Package ‘clusterProfiler’
April 3, 2024

Type Package
Title A universal enrichment tool for interpreting omics data
Version 4.10.1
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>
Description This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.
Depends R (>= 3.5.0)
Imports AnnotationDbi, downloader, DOSE (>= 3.23.2), dplyr, enrichplot (>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr, igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr, utils, yulab.utils (>= 0.0.7)
Suggests AnnotationHub, knitr, jsonlite, readr, rmarkdown, org.Hs.eu.db, prettydoc, BiocManager, testthat
VignetteBuilder knitr
ByteCompile true
License Artistic-2.0
BugReports https://github.com/GuangchuangYu/clusterProfiler/issues
biocViews Annotation, Clustering, GeneSetEnrichment, GO, KEGG, MultipleComparison, Pathways, Reactome, Visualization
Encoding UTF-8
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/clusterProfiler
git_branch RELEASE_3_18
R topics documented:

- clusterProfiler-package
- append_kegg_category
- bitr
- bitr_kegg
- browseKEGG
- compareCluster
- DataSet
- download_KEGG
- dropGO
- enrichDAVID
- enricher
- enrichGO
- enrichKEGG
- enrichMKEGG
- enrichPC
- enrichWP
- getPPI
- getTaxID
- getTaxInfo
- get_wp_organisms
- Gff2GeneTable
- go2ont
- go2term
- gofilter
- groupGO
- groupGOResult-class
- GSEA
- gseGO
- gseKEGG
- gseMKEGG
clusterProfiler-package

statistical analysis and visualization of functional profiles for genes and gene clusters

Description

The package implements methods to analyze and visualize functional profiles of gene and gene clusters.

append_kegg_category

Description

add KEGG pathway category information

Usage

append_kegg_category(x)

Arguments

- x: KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of `enrichKEGG` or `gseKEGG`).
Value
update KEGG enrichment result with category information

Author(s)
Guangchuang Yu

Description
Biological Id TRanslator

Usage
`bitr(geneID, fromType, toType, OrgDb, drop = TRUE)`

Arguments
- `geneID` input gene id
- `fromType` input id type
- `toType` output id type
- `OrgDb` annotation db
- `drop` drop NA or not

Value
data.frame

Author(s)
Guangchuang Yu
Description

convert biological ID using KEGG API

Usage

```r
bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)
```

Arguments

- `geneID`: input gene id
- `fromType`: input id type
- `toType`: output id type
- `organism`: supported organism, can be search using `search_kegg_organism` function
- `drop`: drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu

browseKEGG

Description

open KEGG pathway with web browser

Usage

```r
browseKEGG(x, pathID)
```

Arguments

- `x`: an instance of `enrichResult` or `gseaResult`
- `pathID`: pathway ID
Value

url

Author(s)

Guangchuang Yu

compareCluster

Compare gene clusters functional profile

Description

Given a list of gene set, this function will compute profiles of each gene cluster.

Usage

```r
compareCluster(
  geneClusters,
  fun = "enrichGO",
  data = "",
  source_from = NULL,
  ...)
```

Arguments

- `geneClusters`: a list of entrez gene id. Alternatively, a formula of type `Entrez~group` or a formula of type `Entrez | logFC ~ group` for "gseGO", "gseKEGG" and "GSEA".
- `fun`: One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
- `data`: if `geneClusters` is a formula, the data from which the clusters must be extracted.
- `source_from`: If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.
- `...`: Other arguments.

Value

A `clusterProfResult` instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

`compareClusterResult-class`, `groupGO enrichGO`
Examples

```r
## Not run:
data(gcSample)
x <- compareCluster(gcSample, fun="enrichKEGG",
                   organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

## formula interface
mydf <- data.frame(Entrez=c('1', '100', '1000', '100101467',
                            '100127206', '100128071'),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c('A', 'A', 'A', 'B', 'B', 'B'),
                   othergroup = c('good', 'good', 'bad', 'good', 'good', 'bad'))
x <- compareCluster(Entrez~group, data=mydf, fun="groupGO", OrgDb="org.Hs.eg.db")
as.data.frame(xx)

## formula interface with more than one grouping variable
xx.formula.twogroups <- compareCluster(Entrez+othergroup, data=mydf,
                                        fun="groupGO", OrgDb="org.Hs.eg.db")
as.data.frame(xx.formula.twogroups)

## End(Not run)
```

Description

DataSet

Datasets gcSample contains a sample of gene clusters.

