Package ‘clusterProfiler’

March 27, 2024

Type Package

Title A universal enrichment tool for interpreting omics data

Version 4.10.1

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Depends R (>= 3.5.0)

Imports AnnotationDbi, downloader, DOSE (>= 3.23.2), dplyr, enrichplot (>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr, igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr, utils, yulab.utils (>= 0.0.7)

Suggests AnnotationHub, knitr, jsonlite, readr, rmarkdown, org.Hs.eg.db, prettydoc, BiocManager, testthat

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

BugReports https://github.com/GuangchuangYu/clusterProfiler/issues

biocViews Annotation, Clustering, GeneSetEnrichment, GO, KEGG, MultipleComparison, Pathways, Reactome, Visualization

Encoding UTF-8

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/clusterProfiler

git_branch RELEASE_3_18
topics documented:

`git_last_commit` 072a273

`git_last_commit_date` 2024-03-07

Repository Bioconductor 3.18

Date/Publication 2024-03-27

Author Guangchuang Yu [aut, cre, cph]

(<https://orcid.org/0000-0002-6485-8781>),

Li-Gen Wang [ctb],

Erqiang Hu [ctb],

Xiao Luo [ctb],

Meijun Chen [ctb],

Giovanni Dall'Olio [ctb],

Wanqian Wei [ctb],

Chun-Hui Gao [ctb] (<https://orcid.org/0000-0002-1445-7939>)

R topics documented:

- `clusterProfiler-package` ... 3
- `append_kegg_category` ... 3
- `bitr` ... 4
- `bitr_kegg` .. 5
- `browseKEGG` ... 5
- `compareCluster` .. 6
- `DataSet` ... 7
- `download_KEGG` .. 7
- `dropGO` ... 8
- `enrichDAVID` ... 9
- `enricher` ... 10
- `enrichGO` ... 11
- `enrichKEGG` .. 12
- `enrichMKEGG` ... 14
- `enrichPC` ... 15
- `enrichWP` ... 15
- `getPPI` .. 16
- `getTaxID` .. 17
- `getTaxInfo` .. 18
- `get_wp_organisms` .. 18
- `Gff2GeneTable` .. 19
- `go2ont` .. 19
- `go2term` ... 20
- `gofilter` .. 20
- `groupGO` ... 21
- `groupGOResult-class` ... 22
- `GSEA` ... 22
- `gseGO` ... 24
- `gseKEGG` ... 25
- `gseMKEGG` .. 26
Description

The package implements methods to analyze and visualize functional profiles of gene and gene clusters.

append_kegg_category

Description

add KEGG pathway category information

Usage

append_kegg_category(x)

Arguments

x KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of ‘enrichKEGG’ or ‘gseKEGG’).
Value

update KEGG enrichment result with category information

Author(s)

Guangchuang Yu

Description

Biological Id TRanslator

Usage

bitr(geneID, fromType, toType, OrgDb, drop = TRUE)

Arguments

geneID input gene id
fromType input id type
toType output id type
OrgDb annotation db
drop drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu
bitr_kegg

Description

convert biological ID using KEGG API

Usage

`bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)`

Arguments

- `geneID`: input gene id
- `fromType`: input id type
- `toType`: output id type
- `organism`: supported organism, can be search using `search_kegg_organism` function
- `drop`: drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu

browseKEGG

Description

open KEGG pathway with web browser

Usage

`browseKEGG(x, pathID)`

Arguments

- `x`: an instance of enrichResult or gseaResult
- `pathID`: pathway ID
Value

url

Author(s)

Guangchuang Yu

compareCluster *Compare gene clusters functional profile*

Description

Given a list of gene set, this function will compute profiles of each gene cluster.

Usage

```r
compareCluster(
  geneClusters,  # a list of entrez gene id. Alternatively, a formula of type Entrez ~ group or a formula of type Entrez | logFC ~ group for "gseGO", "gseKEGG" and "GSEA".
  fun = "enrichGO",  # One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
  data = "",  # if geneClusters is a formula, the data from which the clusters must be extracted.
  source_from = NULL,  # If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.
  ...  # Other arguments.
)
```

Arguments

- `geneClusters`: a list of entrez gene id. Alternatively, a formula of type Entrez ~ group or a formula of type Entrez | logFC ~ group for "gseGO", "gseKEGG" and "GSEA".
- `fun`: One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
- `data`: if geneClusters is a formula, the data from which the clusters must be extracted.
- `source_from`: If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.
- `...`: Other arguments.

