

**Value**

  data.frame

**Author(s)**

Guangchuang Yu
**merge_result**

Description
merge a list of enrichResult objects to compareClusterResult

Usage
merge_result(enrichResultList)

Arguments
enrichResultList
   a list of enrichResult objects

Value
a compareClusterResult instance

Author(s)
Guangchuang Yu

**plotGOgraph**

Description
plot GO graph

Usage
plotGOgraph(
x,
firstSigNodes = 10,
useInfo = "all",
sigForAll = TRUE,
useFullNames = TRUE,
...
)
Arguments

- `x`: output of enrichGO or gseGO
- `firstSigNodes`: number of significant nodes (rectangle nodes in the graph)
- `useInfo`: additional info
- `sigForAll`: if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only score will be shown
- `useFullNames`: logical
- `...`: additional parameter of showSigOfNodes, please refer to topGO

Value

A GO DAG graph

Author(s)

Guangchuang Yu

Description

Parse gmt file from Pathway Common

Usage

```r
read.gmt.pc(gmtfile, output = "data.frame")
```

Arguments

- `gmtfile`: A gmt file
- `output`: one of 'data.frame' or 'GSON'

Details

This function parse gmt file downloaded from Pathway common

Value

A data.frame or A GSON object depends on the value of 'output'
Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- **DOSE**: `geneID`, `geneInCategory`, `gsfilter`, `setReadable`
- **dplyr**: `arrange`, `filter`, `group_by`, `mutate`, `n`, `rename`, `select`, `slice`, `summarise`
- **enrichplot**: `cnetplot`, `dotplot`, `emapplot`, `goplot`, `gseaplot`, `heatplot`, `ridgeplot`
- **GOSemSim**: `buildGQmap`, `read.blast2go`, `read.gaf`
- **gson**: `read.gmt`, `read.gmt.wp`
- **magrittr**: `%<>%`, `%>%`

search_kegg_organism

Description

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

Usage

```r
search_kegg_organism(
 str,
 by = "scientific_name",
 ignore.case = FALSE,
 use_internal_data = TRUE
)
```

Arguments

- `str` string
- `by` one of 'kegg.code', 'scientific_name' and 'common_name'
- `ignore.case` TRUE or FALSE
- `use_internal_data` logical, use kegg_species.rda or latest online KEGG data

Value

data.frame

Author(s)

Guangchuang Yu
simplify

Description
simplify output from enrichGO and gseGO by removing redundancy of enriched GO terms
simplify output from compareCluster by removing redundancy of enriched GO terms

Usage
## S4 method for signature 'enrichResult'
simplify(
x, 
cutoff = 0.7, 
by = "p.adjust", 
select_fun = min, 
measure = "Wang", 
semData = NULL
)

## S4 method for signature 'gseaResult'
simplify(
x, 
cutoff = 0.7, 
by = "p.adjust", 
select_fun = min, 
measure = "Wang", 
semData = NULL
)

## S4 method for signature 'compareClusterResult'
simplify(
x, 
cutoff = 0.7, 
by = "p.adjust", 
select_fun = min, 
measure = "Wang", 
semData = NULL
)

Arguments
x output of enrichGO
cutoff similarity cutoff
by feature to select representative term, selected by 'select_fun' function
select_fun function to select feature passed by 'by' parameter
uniprot_get

method to measure similarity
GOSemSimDATA object

Value
updated enrichResult object
updated compareClusterResult object

Author(s)
Guangchuang Yu
Gwang-Jin Kim and Guangchuang Yu

References
issue #28 https://github.com/GuangchuangYu/clusterProfiler/issues/28
issue #162 https://github.com/GuangchuangYu/clusterProfiler/issues/162

Description
retrive annotation data from uniprot

Usage
uniprot_get(taxID)

Arguments
taxID  taxonomy ID

Value
gene table data frame

Author(s)
guangchuang yu
Index

* classes
  - groupGOResult-class, 22
* datasets
  - DataSet, 8
* internal
  - clusterProfiler-package, 3
    - reexports, 35
* manip
  - compareCluster, 6
  - enrichGO, 11
  - enrichKEGG, 13
  - groupGO, 21
    - %<>% (reexports), 35
    - %>% (reexports), 35
    - %<>%, 35
    - %%, 35
  - append_kegg_category, 4
  - arrange, 35
  - arrange (reexports), 35
  - bitr, 5
  - bitr_kegg, 5
  - browseKEGG, 6
  - buildGOmap, 35
  - buildGOmap (reexports), 35

clusterProfiler
  - (clusterProfiler-package), 3
clusterProfiler-package, 3
  - cnetplot, 35
  - cnetplot (reexports), 35
  - compareCluster, 6, 12, 14, 22, 23
  - compareClusterResult, 23

DataSet, 8
  - DE_GSE8057 (DataSet), 8
dotplot, 35
  - dotplot (reexports), 35
  - download_KEGG, 8

dropGO, 9
  - emapplot, 35
  - emapplot (reexports), 35
  - enrichDAVID, 9
  - enricher, 10
  - enrichGO, 7, 11
  - enrichKEGG, 13
  - enrichMKEGG, 14
  - enrichPC, 15
  - enrichWP, 16

  - filter, 35
  - filter (reexports), 35
  - gcSample (DataSet), 8
  - geneID, 35
  - geneID (reexports), 35
  - geneInCategory, 35
  - geneInCategory (reexports), 35
  - get_wp_organisms, 19
  - getPPI, 16
  - getTaxID, 18
  - getTaxInfo, 18
  - Gff2GeneTable, 19
  - go2ont, 20
  - go2term, 20
  - gofilter, 21
  - goplot, 35
  - goplot (reexports), 35
  - group_by, 35
  - group_by (reexports), 35
  - groupGO, 7, 21, 23
  - groupGOResult-class, 22
  - GSEA, 23
  - gseaplot, 35
  - gseaplot (reexports), 35
  - gseGO, 24
  - gseKEGG, 25
  - gseMKEGG, 26
INDEX

- gsePC, 28
- gseWP, 28
- gsfilter, 35
- gsfilter(reexports), 35
- gson_GO, 29
- gson_KEGG, 29
- gson_KEGG_mapper, 30
- gson_WP, 31

- heatplot, 35
  heatplot(reexports), 35

- idType, 32

- kegg_category(DataSet), 8
- kegg_species(DataSet), 8
- ko2name, 32

- merge_result, 33
- mutate, 35
  mutate(reexports), 35

- n, 35
  n(reexports), 35

- plotGOgraph, 33

- read.blast2go, 35
  read.blast2go(reexports), 35
- read.gaf, 35
  read.gaf(reexports), 35
- read.gmt, 35
  read.gmt(reexports), 35
- read.gmt.pc, 34
- read.gmt.wp, 35
- reexports, 35
- rename, 35
  rename(reexports), 35
- ridgeplot, 35
  ridgeplot(reexports), 35

- search_kegg_organism, 35
- select, 35
  select(reexports), 35
- setReadable, 35
  setReadable(reexports), 35
- show, 35
  show,groupGOResult-method (groupGOResult-class), 22

- simplify, 36
  simplify,compareClusterResult-method (simplify), 36
  simplify,enrichResult-method (simplify), 36
  simplify,gseaResult-method (simplify), 36
- slice, 35
  slice(reexports), 35
- summarise, 35
  summarise(reexports), 35
- uniprot_get, 37