Description

Datasets gcSample contains a sample of gene clusters.
Datasets kegg_species contains kegg species information
Datasets kegg_category contains kegg pathway category information
Datasets DE_GSE8057 contains differential expressed genes obtained from GSE8057 dataset

download_KEGG

Description

download the latest version of KEGG pathway/module

Usage

download_KEGG(species, keggType = "KEGG", keyType = "kegg")
dropGO

Arguments

- `species` species
- `keggType` one of 'KEGG' or 'MKEGG'
- `keyType` supported keyType, see bitr_kegg

Value

list

Author(s)

Guangchuang Yu

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

```r
dropGO(x, level = NULL, term = NULL)
```

Arguments

- `x` an instance of 'enrichResult' or 'compareClusterResult'
- `level` GO level
- `term` GO term

Value

modified version of x

Author(s)

Guangchuang Yu
Description

enrichment analysis by DAVID

Usage

enrichDAVID(
gene,
idType = "ENTREZ_GENE_ID",
universe,
minGSSize = 10,
maxGSSize = 500,
annotation = "GOTERM_BP_FAT",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
qvalueCutoff = 0.2,
species = NA,
david.user
)

Arguments

gene input gene
idType id type
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated for testing
maxGSSize maximal size of genes annotated for testing
annotation david annotation
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
species species
david.user david user

Value

A enrichResult instance
Author(s)

Guangchuang Yu

Description

A universal enrichment analyzer

Usage

enricher(
 gene,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe = NULL,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 gson = NULL,
 TERM2GENE,
 TERM2NAME = NA
)

Arguments

gene a vector of gene id
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated for testing
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
gson a GSON object, if not NULL, use it as annotation data.
TERM2GENE user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
TERM2NAME user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
enrichGO

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top

enrichGO
GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

```r
enrichGO(
  gene,
  OrgDb,
  keyType = "ENTREZID",
  ont = "MF",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  qvalueCutoff = 0.2,
  minGSSize = 10,
  maxGSSize = 500,
  readable = FALSE,
  pool = FALSE
)
```

Arguments

gene a vector of entrez gene id.
OrgDb OrgDb
keyType keytype of input gene
ont One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

minGSSize minimal size of genes annotated by Ontology term for testing.

maxGSSize maximal size of genes annotated for testing

readable whether mapping gene ID to gene Name

pool If ont='ALL', whether pool 3 GO sub-ontologies

Value

An enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

```r
## Not run:
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
head(yy)

## End(Not run)
```

enrichKEGG

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage

```r
enrichKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
)```
enrichKEGG

pAdjustMethod = "BH",
universe,
minGSSize = 10,
maxGSSize = 500,
qvalueCutoff = 0.2,
use_internal_data = FALSE
)

Arguments

gene a vector of entrez gene id.
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
use_internal_data logical, use KEGG.db or latest online KEGG data

Value

A enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

## Not run:
data(geneList, package='DOSE')
de <- names(geneList)[1:100]
yy <- enrichKEGG(de, pvalueCutoff=0.01)
head(yy)

## End(Not run)
**enrichMKEGG**

*KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.*

---

**Description**

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

**Usage**