Value

A `clusterProfResult` instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

`compareClusterResult-class`, `groupGO enrichGO`
Examples

```r
## Not run:
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
                     organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

## formula interface
mydf <- data.frame(Entrez=c('1', '100', '1000', '100101467',
                            '100127206', '100128071'),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c('A', 'A', 'A', 'B', 'B', 'B'),
                   othergroup = c('good', 'good', 'bad', 'bad', 'good', 'bad'))
xx.formula <- compareCluster(Entrez~group, data=mydf,
                             fun="groupGO", OrgDb="org.Hs.eg.db")
as.data.frame(xx.formula)

## formula interface with more than one grouping variable
xx.formula.twogroups <- compareCluster(Entrez~group+othergroup, data=mydf,
                                        fun="groupGO", OrgDb="org.Hs.eg.db")
as.data.frame(xx.formula.twogroups)

## End(Not run)
```

DataSet

Datasets gcSample contains a sample of gene clusters.

Description

Datasets gcSample contains a sample of gene clusters.

Datasets kegg_species contains kegg species information

Datasets kegg_category contains kegg pathway category information

Datasets DE_GSE8057 contains differential expressed genes obtained from GSE8057 dataset

download_KEGG

Description

download the latest version of KEGG pathway/module

Usage

download_KEGG(species, keggType = "KEGG", keyType = "kegg")
Arguments

species species
keggType one of ‘KEGG’ or ‘MKEGG’
keyType supported keyType, see bitr_kegg

Value

list

Author(s)

Guangchuang Yu

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

dropGO(x, level = NULL, term = NULL)

Arguments

x an instance of 'enrichResult' or 'compareClusterResult'
level GO level
term GO term

Value

modified version of x

Author(s)

Guangchuang Yu
enrichDAVID

Description
enrichment analysis by DAVID

Usage
enrichDAVID(
 gene,
 idType = "ENTREZ_GENE_ID",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 annotation = "GOTERM_BP_FAT",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 qvalueCutoff = 0.2,
 species = NA,
 david.user
)

Arguments
gene input gene
idType id type
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated for testing
maxGSSize maximal size of genes annotated for testing
annotation david annotation
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
species species
david.user david user

Value
A enrichResult instance
Author(s)

Guangchuang Yu

enricher

Description

A universal enrichment analyzer

Usage

enricher(
 gene,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe = NULL,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 gson = NULL,
 TERM2GENE,
 TERM2NAME = NA
)

Arguments

- **gene**
 - a vector of gene id
- **pvalueCutoff**
 - adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**
 - one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**
 - background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- **minGSSize**
 - minimal size of genes annotated for testing
- **maxGSSize**
 - maximal size of genes annotated for testing
- **qvalueCutoff**
 - qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
- **gson**
 - a GSON object, if not NULL, use it as annotation data.
- **TERM2GENE**
 - user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
- **TERM2NAME**
 - user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
enrichGO

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top

enrichGO

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

```r
enrichGO(
  gene,
  OrgDb,
  keyType = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  qvalueCutoff = 0.2,
  minGSSize = 10,
  maxGSSize = 500,
  readable = FALSE,
  pool = FALSE
)
```

Arguments

- **gene**: a vector of entrez gene id.
- **OrgDb**: OrgDb
- **keyType**: keytype of input gene
- **ont**: One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
- **pvalueCutoff**: adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
qvalueCutoff: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

minGSSize: minimal size of genes annotated by Ontology term for testing.

maxGSSize: maximal size of genes annotated for testing.

readable: whether mapping gene ID to gene Name

pool: If ont='ALL', whether pool 3 GO sub-ontologies.

Value:
An enrichResult instance.

