Package ‘coMET’

March 22, 2024

Type Package

Title coMET: visualisation of regional epigenome-wide association scan (EWAS) results and DNA co-methylation patterns

Version 1.34.0

Date 2022-10-26

Author Tiphaine C. Martin [aut,cre], Thomas Hardiman [aut], Idil Yet [aut], Pei-Chien Tsai [aut], Jordana T. Bell [aut]

Maintainer Tiphaine Martin <tiphaine.martin@mssm.edu>

Description Visualisation of EWAS results in a genomic region. In addition to phenotype-association P-values, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. It can be used to other omic-wide association scans as long as the data can be translated to genomic level and for any species.

Depends R (>= 4.1.0), grid, utils, biomaRt, Gviz, psych

Suggests BiocStyle, knitr, RUnit, BiocGenerics, showtext

Imports hash, grDevices, gridExtra, rtracklayer, IRanges, S4Vectors, GenomicRanges, stats, corrplot

License GPL (>= 2)

URL http://epigen.kcl.ac.uk/comet

biocViews Software, DifferentialMethylation, Visualization, Sequencing, Genetics, FunctionalGenomics, Microarray, MethylationArray, MethylSeq, ChIPSeq, DNAsiq, RiboSeq, RNASeq, ExomeSeq, DNA Methylation, GenomeWideAssociation, MotifAnnotation

VignetteBuilder knitr

NeedsCompilation no

git_url https://git.bioconductor.org/packages/coMET

git_branch RELEASE_3_18

git_last_commit 79e0b13

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-22
R topics documented:

- coMET-package .. 4
- bindingMotifsBiomart_ENSEMBL 5
- check.configVar .. 8
- check.configVar.cometlist 8
- check.format.mydata ... 9
- ChIPTF_ENCODE .. 9
- chromatinHMMAll_UCSC ... 11
- chromatinHMMOne_UCSC .. 13
- chromHMM_RoadMap .. 14
- chrUCSC2ENSEMBL .. 16
- clinCNV .. 17
- ClinVarCnv_UCSC .. 17
- ClinVarMain_UCSC ... 18
- col2HSV .. 20
- comet ... 20
- comet.list ... 27
- comet.web ... 28
- complementary .. 33
- compute.cormatrix .. 34
- CoreillCNV_UCSC .. 35
- COSMIC_UCSC ... 36
- cpgIslands_UCSC .. 37
- cpgPvalue .. 38
- create.color.bar .. 39
- create.color.list ... 40
- create.color.list.large 41
- create.symbol.list ... 41
- create.symbol.list.large 42
- create.tracks.user ... 43
- create.tracks.web .. 43
- createList.trackUser ... 44
- dgfootprints_RoadMap ... 44
- DNaseI_FANTOM .. 46
- DNaseI_RoadMap .. 47
- DNAse_UCSC .. 49
- draw.legend .. 50
- draw.name.genes.web .. 51
- draw.name.tracks.web ... 51
- draw.plot.annotation .. 52
- draw.plot.axis.data ... 52
- draw.plot.comet ... 53
- draw.plot.comet.nopval 53
- draw.plot.comet.web .. 54
- draw.plot.cormatrix.plot 55
- draw.plot.grid.mydata .. 55
- draw.plot.grid.mydata.large 56
coMET-package

Description

cOMET is an R package for visualising EWAS results in a genomic region. Along with phenotype-association plots, coMET also generates plots of co-methylation patterns and provides a series of annotation tracks. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets (other omic-WAS results) in any species.

Details

Package: coMET
Type: Package
Version: 1.11.5
Date: 2018-04-16
License: GPL (>=2)

cOMET is an R package that can generate regional plots of EWAS results, DNA co-methylation patterns, and genomic information. A coMET figure includes 3 panels with a plot of P-values from EWAS, customized annotation tracks, and a triangle heatmap plot which demonstrates the correlation structure of DNA methylation at the CpG sites in the genomic region. Plots are created as PDF or EPS files.

Author(s)

Tiphaine C. Martin, Thomas Hardiman, Idil Yet, Pei-Chien Tsai, Jordana T. Bell
Maintainer: Tiphaine Martin <tiphaine.martin@mssm.edu>
Website: http://www.epigen.kcl.ac.uk/comet