```r
enrichMKEGG(
 gene,
 organism = "hsa",
 keyType = "kegg",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2
)
```

**Arguments**

- `gene`: a vector of entrez gene id.
- `organism`: supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
- `keyType`: one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
- `pvalueCutoff`: adjusted pvalue cutoff on enrichment tests to report
- `pAdjustMethod`: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe`: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- `minGSSize`: minimal size of genes annotated by Ontology term for testing.
- `maxGSSize`: maximal size of genes annotated for testing
- `qvalueCutoff`: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

**Value**

A enrichResult instance.
**enrichPC**

### Description
ORA analysis for Pathway Commons

### Usage
```
enrichPC(gene, source, keyType = "hgnc", ...)
```

### Arguments
- **gene**: a vector of genes (either hgnc symbols or uniprot IDs)
- **source**: Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'netpath', 'panther', etc.
- **keyType**: specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
- **...**: additional parameters, see also the parameters supported by the enricher() function

### Details
This function performs over-representation analysis using Pathway Commons

### Value
A enrichResult instance

**enrichWP**

### Description
ORA analysis for WikiPathways

### Usage
```
enrichWP(gene, organism, ...)
```

### Arguments
- **gene**: a vector of entrez gene id
- **organism**: supported organisms, which can be accessed via the get_wp_organisms() function
- **...**: additional parameters, see also the parameters supported by the enricher() function
getPPI

Details
This function performs over-representation analysis using WikiPathways

Value
A enrichResult instance

Author(s)
Guangchuang Yu

Description
getPPI

Usage
getPPI(
  x,
  ID = 1,
  taxID = "auto",
  required_score = NULL,
  network_type = "functional",
  add_nodes = 0,
  show_query_node_labels = 0,
  output = "igraph"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| x              | an ‘enrichResult‘ object or a vector of proteins, e.g. ‘c("PTCH1", "TP53",
|                | "BRCA1", "BRCA2")’                                                          |
| ID             | ID or index to extract genes in the enriched term(s) if ‘x’ is an ‘enrichResult‘
|                | object                                                                      |
| taxID          | NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-
|                | db.org/cgi/input.pl?input_page_active_form=organisms)).                   |
| required_score | threshold of significance to include a interaction, a number between 0 and 1000
|                | (default depends on the network)                                           |
| network_type   | network type: functional (default), physical                                |
| add_nodes      | adds a number of proteins with to the network based on their confidence score |
|                | (default:1)                                                                 |
getTaxID

show_query_node_labels
when available use submitted names in the preferredName column when (0 or 1) (default:0)
output one of ‘data.frame’ or ‘igraph’

Details
[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrbk7).

Value
a ‘data.frame’ or an ‘igraph’ object

Author(s)
Yonghe Xia and modified by Guangchuang Yu

getTaxID  getTaxID

Description
Convert species scientific name to taxonomic ID

Usage
getTaxID(species)

Arguments

species scientific name of a species

Value
taxonomic ID

Author(s)
Guangchuang Yu
getTaxInfo

Description
Query taxonomy information from ‘stringdb’ or ‘ensembl’ web services

Usage
getTaxInfo(species, source = "stringdb")

Arguments
- species: scientific name of a species
- source: one of ‘stringdb’ or ‘ensembl’

Value
a ‘data.frame’ of query information

Author(s)
Guangchuang Yu

get_wp_organisms

Description
list supported organism of WikiPathways

Usage
get_wp_organisms()

Details
This function extracts information from 'https://wikipathways-data.wmcloud.org/current/gmt/' and lists all supported organisms

Value
supported organism list

Author(s)
Guangchuang Yu
**Gff2GeneTable**

Description

read GFF file and build gene information table

Usage

Gff2GeneTable(gffFile, compress = TRUE)

Arguments

- **gffFile**: GFF file
- **compress**: compress file or not

Details

given a GFF file, this function extracts information from it and save it in working directory

Value

file save.

Author(s)

Yu Guangchuang

---

**go2ont**

Description

convert goid to ontology (BP, CC, MF)

Usage

go2ont(goid)

Arguments

- **goid**: a vector of GO IDs

Value

data.frame
Author(s)
Guangchuang Yu

---

go2term
go2term

Description
convert goid to descriptive term

Usage
go2term(goid)

Arguments
- goid: a vector of GO IDs

Value
data.frame

Author(s)
Guangchuang Yu

---

gofilter
gofilter

Description
filter GO enriched result at specific level

Usage
gofilter(x, level = 4)

Arguments
- x: output from enrichGO or compareCluster
- level: GO level

Value
updated object
Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Usage