Author(s):
Guangchuang Yu https://yulab-smu.top

See Also:
enrichResult-class, compareCluster

Examples:
```r
## Not run:
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
head(yy)
```

```r
## End(Not run)
```

enrichKEGG

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage

```r
enrichKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
)
enrichKEGG

```
pAdjustMethod = "BH",
universe,
minGSSize = 10,
maxGSSize = 500,
qvalueCutoff = 0.2,
use_internal_data = FALSE
```

**Arguments**

- **gene**  
a vector of entrez gene id.
- **organism**  
supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
- **keyType**  
one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
- **pvalueCutoff**  
adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**  
one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**  
background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- **minGSSize**  
minimal size of genes annotated by Ontology term for testing.
- **maxGSSize**  
maximal size of genes annotated for testing
- **qvalueCutoff**  
qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
- **use_internal_data**  
logical, use KEGG.db or latest online KEGG data

**Value**

A enrichResult instance.

**Author(s)**

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

**See Also**

enrichResult-class, compareCluster

**Examples**

```r
Not run:
data(geneList, package='DOSE')
de <- names(geneList)[1:100]
yy <- enrichKEGG(de, pvalueCutoff=0.01)
head(yy)

End(Not run)
```
enrichMKEGG  

**KEGG Module Enrichment Analysis of a gene set.** Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

## Description

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

## Usage

```r
enrichMKEGG(
 gene,
 organism = "hsa",
 keyType = "kegg",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2
)
```

## Arguments

- **gene**: a vector of entrez gene id.
- **organism**: supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
- **keyType**: one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
- **pvalueCutoff**: adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- **minGSSize**: minimal size of genes annotated by Ontology term for testing.
- **maxGSSize**: maximal size of genes annotated for testing
- **qvalueCutoff**: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

## Value

A enrichResult instance.
Description

ORA analysis for Pathway Commons

Usage

enrichPC(gene, source, keyType = "hgnc", ...)

Arguments

gene a vector of genes (either hgnc symbols or uniprot IDs)
source Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'netpath', 'panther', etc.
keyType specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
... additional parameters, see also the parameters supported by the enricher() function

Details

This function performs over-representation analysis using Pathway Commons

Value

A enrichResult instance

Description

ORA analysis for WikiPathways

Usage

enrichWP(gene, organism, ...)

Arguments

gene a vector of entrez gene id
organism supported organisms, which can be accessed via the get_wp_organisms() function
... additional parameters, see also the parameters supported by the enricher() function
getPPI

Details
This function performs over-representation analysis using WikiPathways

Value
A enrichResult instance

Author(s)
Guangchuang Yu

Description
getPPI

Usage
getPPI(
  x,
  ID = 1,
  taxID = "auto",
  required_score = NULL,
  network_type = "functional",
  add_nodes = 0,
  show_query_node_labels = 0,
  output = "igraph"
)

Arguments

x an 'enrichResult' object or a vector of proteins, e.g. c("PTCH1", "TP53", "BRCA1", "BRCA2")

ID ID or index to extract genes in the enriched term(s) if 'x' is an 'enrichResult' object

taxID NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-db.org/cgi/input.pl?input_page_active_form=organisms)).

required_score threshold of significance to include a interaction, a number between 0 and 1000 (default depends on the network)

network_type network type: functional (default), physical

add_nodes adds a number of proteins with to the network based on their confidence score (default:1)
getTaxID

show_query_node_labels
    when available use submitted names in the preferredName column when (0 or 1) (default:0)
output    one of ‘data.frame’ or ‘igraph’

Details

[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrBk7).

Value

a ‘data.frame’ or an ‘igraph’ object

Author(s)

Yonghe Xia and modified by Guangchuang Yu

Description

Convert species scientific name to taxonomic ID

Usage

getTaxID(species)

Arguments

species    scientific name of a species

Value

taxonomic ID

Author(s)

Guangchuang Yu
getTaxInfo

Description
Query taxonomy information from 'stringdb' or 'ensembl' web services

Usage
getTaxInfo(species, source = "stringdb")

Arguments
species  
  scientific name of a species
source   
  one of 'stringdb' or 'ensembl'

Value
a 'data.frame' of query information

Author(s)
Guangchuang Yu

get_wp_organisms

Description
list supported organism of WikiPathways

Usage
get_wp_organisms()

Details
This function extracts information from 'https://wikipathways-data.wmcloud.org/current/gmt/' and lists all supported organisms

Value
supported organism list

Author(s)
Guangchuang Yu
**Gff2GeneTable**

**Description**
read GFF file and build gene information table

**Usage**

\[
\text{Gff2GeneTable}(\text{gffFile}, \text{compress} = \text{TRUE})
\]

**Arguments**
- **gffFile**: GFF file
- **compress**: compress file or not

**Details**

given a GFF file, this function extracts information from it and save it in working directory

**Value**

file save.

**Author(s)**
- Yu Guangchuang

---

**go2ont**

**Description**
convert goid to ontology (BP, CC, MF)

**Usage**

\[
\text{go2ont}(\text{goid})
\]

**Arguments**
- **goid**: a vector of GO IDs

**Value**
data.frame
**go2term**

**Description**
convert goid to descriptive term

**Usage**
go2term(goid)

**Arguments**
goid a vector of GO IDs

**Value**
data.frame

**Author(s)**
Guangchuang Yu

---

**gofilter**

**Description**
filter GO enriched result at specific level

**Usage**
gofilter(x, level = 4)

**Arguments**
x output from enrichGO or compareCluster
level GO level

**Value**
updated object
**groupGO**

**Author(s)**
Guangchuang Yu

---

**groupGO**

*Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.*

**Description**

Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

**Usage**