References

Examples

extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1b1_zoom_4comet.txt")
myinfofile <- file.path(extdata, "cyp1b1_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")

chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg38"

if(interactive()){
 genetrack <- genes_ENSEMBL(gen, chrom, start, end, showId=TRUE)
 snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end,
 dataset="hsapiens_snp_som", showId=FALSE)
 strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end,
 strand, dataset="hsapiens_structvar_som")
 clinVariant <- ClinVarMain_UCSC(gen, chrom, start, end)
 clinCNV <- ClinVarCnv_UCSC(gen, chrom, start, end)
 gwastrack <- GWAScatalog_UCSC(gen, chrom, start, end)
 geneRtrack <- GeneReviews_UCSC(gen, chrom, start, end)
 listgviz <- list(genetrack, snptrack, strutrack, clinVariant,
 clinCNV, gwastrack, geneRtrack)
 comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
 cormatrix.file=mycorrelation, cormatrix.type="listfile",
 mydata.large.file=myexpressfile, mydata.large.type="listfile",
 tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE, disp.pvalueplot=FALSE)
} else {
 data(geneENSEMBLtrack)
 data(snpBiomarttrack)
 data(ISCATrack)
 data(structureBiomarttrack)
 data(ClinVarCnvTrack)
 data(clinVarMaintrack)
 data(GWASTrack)
 data(GeneReviewTrack)

 listgviz <- list(genetrack, snptrack, strutrack, clinVariant,
 clinCNV, gwastrack, geneRtrack)
 comet(config.file=configfile, mydata.file=myinfofile, mydata.type="listfile",
 cormatrix.file=mycorrelation, cormatrix.type="listfile",
 mydata.large.file=myexpressfile, mydata.large.type="listfile",
 tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE, disp.pvalueplot=TRUE)
}
Description

Creates a binding motif track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```
bindingMotifsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay="all",
datasetEnsembl = NULL, title="Binding Motifs ENSEMBL")
```

Arguments

- `gen`: The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

- `chr`: The chromosome of interest

- `start`: The starting position in the region of interest (the smallest value)

- `end`: The end position in the region of interest (the largest value)

- `featureDisplay`: A vector of regulatory features to be displayed, such as Egr1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CTCF"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Egr1","CTCF")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

- `datasetEnsembl`: Allows the user to manually set which data set is used if required.

- `title`: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

- Tiphaine Martin
- Tom Hardiman

References

- Got to ENSEMBL regulation binding motif biomart
Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "CTCF"

if(interactive()){
 bindMotifsBiomartTrackSingle<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay)
 plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(bindMotifsBiomartTrackSingle)
 plotTracks(bindMotifsBiomartTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

########

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- c("CTCF","Egr1")

if(interactive()){
 bindMotifsBiomartTrackMultiple<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay)
 plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(bindMotifsBiomartTrackMultiple)
 plotTracks(bindMotifsBiomartTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

########

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "all"

if(interactive()){
 bindMotifsBiomartTrackAll<-bindingMotifsBiomart_ENSEMBL(gen,chr,start,end,featureDisplay)
 plotTracks(bindMotifsBiomartTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
check.configVar

Check if all variables have a value related to the functions comet and comet.web

Description
Check if all variables have a value related to the functions comet and comet.web

Usage
check.configVar(config.var)

Arguments
config.var configuration variables

Value
Nothing

Author(s)
Tiphaine Martin

check.configVar.cometlist

Check if all variables have a value related to the function comet.list. Comet.list gives the list of correlation between omic features.

Description
Check if all variables have a value related to the function comet.list. Comet.list gives the list of correlation between omic features.

Usage
check.configVar.cometlist(config.var)

Arguments
config.var configuration variables
check.format.mydata

Value

Nothing

Author(s)

Tiphaine Martin

check.format.mydata
Check the format of different data

Description

Check the format of different data

Usage

check.format.mydata(gbl.var, option, numfile)

Arguments

- **gbl.var**: list of internal variables
- **option**: option that say if the data to check are main or supplementary data
- **numfile**: the order of file to check from the list of main or supplementary data

Value

gbl.var updated or error message

Author(s)

Tiphaine Martin

ChIPTF_ENCODE
Creates a TF motif track from ENCODE

Description

Creates a track of TF motifs from ENCODE using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

ChIPTF_ENCODE(gen="hg19", chr, start, end, bedFilePath, featureDisplay='all', motifColorFile, type_stacking='dense', showId=FALSE,just_group="above", title="TF motifs ENCODE")
Arguments

- **gen**: the name of the genome. Default value=hg19
- **chr**: The chromosome of interest
- **start**: The starting position in the region of interest (the smallest value)
- **end**: The end position in the region of interest (the largest value)
- **bedFilePath**: The path of the BED file from Kheradpour and Kellis, 2014.
- **featureDisplay**: A vector of regulatory features to be displayed, such as Predicted heterochromatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. `featureDisplay <- "Predicted heterochromatin"`), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. `featureDisplay <- c("Predicted low activity","Predicted heterochromatin")`). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. `featureDisplay <- "all"`), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.
- **motifColorFile**: The path of the BED file with 2 columns (the first for motif name and the second for the color in hex format without \# in the beginning) with a header.
- **type_stacking**: Object of class"character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option "stacking" in Gviz
- **showId**: logical. say if we write the name of group
- **just_group**: position. say where we write the name of group (choice in c("above","right","left"))
- **title**: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

Got to BindingMotifsBiomart binding motif biomart

Examples