```r
groupGO(
 gene,
 OrgDb,
 keyType = "ENTREZID",
 ont = "CC",
 level = 2,
 readable = FALSE
)
```

Arguments

- `gene`: a vector of entrez gene id.
- `OrgDb`: OrgDb
- `keyType`: key type of input gene
- `ont`: One of "MF", "BP", and "CC" subontologies.
- `level`: Specific GO Level.
- `readable`: if readable is TRUE, the gene IDs will mapping to gene symbols.

Value

A `groupGOResult` instance.

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

See Also

`groupGOResult-class`, `compareCluster`
Examples

data(gcSample)
yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
head(summary(yy))
#plot(yy)

---
groupGOResult-class

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots

  result  GO classification result
  ontology  Ontology
  level  GO level
  organism  one of "human", "mouse" and "yeast"
  gene  Gene IDs
  readable  logical flag of gene ID in symbol or not.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

  compareClusterResult compareCluster groupGO

---

GSEA

Description

a universal gene set enrichment analysis tools
Usage

GSEA(
    geneList,
    exponent = 1,
    minGSSize = 10,
    maxGSSize = 500,
    eps = 1e-10,
    pvalueCutoff = 0.05,
    pAdjustMethod = "BH",
    gson = NULL,
    TERM2GENE,
    TERM2NAME = NA,
    verbose = TRUE,
    seed = FALSE,
    by = "fgsea",
    ...
)

Arguments

geneList order ranked geneList
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff adjusted pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
gson a GSON object, if not NULL, use it as annotation data.
TERM2GENE user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
TERM2NAME user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
verbose logical
seed logical
by one of 'fgsea' or 'DOSE'
...
other parameter

Value

gseaResult object

Author(s)

Guangchuang Yu https://yulab-smu.top
Description

Gene Set Enrichment Analysis of Gene Ontology

Usage

gseGO(
  geneList,
  ont = "BP",
  OrgDb,
  keyType = "ENTREZID",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList  order ranked geneList
ont       one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
OrgDb     OrgDb
keyType    keytype of gene
exponent   weight of each step
minGSSize  minimal size of each geneSet for analyzing
maxGSSize  maximal size of genes annotated for testing
eps        This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose    print message or not
seed       logical
by         one of 'fgsea' or 'DOSE'
...        other parameter
**Value**

gseaResult object

**Author(s)**

Yu Guangchuang

---

**gseKEGG**

**Description**

Gene Set Enrichment Analysis of KEGG

**Usage**

gseKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  use_internal_data = FALSE,
  seed = FALSE,
  by = "fgsea",
  ...
)

**Arguments**

geneList  order ranked geneList
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
gseMKEGG

verbose: print message or not
use_internal_data: logical, use KEGG.db or latest online KEGG data
seed: logical
by: one of 'fgsea' or 'DOSE'
...
other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG Module

Usage

gseMKEGG(
geneList, organism = "hsa", keyType = "kegg", exponent = 1, minGSSize = 10, maxGSSize = 500, eps = 1e-10, pvalueCutoff = 0.05, pAdjustMethod = "BH", verbose = TRUE, seed = FALSE, by = "fgsea", ...
)

Arguments

geneList: order ranked geneList
organism: supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType: one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent: weight of each step
**gsePC**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minGSSize</td>
<td>minimal size of each geneSet for analyzing</td>
</tr>
<tr>
<td>maxGSSize</td>
<td>maximal size of genes annotated for testing</td>
</tr>
<tr>
<td>eps</td>
<td>This parameter sets the boundary for calculating the p value.</td>
</tr>
<tr>
<td>pvalueCutoff</td>
<td>pvalue Cutoff</td>
</tr>
<tr>
<td>pAdjustMethod</td>
<td>pvalue adjustment method</td>
</tr>
<tr>
<td>verbose</td>
<td>print message or not</td>
</tr>
<tr>
<td>seed</td>
<td>logical</td>
</tr>
<tr>
<td>by</td>
<td>one of 'fgsea' or 'DOSE'</td>
</tr>
<tr>
<td>...</td>
<td>other parameter</td>
</tr>
</tbody>
</table>

**Value**

A *gseaResult* instance

**Author(s)**

Yu Guangchuang

---

**Description**

GSEA analysis for Pathway Commons

**Usage**