```r
groupGO(
 gene,
 OrgDb,
 keyType = "ENTREZID",
 ont = "CC",
 level = 2,
 readable = FALSE
)
```

**Arguments**

- **gene** a vector of entrez gene id.
- **OrgDb** OrgDb
- **keyType** key type of input gene
- **ont** One of "MF", "BP", and "CC" subontologies.
- **level** Specific GO Level.
- **readable** if readable is TRUE, the gene IDs will mapping to gene symbols.

**Value**

A groupGOResult instance.

**Author(s)**
Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

**See Also**

- groupGOResult-class, compareCluster
Examples

data(gcSample)
yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
head(summary(yy))
#plot(yy)

---

groupGOResult-class  
Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots

result  GO classification result
ontology Ontology
level GO level
organism one of "human", "mouse" and "yeast"
gene Gene IDs
readable logical flag of gene ID in symbol or not.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

compareClusterResult compareCluster groupGO

---

GSEA

Description

a universal gene set enrichment analysis tools
GSEA

Usage

GSEA(
  geneList,
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  gson = NULL,
  TERM2GENE,
  TERM2NAME = NA,
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList order ranked geneList
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff adjusted pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
gson a GSON object, if not NULL, use it as annotation data.
TERM2GENE user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
TERM2NAME user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
verbose logical
seed logical
by one of 'fgsea' or 'DOSE'
...
other parameter

Value

gseaResult object

Author(s)

Guangchuang Yu https://yulab-smu.top
Description
Gene Set Enrichment Analysis of Gene Ontology

Usage

gseGO(
  geneList,  
  ont = "BP",  
  OrgDb,  
  keyType = "ENTREZID",  
  exponent = 1,  
  minGSSize = 10,  
  maxGSSize = 500,  
  eps = 1e-10,  
  pvalueCutoff = 0.05,  
  pAdjustMethod = "BH",  
  verbose = TRUE,  
  seed = FALSE,  
  by = "fgsea",  
  ...  
)

Arguments

geneList  order ranked geneList
ont  one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
OrgDb  OrgDb
keyType  keytype of gene
exponent  weight of each step
minGSSize  minimal size of each geneSet for analyzing
maxGSSize  maximal size of genes annotated for testing
eps  This parameter sets the boundary for calculating the p value.
pvalueCutoff  pvalue Cutoff
pAdjustMethod  pvalue adjustment method
verbose  print message or not
seed  logical
by  one of ’fgsea’ or ’DOSE’

... other parameter
gseKEGG

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG

Usage

gseKEGG(
geneList, 
organism = "hsa", 
keyType = "kegg", 
exponent = 1, 
minGSSize = 10, 
maxGSSize = 500, 
eps = 1e-10, 
pvalueCutoff = 0.05, 
pAdjustMethod = "BH", 
verbose = TRUE, 
use_internal_data = FALSE, 
seed = FALSE, 
by = "fgsea", 
... 
)

Arguments

geneList    order ranked geneList
organism    supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType     one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent    weight of each step
minGSSize   minimal size of each geneSet for analyzing
maxGSSize   maximal size of genes annotated for testing
eps         This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose           print message or not
use_internal_data logical, use KEGG.db or latest online KEGG data
seed              logical
by                one of 'fgsea' or 'DOSE'
...               other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang

gseMKEGG          gseMKEGG

Description

Gene Set Enrichment Analysis of KEGG Module

Usage

gseMKEGG(
geneList,
organism = "hsa",
keyType = "kegg",
exponent = 1,
minGSSize = 10,
maxGSSize = 500,
eps = 1e-10,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE,
seed = FALSE,
by = "fgsea",
...
)

Arguments

geneList          order ranked geneList
organism          supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType           one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent          weight of each step
gsePC

\begin{verbatim}
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter
\end{verbatim}

Value
gseaResult object

Author(s)
Yu Guangchuang

Description
GSEA analysis for Pathway Commons

Usage
gsePC(geneList, source, keyType, ...)

Arguments
geneList a ranked gene list
source Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'netpath', 'panther', etc.
keyType specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
... additional parameters, see also the parameters supported by the GSEA() function

Details
This function performs GSEA using Pathway Commons

Value
A gseaResult instance
Description

GSEA analysis for WikiPathways

Usage

gseWP(geneList, organism, ...)

Arguments

geneList ranked gene list
organism supported organisms, which can be accessed via the get_wp_organisms() function
... additional parameters, see also the parameters supported by the GSEA() function

Details

This function performs GSEA using WikiPathways

Value

A gseaResult instance

Author(s)

Guangchuang Yu

Description

download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson.GO(OrgDb, keytype = "ENTREZID", ont = "BP")
Argument

OrgDb | OrgDb
keytype | keytype of genes.
ont | one of "BP", "MF", "CC", and "ALL"

Value

a 'GSON' object

Description

download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")

Arguments

species | species
KEGG_Type | one of "KEGG" and "MKEGG"
keyType | one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

Value

a 'GSON' object

Author(s)

Guangchuang Yu
gson_KEGG_mapper

Build KEGG annotation for novel species using KEGG Mapper

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in 'clusterProfiler'.

Usage

gson_KEGG_mapper(
  file,
  format = c("BLAST", "Ghost", "Kofam"),
  type = c("pathway", "module"),
  species = NULL,
  ...
)

Arguments

file the name of the file which comes from the KEGG Mapper service, see Details for file format
format string indicate format of KEGG Mapper result
type string indicate annotation database
species your species, NULL if ignored
... pass to gson::gson()

Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user’s identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG’s internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user’s sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance
Examples