```r
library("Gviz")
gen <- "hg19"
chr<-"chr1"
start <- 1000
end <- 329000
```
if(interactive()){
 extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
 bedFilePath <- file.path(extdata, "ENCODE/motifs1000_matches_ENCODE.txt")
 motif_color <- file.path(extdata, "ENCODE/TFmotifs_colors.csv")
 chipTFtrack <- ChIPTF_ENCODE(gen,chr,start, end, bedFilePath,
 featureDisplay=c("AHR::ARNT::HIF1A_1","AIRE_1","AIRE_2","AHR::ARNT_1"),
 motif_color,type_stacking="squish",showId=TRUE)
 plotTracks(chipTFtrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(chipTFtrack)
 plotTracks(chipTFtrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

chromatinHMMAll_UCSC

Creating multiple chromHMM tracks from the UCSC genome browser

Description

Create multiple chromHMM Broad tracks by connecting to the UCSC genome browser using the GViz bioconductor package

Usage

chromatinHMMAll_UCSC(gen, chr, start, end, mySession, color='coMET',
 pattern = NULL, table.name = NULL)

Arguments

gen the name of the genome
chr the chromosome of interest
start the first position in region of interest (the smallest value)
end the last position in region of interest (the biggest value)
mySession the object session from the function browserSession of rtracklayer
color the colour scheme used for plots. By defult this is set to 'coMET' to allow easy indentification of differnet elements. The colour scheme set by UCSC can also be used. Consult userguide for table of colours.
pattern the pattern of the track to visualise
table.name the name of the table from the track

Value

dict of AnnotationTrack objects of GViz
Author(s)
Tiphaine Martin

References
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAY6dn&c=chr6&g=wg

See Also
chromatinHMMOne_UCSC

Examples
library("Gviz")
library(rtracklayer)
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38313219
if(interactive()){
 BROWSER.SESSION="UCSC"
 mySession <- browserSession(BROWSER.SESSION)
 genome(mySession) <- gen
 track.name="Broad ChromHMM"
 tablestrack<-ucscTables(gen, track=track.name)
 table.name<-tablestrack[1]
 PATTERN.REGULATION<="GM12878"

 chromhmmPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,mySession, color='coMET',PATTERN.REGULATION)
 plotTracks(chromhmmPattern, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")

 chromhmmNoPattern<-chromatinHMMAll_UCSC(gen,chr,start,end,mySession,color='coMET')
 plotTracks(chromhmmNoPattern, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")
} else {

data(chromhmmPattern)
 plotTracks(chromhmmPattern, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")

 data(chromhmmNoPattern)
 plotTracks(chromhmmNoPattern, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")
}
Creating one chromHMM track from the UCSC genome browser

Description

Create one track of only one type of chromHMM Broad element from the UCSC genome browser using the Gviz bioconductor package.

Usage

chromatinHMMOne_UCSC(gen, chr, start, end, mySession, color="coMET", title="ENCODE/Broad chromHMM", table.name = NULL)

Arguments

gen: the name of the genome. Data is not currently available for GRCh38 (hg38).
chr: the chromosome of interest
start: the first position in region of interest (the smallest value)
end: the last position in region of interest (the biggest value)
mySession: the object session from the function browserSession of rtracklayer
color: the color scheme used for plots. By default this is set to 'coMET' to allow easy identification of different elements. The color scheme set by UCSC can also be used. Consult userguide for table of colors.
title: Name of tracks
table.name: the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtdrFAy6dn&c=chr6&g=wg

See Also

chromatinHMMAll_UCSC
Examples

```r
library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38303219
color <- "coMET"

if(interactive()) {
  BROWSER.SESSION="UCSC"
  mySession <- browserSession(BROWSER.SESSION)
genome(mySession) <- gen
  track.name="Broad ChromHMM"
  tablestrack<-ucscTables(gen, track.name)
  table.name<-tablestrack[[1]]
  chromhmmtrackone<-chromatinHMMOne_UCSC(gen,chr,start,end
,mysession,color="coMET",table.name)
  plotTracks(chromhmmtrackone, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")
} else {
  data(chromhmmtrackone)
  plotTracks(chromhmmtrackone, from = start, to =end,
fontfamily="sans",fontfamily.title="sans")
}
```

chromHMM_RoadMap
Creates a ChromHMM track from a file of RoadMap

Description

Creates a ChromHMM track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```r
chromHMM_RoadMap(gen="hg19",chr, start, end, bedFilePath,
featureDisplay = 'all', colorcase='roadmap15',
title=" chromHMM RoadMap")
```