```r
 gsePC(geneList, source, keyType, ...)
```

**Arguments**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geneList</td>
<td>a ranked gene list</td>
</tr>
<tr>
<td>source</td>
<td>Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'netpath', 'panther', etc.</td>
</tr>
<tr>
<td>keyType</td>
<td>specify the type of input 'gene' (one of 'hgnc' or 'uniprot')</td>
</tr>
<tr>
<td>...</td>
<td>additional parameters, see also the parameters supported by the GSEA() function</td>
</tr>
</tbody>
</table>

**Details**

This function performs GSEA using Pathway Commons

**Value**

A *gseaResult* instance
Description
GSEA analysis for WikiPathways

Usage
\texttt{gseWP(geneList, organism, ...)}

Arguments
\begin{itemize}
\item \texttt{geneList} \hspace{1cm} ranked gene list
\item \texttt{organism} \hspace{1cm} supported organisms, which can be accessed via the \texttt{get_wp_organisms()} function
\item ... \hspace{1cm} additional parameters, see also the parameters supported by the \texttt{GSEA()} function
\end{itemize}

Details
This function performs GSEA using WikiPathways

Value
A \texttt{gseaResult} instance

Author(s)
Guangchuang Yu

Description
download the latest version of KEGG pathway and stored in a 'GSON' object

Usage
\texttt{gson\_GO(OrgDb, keytype = "ENTREZID", ont = "BP")}
**Arguments**

- `OrgDb`  
  keytype of genes.
- `ont`  
  one of "BP", "MF", "CC", and "ALL"

**Value**

a 'GSON' object

**Description**

download the latest version of KEGG pathway and stored in a 'GSON' object

**Usage**

gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")

**Arguments**

- `species`  
  species
- `KEGG_Type`  
  one of "KEGG" and "MKEGG"
- `keyType`  
  one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

**Value**

a 'GSON' object

**Author(s)**

Guangchuang Yu
Build KEGG annotation for novel species using KEGG Mapper

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in ‘clusterProfiler’

Usage

gson_KEGG_mapper(
  file,
  format = c("BLAST", "Ghost", "Kofam"),
  type = c("pathway", "module"),
  species = NULL,
  ...
)

Arguments

file the name of the file which comes from the KEGG Mapper service, see Details for file format
format string indicate format of KEGG Mapper result
type string indicate annotation database
species your species, NULL if ignored
... pass to gson::gson()

Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user’s identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG’s internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user’s sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance
Examples

## Not run:
```r
file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
gson_KEGG_mapper(file, format = "BLAST", type = "pathway")
```

## End(Not run)

---

**Description**

Download the latest version of WikiPathways data and stored in a 'GSON' object

**Usage**

```r
gson_WP(organism)
```

**Arguments**

- `organism`: supported organism, which can be accessed via the `get_wp_organisms()` function.

---

**Description**

list ID types supported by annoDb

**Usage**

```r
idType(OrgDb = "org.Hs.eg.db")
```

**Arguments**

- `OrgDb`: annotation db

**Value**

character vector

**Author(s)**

Guangchuang Yu
**ko2name**

**Description**
convert ko ID to descriptive name

**Usage**
ko2name(ko)

**Arguments**
ko ko ID

**Value**
data.frame

**Author(s)**
guangchuang yu

---

**merge_result**

**Description**
merge a list of enrichResult objects to compareClusterResult

**Usage**
merge_result(enrichResultList)

**Arguments**
enrichResultList
a list of enrichResult objects

**Value**
a compareClusterResult instance

**Author(s)**
Guangchuang Yu
Description

plot GO graph

Usage

plotGOgraph(
  x,
  firstSigNodes = 10,
  useInfo = "all",
  sigForAll = TRUE,
  useFullNames = TRUE,
  ...
)

Arguments

  x  output of enrichGO or gseGO
  firstSigNodes number of significant nodes (rectangle nodes in the graph)
  useInfo additional info
  sigForAll if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only
              score will be shown
  useFullNames logical
  ... additional parameter of showSigOfNodes, please refer to topGO

Value

GO DAG graph

Author(s)

Guangchuang Yu
**Description**

Parse gmt file from Pathway Common

**Usage**

```
read.gmt.pc(gmtfile, output = "data.frame")
```

**Arguments**

- `gmtfile`: A gmt file
- `output`: one of `data.frame` or `GSON`

**Details**

This function parse gmt file downloaded from Pathway common

**Value**

A data.frame or A GSON object depends on the value of `output`

---

**reexports**

Objects exported from other packages

---

**Description**

These objects are imported from other packages. Follow the links below to see their documentation.

- **DOSE** `geneID, geneInCategory, gsfilter, setReadable`
- **dplyr** `arrange, filter, group_by, mutate, n, rename, select, slice, summarise`
- **enrichplot** `cnetplot, dotplot, emapplot, goplot, gseaplot, heatplot, ridgeplot`
- **GOSemSim** `buildGOmap, read.blast2go, read.gaf`
- **json** `read.gmt, read.gmt.wp`
- **magrittr** `%<>%, %>%`
search_kegg_organism

Description

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

Usage

search_kegg_organism(
  str,
  by = "scientific_name",
  ignore.case = FALSE,
  use_internal_data = TRUE
)

Arguments

str string
by one of 'kegg.code', 'scientific_name' and 'common_name'
ignore.case TRUE or FALSE
use_internal_data logical, use kegg_species.rda or latest online KEGG data

Value
data.frame

Author(s)

Guangchuang Yu

simplify simplify method

Description

simplify output from enrichGO and gseGO by removing redundancy of enriched GO terms
simplify output from compareCluster by removing redundancy of enriched GO terms
Usage