```
Not run:
 file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
 gson_KEGG_mapper(file, format = "BLAST", type = "pathway")

End(Not run)
```

Description

Download the latest version of WikiPathways data and stored in a `GSON` object

Usage

gson_WP(organism)

Arguments

- `organism` supported organism, which can be accessed via the `get_wp_organisms()` function.

idType

Description

List ID types supported by annoDb

Usage

idType(OrgDb = "org.Hs.eg.db")

Arguments

- `OrgDb` annotation db

Value

- character vector

Author(s)

Guangchuang Yu
ko2name

Description
convert ko ID to descriptive name

Usage
ko2name(ko)

Arguments
ko ko ID

Value
data.frame

Author(s)
guangchuang yu

merge_result

Description
merge a list of enrichResult objects to compareClusterResult

Usage
merge_result(enrichResultList)

Arguments
enrichResultList

Value
a compareClusterResult instance

Author(s)
Guangchuang Yu
plotGOgraph

Description

plot GO graph

Usage

plotGOgraph(
  x,
  firstSigNodes = 10,
  useInfo = "all",
  sigForAll = TRUE,
  useFullNames = TRUE,
  ...
)

Arguments

x output of enrichGO or gseGO
firstSigNodes number of significant nodes (rectangle nodes in the graph)
useInfo additional info
sigForAll if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only score will be shown
useFullNames logical
... additional parameter of showSigOfNodes, please refer to topGO

Value

GO DAG graph

Author(s)

Guangchuang Yu
Description

Parse gmt file from Pathway Common

Usage

read.gmt.pc(gmtfile, output = "data.frame")

Arguments

gmtfile A gmt file
output one of 'data.frame' or 'GSON'

Details

This function parses gmt file downloaded from Pathway common

Value

A data.frame or A GSON object depends on the value of 'output'

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

DOSE geneID, geneInCategory, gsfilter, setReadable
dplyr arrange, filter, group_by, mutate, n, rename, select, slice, summarise
enrichplot cnetplot, dotplot, emapplot, goplot, gseaplot, heatplot, ridgeplot
GOSemSim buildGOmap, read.blast2go, read.gaf
gson read.gmt, read.gmt.wp
magrittr %<>%, %>%
Description

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

Usage

search_kegg_organism(  
  str,  
  by = "scientific_name",  
  ignore.case = FALSE,  
  use_internal_data = TRUE  
)

Arguments

str  
string

by  
one of 'kegg.code', 'scientific_name' and 'common_name'

ignore.case  
TRUE or FALSE

use_internal_data  
logical, use kegg_species.rda or latest online KEGG data

Value

data.frame

Author(s)

Guangchuang Yu

Description

simplify output from enrichGO and gseGO by removing redundancy of enriched GO terms
simplify output from compareCluster by removing redundancy of enriched GO terms
Usage