Arguments

- **gen**
 the name of the genome. Default value=hg19
- **chr**
 The chromosome of interest
- **start**
 The starting position in the region of interest (the smallest value)
- **end**
 The end position in the region of interest (the largest value)
- **bedFilePath**
 The file path to the .BED file containing the data to be visualised
featureDisplay A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the 'State & Acronym' column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

colorcase the type of colors used to visualise different elements contained in ROADmap data with 15-,18-,25- states. choice between roadmap15, roadmap18, comet18, roadmap25 and comet25.

title The name of the annotation track

Value
An AnnotationTrack object of Gviz

Author(s)
Tiphaine Martin
Tom Hardiman

References
Got to RoadMap Epigenome

Examples
library("Gviz")
chr <- "chr1"
start <- 4500000
end <- 4600000
featureDisplay <- "7_Enh"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
 chromHMM_RoadMapSingle <- chromHMM_RoadMap(gen="hg19",chr,start, end,
 bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15'
)
 plotTracks(chromHMM_RoadMapSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(chromHMM_RoadMapSingle)
 plotTracks(chromHMM_RoadMapSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
library("Gviz")
chr <- "chr22"
start <- 38291000
end <- 38301200
featureDisplay <- c("7_Enh","13_ReprPC")

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
 chromHMM_RoadMapMultiple <- chromHMM_RoadMap(gen="hg19",chr,start, end,
bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15')
 plotTracks(chromHMM_RoadMapMultiple, from = start, to = end,
fontfamily="sans",fontfamily.title="sans")
} else {
 data(chromHMM_RoadMapMultiple)
 plotTracks(chromHMM_RoadMapMultiple, from = start, to = end,
fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")
chr <- "chr22"
start <- 38291000
end <- 38301200
featureDisplay <- "all"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/E063_15_coreMarks_mnemonics.bed")

if(interactive()){
 chromHMM_RoadMapAll <- chromHMM_RoadMap(gen="hg19",chr,start, end,
bedFilePath, featureDisplay = featureDisplay, colorcase='roadmap15')
 plotTracks(chromHMM_RoadMapAll, from = start, to = end,
fontfamily="sans",fontfamily.title="sans")
} else {
 data(chromHMM_RoadMapAll)
 plotTracks(chromHMM_RoadMapAll, from = start, to = end,
fontfamily="sans",fontfamily.title="sans")
}

chrUCSC2ENSEMBL
Removing "chr" to the chromosome number from UCSC to transform it to ENSEMBL chromosome format

Description
Removing "chr" at the beginning of the chromosome number
Usage

\texttt{chrUCSC2ENSEMBL(chr)}

Arguments

- **chr**: the chromosome number in UCSC format

Value

the number of chromosome at ENSEMBL format

Author(s)

Tiphaine Martin

Examples

```r
chr<"chr7"
chrUCSC2ENSEMBL(chr)
```

Data sets

clinCNV

Description

Some sample data sets used for the illustrative examples and the vignette.

ClinVarCnv_UCSC

Create one track of the genomic positions of variants from the ClinVar database (CNV only)

Description

Create one track of the genomic positions of variants from the ClinVar database (CNV only, Variants excluded) using the Gviz bioconductor package

Usage

\texttt{ClinVarCnv_UCSC(gen, chr, start, end, title="ClinVar Variants", showId = FALSE)}

Arguments

- **gen**: the name of the genome
- **chr**: the chromosome of interest
- **start**: the first position in region of interest (the smallest value)
- **end**: the last position in region of interest (the biggest value)
- **title**: The name of the annotation track
- **showId**: Show the ID of the genetic elements
ClinVarMain_UCSC

Create one track of the genomic positions of variants from the ClinVar database (variants only)

Description

Create one track of the genomic positions of variants from the ClinVar database (Variants only, CNV excluded) using the Gviz bioconductor package

Usage

ClinVarMain_UCSC(gen, chr, start, end, title="ClinVar Variants", showId=FALSE)
Arguments

gen the name of the genome
chr the chromosome of interest
start the first position in region of interest (the smallest value)
end the last position in region of interest (the biggest value)
title The name of the annotation track
showId Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=clin

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, CoreillCNV_UCSC, COSMIC_UCSC,
ClinVarCnv_UCSC

Examples

library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 100000
end <- 10000000

if(interactive()) {
 clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end)
 plotTracks(clinVariant, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else{
 data(clinVarMaintrack)
 plotTracks(clinVariant, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
col2HSV

Description

`col2HSV` converts an R color (or a set of colors) into an HSV color model, and then returns the color names in hexadecimal notation.