```r
S4 method for signature 'enrichResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'gseaResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'compareClusterResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

Arguments

- `x` output of enrichGO
- `cutoff` similarity cutoff
- `by` feature to select representative term, selected by ‘select_fun’ function
- `select_fun` function to select feature passed by ‘by’ parameter
- `measure` method to measure similarity
- `semData` GOSemSimDATA object

Value

- updated enrichResult object
- updated compareClusterResult object
uniprot_get

Author(s)
Guangchuang Yu
Gwang-Jin Kim and Guangchuang Yu

References
issue #28 https://github.com/GuangchuangYu/clusterProfiler/issues/28
issue #162 https://github.com/GuangchuangYu/clusterProfiler/issues/162

Description
retrieve annotation data from uniprot

Usage
uniprot_get(taxID)

Arguments
  taxID    taxonomy ID

Value
gene table data frame

Author(s)
guangchuang yu
Index

* **classes**
  - groupGOResult-class, 22

* **datasets**
  - DataSet, 7

* **internal**
  - reexports, 34

* **manip**
  - compareCluster, 6
  - enrichGO, 11
  - enrichKEGG, 12
  - groupGO, 21
  - %<>%(reexports), 34
  - %%(reexports), 34
  - %<>%, 34
  - %%, 34

  - append_kegg_category, 3
  - arrange, 34
  - arrange(reexports), 34

  - bitr, 4
  - bitr_kegg, 5
  - browseKEGG, 5
  - buildGOmap, 34
  - buildGOmap(reexports), 34

clusterProfiler
  - (clusterProfiler-package), 3
  - clusterProfiler-package, 3
  - cnetplot, 34
  - cnetplot(reexports), 34
  - compareCluster, 6, 12, 13, 21, 22
  - compareClusterResult, 22

DataSet, 7
DE_GSE8057(DataSet), 7

dotplot, 34
dotplot(reexports), 34
download KEgg, 7
dropGO, 8

emapplot, 34
eemapplot(reexports), 34
enrichDAVID, 9
enricher, 10
enrichGO, 6, 11
enrichKEGG, 12
enrichMKEGG, 14
enrichPC, 15
enrichWP, 15

filter, 34
filter(reexports), 34

gcSample(DataSet), 7
geneID, 34
geneID(reexports), 34
geneInCategory, 34
geneInCategory(reexports), 34
get_wp_organisms, 18
getPPI, 16
getTaxID, 17
getTaxInfo, 18
Gff2GeneTable, 19
go2ont, 19
go2term, 20
gofilter, 20
goplot, 34
goplot(reexports), 34
group_by, 34
group_by(reexports), 34
groupGO, 6, 21, 22
groupGOResult-class, 22
GSEA, 22
gseaplot, 34
gseaplot(reexports), 34
gseGO, 24
gseKEGG, 25
gseMKEGG, 26
gsePC, 27
gseWP, 28
INDEX

gsfilter, 34
gsfilter (reexports), 34
gson.GO, 28
gson.KEGG, 29
gson.KEGG_mapper, 30
gson.WP, 31

heatplot, 34
heatplot (reexports), 34

idType, 31

kegg_category (DataSet), 7
kegg_species (DataSet), 7
ko2name, 32

merge_result, 32
mutate, 34
mutate (reexports), 34

n, 34
n (reexports), 34

plotGOgraph, 33

read.blast2go, 34
read.blast2go (reexports), 34
read.gaf, 34
read.gaf (reexports), 34
read.gmt, 34
read.gmt (reexports), 34
read.gmt.pc, 34
read.gmt.wp, 34
reexports, 34
rename, 34
rename (reexports), 34
ridgeplot, 34
ridgeplot (reexports), 34

search_kegg_organism, 35
select, 34
select (reexports), 34
setReadable, 34
setReadable (reexports), 34
show, groupGOResult-method
(simplify, groupGOResult-class), 22
simplify, 35
simplify, compareClusterResult-method
(simplify), 35

uniprot_get, 37