```r
S4 method for signature 'enrichResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

```r
S4 method for signature 'gseaResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

```r
S4 method for signature 'compareClusterResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

Arguments

- `x`: output of enrichGO
- `cutoff`: similarity cutoff
- `by`: feature to select representative term, selected by `select_fun` function
- `select_fun`: function to select feature passed by `by` parameter
- `measure`: method to measure similarity
- `semData`: GOSemSimDATA object

Value

- updated enrichResult object
- updated compareClusterResult object
**uniprot_get**

**Author(s)**
- Guangchuang Yu
- Gwang-Jin Kim and Guangchuang Yu

**References**
- issue #28 [https://github.com/GuangchuangYu/clusterProfiler/issues/28](https://github.com/GuangchuangYu/clusterProfiler/issues/28)
- issue #162 [https://github.com/GuangchuangYu/clusterProfiler/issues/162](https://github.com/GuangchuangYu/clusterProfiler/issues/162)

**Description**
retrive annotation data from uniprot

**Usage**
```
uniprot_get(taxID)
```

**Arguments**
- taxID taxonomy ID

**Value**
gene table data frame

**Author(s)**
guangchuang yu
Index

* classes
  * groupGOResult-class, 22
* datasets
  * DataSet, 7
* internal
  * reexports, 34
* manip
  * compareCluster, 6
  * enrichGO, 11
  * enrichKEGG, 12
  * groupGO, 21
  * (%<% (reexports), 34)
  * %<%, 34
  * %<%, 34
  * group_GOResult-class, 22
  * emapplot, 34
  * emapplot(reexports), 34
  * enrichDAVID, 9
  * enricher, 10
  * enrichGO, 6, 11
  * enrichKEGG, 12
  * enrichMKEGG, 14
  * enrichPC, 15
  * enrichWP, 15
  * filter, 34
  * filter(reexports, 34)
  * gcSample(DataSet), 7
  * geneID, 34
  * geneID(reexports), 34
  * geneInCategory, 34
  * geneInCategory(reexports), 34
  * get_wp_organisms, 18
  * getPPI, 16
  * getTaxID, 17
  * getTaxInfo, 18
  * Gff2GeneTable, 19
  * go2ont, 19
  * go2term, 20
  * gofilter, 20
  * goplot, 34
  * goplot(reexports), 34
  * group_by, 34
  * group_by(reexports), 34
  * groupGO, 6, 21, 22
  * groupGOResult-class, 22
  * GSEA, 22
  * gseaplot, 34
  * gseaplot(reexports), 34
  * gsegO, 24
  * gseKEGG, 25
  * gseMKEGG, 26
  * gsePC, 27
  * gseWP, 28
gsfilter, 34
gsfilter(reexports), 34
gson_GO, 28
gson_KEGG, 29
gson_KEGG_mapper, 30
gson_WP, 31

heatplot, 34
heatplot(reexports), 34

idType, 31

kegg_category(DataSet), 7
kegg_species(DataSet), 7
ko2name, 32

merge_result, 32
mutate, 34
mutate(reexports), 34

n, 34
n(reexports), 34

plotGOgraph, 33

read.blast2go, 34
read.blast2go(reexports), 34
read.gaf, 34
read.gaf(reexports), 34
read.gmt, 34
read.gmt(reexports), 34
read.gmt.pc, 34
read.gmt.wp, 34
reexports, 34
rename, 34
rename(reexports), 34
ridgeplot, 34
ridgeplot(reexports), 34

search_kegg_organism, 35
select, 34
select(reexports), 34
setReadable, 34
setReadable(reexports), 34
show, groupGOResult-method
(groupGOResult-class), 22
simplify, 35
simplify, compareClusterResult-method
(simplify), 35

simplify, enrichResult-method
(simplify), 35
simplify, gseaResult-method(simplify), 35
slice, 34
slice(reexports), 34
summarise, 34
summarise(reexports), 34

uniprot_get, 37