Usage

`col2HSV(color)`

Arguments

- `color` an R color name or a color in hexadecimal notation

Value

A character vector with the color(s) name(s) in hexadecimal notation

Author(s)

Gaston Sanchez

Examples

```r
# convert 'tomato'
col2HSV("tomato")
```

comet

Visualize EWAS results in a genomic region of interest

Description

coMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.
Usage

comet(mydata.file = NULL, mydata.format = "site", mydata.type = "file",
mydata.large.file = NULL, mydata.large.format = "site",
mydata.large.type = "listfile", cormatrix.file = NULL,
cormatrix.method = "spearman", cormatrix.format = "raw",
cormatrix.color.scheme = "bluewhitered", cormatrix.conf.level = 0.05,
cormatrix.sig.level = 1, cormatrix.adjust = "none",
cormatrix.type = "listfile", mydata.ref = NULL,
start = NULL, end = NULL, zoom = FALSE, lab.Y = "log",
pval.threshold = 1e-05, pval.threshold.2 = 0, disp.pval.threshold = 1,
disp.association = FALSE, disp.association.large = FALSE,
disp.region = FALSE, disp.region.large = FALSE,
disp.beta.association = FALSE, disp.beta.association.large = FALSE,
factor.beta = 0.3, symbols = "circle-fill",
symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL,
use.colors = TRUE, disp.color.ref = TRUE, color.list = NULL, color.list.large = NULL,
disp.mydata = TRUE, biofeat.user.file = NULL, biofeat.user.type = NULL,
biofeat.user.type.plot = NULL,
genome = "hg19", dataset.gene = "hsapiens_gene_ensembl",
tracks.gviz = NULL,
disp.mydata.names = TRUE, disp.color.bar = TRUE, disp.phys.dist = TRUE,
disp.legend = TRUE, disp.marker.lines = TRUE, disp.cormatrixmap = TRUE,
disp.pvalueplot = TRUE, disp.type = "symbol", disp.mult.lab.X = FALSE,
disp.connecting.lines = TRUE, palette.file = NULL, image.title = NULL,
image.name = "coMET", image.type = NULL, image.size = 3.5,
fontsize.gviz = 5, font.factor = 1,
symbol.factor = NULL, print.image = TRUE, connecting.lines.factor = 1.5,
connecting.lines.adj = 0.01, connecting.lines.vert.adj = -1,
connecting.lines.flex = 0, config.file = NULL, verbose = FALSE)

Arguments

mydata.file Name of the info file describing the coMET parameters
mydata.format Format of the input data in mydata.file. There are 4 different options: site,
region, site_asso, region_asso.
mydata.type Format of mydata.file. There are 2 different options: FILE or MATRIX.
mydata.large.file Name of additional info files describing the coMET parameters. File names
should be comma-separated. It is optional, but if you add some, they need to
be file(s) in tabular format with a header. Additional info file can be a list of
CpG sites with/without Beta value (DNA methylation level) or direction sign.
If it is a site file then it is mandatory to have the 4 columns as shown below
with headers in the same order. Beta can be the 5th column(optional) and it
can be either a numeric value (positive or negative values) or only direction sign
("+", "-"). The number of columns and their types are defined but the option
mydata.large.format.
mydata.large.format
Format of additional data to be visualised in the p-value plot. Format should be comma-separated. There are 4 different options for each file: site, region, site_asso, region_asso.

mydata.large.type
Format of mydata.large.file. There are 2 different options: listfile or listdataframe.
cormatrix.file
Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.
cormatrix.method
Options for calculating the correlation matrix: spearman, pearson and kendall
cormatrix.format
Format of the input cormatrix.file. There are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix)
cormatrix.color.scheme
Color scheme options: heat, bluewhitered, cm, topo, gray, bluetored
cormatrix.conf.level
Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.
cormatrix.sig.level
Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1.
cormatrix.adjust
indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Default value ="none"
cormatrix.type
Format of cormatrix.file. There are 2 different options: listfile or listdataframe.
mydata.ref
The name of the referenceomic feature (e.g. CpG-site) listed in mydata.file
start
The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features.
end
the last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features.
zoom
Default=False
lab.Y
Scale of the y-axis. Options: log or ln
pval.threshold
Significance threshold to be displayed as a red dashed line
pval.threshold.2
the second significance threshold to be displayed as a orange dashed line
disp.pval.threshold
Display only the findings that pass the value put in disp.pval.threshold
disp.association
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol
is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color.

disp.association.large
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color.

disp.region
This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.region.large
This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.beta.association
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown.

disp.beta.association.large
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbole; if TRUE, the effect direction is shown.

factor.beta
Factor to visualise the size of beta. Default value = 0.3.

symbols
The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle

symbols.large
The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.s., square-fill. Example: circle,diamond-fill,triangle

sample.labels
Labels for the sample described in mydata.file to include in the legend

sample.labels.large
Labels for the sample described in mydata.large.file to include in the legend

use.colors
Use the colors defined or use the grey color scheme
disp.color.ref Logical option TRUE or FALSE (TRUE default). If TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black.

color.list List of colors for displaying the P-value symbols related to the data in my-data.file

color.list.large List of colors for displaying the P-value symbols related to the data in my-data.large.file

disp.mydata logical option TRUE or FALSE. TRUE (default). If TRUE, the P-value plot is shown; if FALSE the plot will be defined by GViz

biofeat.user.file Name of data file to visualise in the tracks. File names should be comma-separated.

biofeat.user.type Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneregionTrack.

biofeat.user.type.plot Format of the plot if the data are shown with the Gviz's function called DataTrack (comma-separated)

genome The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37),"grch38" (GRCh38)

dataset.gene The gene names from ENSEMBL. e.g. hsapiens_gene

tracks.gviz list of tracks created by Gviz.

disp.mydata.names logical option TRUE or FALSE. If True (default), the names of the CpG sites are displayed.

disp.color.bar Color legend for the correlation matrix (range -1 to 1). Default: blue-white-red

disp.phys.dist logical option (TRUE or FALSE). TRUE (default). Display the bp distance on the plots

disp.legend logical option TRUE or FALSE. TRUE (default) Display the sample labels and corresponding symbols on the lower right side

disp.marker.lines logical option TRUE or FALSE. TRUE (default), if FALSE the red line for pval.threshold is not shown

disp.cormatrixmap logical option TRUE or FALSE. TRUE (default), if FALSE correlation matrix is not shown

disp.pvalueplot logical option (TRUE or FALSE). TRUE (default), if FALSE the pvalue plot is not shown

disp.type Default: symbol

disp.mult.lab.X logical option TRUE or FALSE. FALSE (default). Display evenly spaced X-axis labels; up to 5 labels are shown.
disp.connecting.lines
Logical option TRUE or FALSE. TRUE (default) displays connecting lines between p-value plot and correlation matrix.

palette.file
File that contains color scheme for the heatmap. Colors are hexadecimal HTML color codes; one color per line; if you do not want to use this option, use the color defined by the option cormatrix.color.scheme.

image.title
Title of the plot.

image.name
The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type.

image.type
Options: pdf or eps.

image.size
Default: 3.5 inches. Possible sizes: 3.5 or 7.

fontsize.gviz
Font size of writing in annotation track. Default value =5.

font.factor
Font size of the sample labels. Range: 0-1.

symbol.factor
Size of the symbols. Range: 0-1.

print.image
Print image in file or not.

connect lines.factor
Length of the connecting lines. Range: 0-2.

connect lines.adj
Position of the connecting lines horizontally. Negative values shift the connecting lines to the left and positive values shift the lines to the right. Range: (-1:1). Option -1 means no connecting lines.

connect lines.vert.adj
Position of the connecting lines vertically. Can be used to vertically adjust the position of the connecting lines in relation to the CpG-site names. Negative value shift the connecting lines down. Range: (-0.5 - 0), option -1 mean the default value related to the plot size (-0.5 for 3.5 plot size; -0.7 for 7.5 plot size).

connect lines.flex
Adjusts the spread of the connecting lines. Range: 0-2.

config.file
Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL).

verbose
Logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.

Details
The function is limited to visualize 120 omic features.

Value
Create a plot in pdf or eps format depending to some options.

Author(s)
Tiphaine Martin
References

http://epigen.kcl.ac.uk/comet/

See Also

comet.web, comet.list

Examples

extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1bl_zoom_4comet.txt")
myinfofile <- file.path(extdata, "cyp1bl_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1bl_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1bl_res37_rawMatrix.txt")

chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg38"

if(interactive()){
cat("interactive")
genetrack <- genes_ENSEMBL(gen, chrom, start, end, showId=TRUE)
snptrack <- snpBiomart_ENSEMBL(gen, chrom, start, end,
 dataset="hsapiens_snps_som", showId=FALSE)
strutrack <- structureBiomart_ENSEMBL(gen, chrom, start, end,
 strand, dataset="hsapiens_structvar_som")
clinVariant<-ClinVarMain_UCSC(gen,chrom,start,end)
clinCNV<-ClinVarCnv_UCSC(gen,chrom,start,end)
gwastrack <- GWAScatalog_UCSC(gen,chrom,start,end)
geneRtrack <- GeneReviews_UCSC(gen,chrom,start,end)
listgviz <- list(genetrack, snptrack, strutrack, clinVariant,
 clinCNV, gwastrack, geneRtrack)
comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
cormatrix.file=mycorrelation, cormatrix.type="listfile",
mydata.large.file=myexpressfile, mydata.large.type="listfile",
tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE, disp.pvalueplot=FALSE)
} else {
cat("Non interactive")
data(geneENSEMBLtrack)
data(snpBiomarttrack)
data(ISCATrack)
data(strucBiomarttrack)
data(ClinVarCnvTrack)
data(ClinVarMaintrack)
data(GWASTrack)
data(GeneReviewTrack)
listgviz <- list(genetrack, snptrack, strutrack, clinVariant,
 clinCNV, gwastrack, geneRtrack)
comet(config.file=configfile, mydata.file=myinfofile, mydata.type="file",
cormatrix.file=mycorrelation, cormatrix.type="listfile",
mydata.large.file=myexpressfile, mydata.large.type="listfile",
tracks.gviz=listgviz, verbose=FALSE, print.image=FALSE, disp.pvalueplot=FALSE)
comet.list

List the correlations between omic features

Description

comET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks. In addition, the function comet.list gives the list of correlations between omic features

Usage

comet.list(cormatrix.file = NULL, cormatrix.method = "spearman", cormatrix.format = "raw", cormatrix.conf.level=0.05, cormatrix.sig.level= 1, cormatrix.adjust="none", cormatrix.type = "listdataframe", cormatrix.output="cormatrix_list", config.file = NULL, verbose = FALSE)

Arguments

cormatrix.file Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.

cormatrix.method Options for calculating the correlation matrix: spearman, pearson and kendall. Default value= spearman

cormatrix.format Format of the input cormatrix.file. There are two options: raw file (raw if CpG sites are by column and samples by row or raw_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix)

cormatrix.conf.level Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.

cormatrix.sig.level Significant level to visualise the correlation. If the correlation has a pvalue below the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen.Default value =1.

cormatrix.adjust indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".Default value="none"

cormatrix.type Format of cormatrix.file. There are 2 different options: listfile or listdataframe.
cormatrix.output

The path and the name of the output file without the extension

config.file

Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=".

verbose

logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.

Value

Create a list of correlation between omic features

Author(s)

Tiphaine Martin

References

http://epigen.kcl.ac.uk/comet/

See Also

comet.web, comet

Examples

extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")
myoutput <- file.path(extdata, "cyp1b1_res37_cormatrix_list_BH05.txt")

comet.list(cormatrix.file=mycorrelation, cormatrix.method = "spearman",
cormatrix.format= "raw", cormatrix.conf.level=0.05,
cormatrix.sig.level= 0.05, cormatrix.adjust="BH",
cormatrix.type = "listfile", cormatrix.output=myoutput,
verbose=FALSE)

comet.web

Visualize EWAS results in a genomic region of interest with predefined annotation tracks

Description

cOMET is an R-based package to visualize EWAS (epigenome-wide association scans) results in a genomic region of interest. The main feature of coMET is to plot the the significance level of EWAS results in the selected region, along with correlation in DNA methylation values between CpG sites in the region. The coMET package generates plots of phenotype-association, co-methylation patterns, and a series of annotation tracks.
Usage

comet.web(mydata.file = NULL, mydata.format = c("site", "region", "site_asso", "region_asso"),
 mydata.large.file = NULL,
 mydata.large.format = c("site", "region", "site_asso", "region_asso"),
 cormatrix.file = NULL, cormatrix.method = c("spearman", "pearson", "kendall"),
 cormatrix.format = c("cormatrix", "raw", "raw_rev"),
 cormatrix.color.scheme = "heat", cormatrix.conf.level=0.05,
 cormatrix.sig.level= 1, cormatrix.adjust="none",mydata.ref = NULL,
 genome="hg19", start = NULL, end = NULL, zoom = FALSE, lab.Y = "log",
 pval.threshold = 1e-07, pval.threshold.2 = 0, disp.pval.threshold = 1,
 disp.association= FALSE, disp.association.large = FALSE,
 disp.beta.association = "FALSE", disp.beta.association.large = "FALSE",
 factor.beta = 0.3,
 disp.region = FALSE, disp.region.large = FALSE, symbols = "circle-fill",
 symbols.large = NA, sample.labels = NULL, sample.labels.large = NULL,
 use.colors = TRUE, disp.color.ref = TRUE, color.list = NULL,
 color.list.large = NULL, biofeat.user.file = NULL,
 biofeat.user.type = c("GeneRegion", "Annotation", "Data"),
 biofeat.user.type.plot = NULL,
 list.tracks = "geneENSEMBL,CGI,ChromHMM,DNAase,RegENSEMBL,SNP",
 pattern.regulation = "GM12878",
 image.title = NULL, image.name = "coMET", image.type = c("pdf", "eps"),
 image.size = 3.5, fontsize.gviz=5, font.factor = 1,
 print.image = FALSE, config.file = NULL, verbose = FALSE)

Arguments

mydata.file Name of the info file describing the coMET parameters. It is mandatory and has to be a file in tabular format with a header. Info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column (optional) and it can be either a numeric value (positive or negative values) or only direction sign (+, -). The number of columns and their types are defined but the option mydata.format.

mydata.format Format of the input data in mydata.file. There are 4 different options: site, region, site_asso, region_asso.

mydata.large.file Name of additional info files describing the coMET parameters. File names should be comma-separated. It is optional, but if you add some, they need to be file(s) in tabular format with a header. Additional info file can be a list of CpG sites with/without Beta value (DNA methylation level) or direction sign. If it is a site file then it is mandatory to have the 4 columns as shown below with headers in the same order. Beta can be the 5th column (optional) and it can be either a numeric value (positive or negative values) or only direction sign.
("+", ","). The number of columns and their types are defined but the option mydata.large.format.

mydata.large.format
Format of additional data to be visualised in the p-value plot. Format should be comma-separated. There are 4 different options for each file: site, region, site_asso, region_asso.

fmtmatrix.file Name of the raw data file or the pre-computed correlation matrix file. It is mandatory and has to be a file in tabular format with an header.

cormatrix.method A character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.

cormatrix.format A character string indicating which format of the input cormatrix.file is to be used. There are three options: raw file (raw if CpG sites are by column and samples by row or row_rev if CpG site are by row and samples by column) and pre-computed correlation matrix (cormatrix). cormatrix.color.scheme A character string indicating which Color scheme options is to be used: heat, bluewhitered, cm, topo, gray, bluetored

cormatrix.conf.level Alpha level for the confidence interval. Default value= 0.05. CI will be the alpha/2 lower and upper values.

cormatrix.sig.level Significant level to visualise the correlation. If the correlation has a pvalue under the significant level, the correlation will be colored in "goshwhite", else the color is related to the correlation level and the color scheme choosen. Default value = 1.

cormatrix.adjust indicates which adjustment for multiple tests should be used. "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Default value= "none"

mydata.ref The name of the reference omic feature (e.g. CpG-site) listed in mydata.file

genome The human genome reference file. e.g. "hg19" for Human genome 19 (NCBI 37), "grch37" (GRCh37), "grch38" (GRCh38)

start The first nucleotide position to be visualised. It could be bigger or smaller than the first position of our list of omic features.

end The last nucleotide position to be visualised. It has to be bigger than the value in the option start, but it could be smaller or bigger than the last position of our list of omic features.

zoom logical option TRUE or FALSE. FALSE (default)

lab.Y Scale of the y-axis. Options: log or ln

pval.threshold Significance threshold to be displayed as a red dashed line. Default value = 1e-7

pval.threshold.2 the second significance threshold to be displayed as an orange dashed line. Default value= 0 (no printed)

disp.pval.threshold Display only the findings that pass the value put in disp.pval.threshold
disp.association
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list. On the other hand, if the association is negative, the color is the opposed color.

disp.association.large
This logical option works only if mydata.large.file contains the effect direction (MYDATA.large.FORMA=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the color of symbol is the color of co-methylation pattern between the point and the reference site; if TRUE, the effect direction is shown. If the association is positive, the color is the one defined with the option color.list.large. On the other hand, if the association is negative, the color is the opposed color.

disp.beta.association
This logical option works only if mydata.file contains the effect direction (mydata.format=site_asso or region_asso). The value can be TRUE or FALSE: if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbol; if TRUE, the effect direction is shown.

disp.beta.association.large
This logical option works only if mydata.large.file contains the effect direction (mydata.large.format=site_asso or region_asso). The value can be TRUE or FALSE (default): if FALSE (default), for each point of data in the p-value plot, the size of symbol is the default size of symbol; if TRUE, the effect direction is shown.

factor.beta
Factor to visualise the size of beta. Default value = 0.3.

disp.region
This logical option works only if mydata.file contains regions (mydata.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

disp.region.large
This logical option works only if mydata.large.file contains regions (mydata.large.format=region or region_asso). The value can be TRUE or FALSE (default). If TRUE, the genomic element will be shown by a continuous line with the color of the element, in addition to the symbol at the center of the region. If FALSE, only the symbol is shown.

symbols
The symbol shown in the p-value plot. Options: circle, square, diamond, triangle. symbols can be filled by appending -fill, e.g. square-fill. Example: circle,diamond-fill,triangle

symbols.large
The symbol to visualise the data defined in mydata.large.file. Options: circle, square, diamond, triangle; symbols can either be filled or not filled by appending -fill e.g., square-fill. Example: circle,diamond-fill,triangle

sample.labels
Labels for the sample described in mydata.file to include in the legend
sample.labels.large
Labels for the sample described in mydata.large.file to include in the legend

use.colors
Use the colors defined or use the grey color scheme

disp.color.ref
Logical option TRUE or FALSE (TRUE default). if TRUE, the connection line related to the reference probe is in purple, if FALSE if the connection line related to the reference probe stay black.

color.list
List of colors for displaying the P-value symbols related to the data in mydata.file

color.list.large
List of colors for displaying the P-value symbols related to the data in mydata.large.file

biofeat.user.file
Name of data file to visualise in the tracks. File names should be comma-separated.

biofeat.user.type
Track type, where multiple tracks can be shown (comma-separated): DataTrack, AnnotationTrack, GeneRegionTrack.

biofeat.user.type.plot
Format of the plot if the data are shown with the Gviz’s function called DataTrack (comma-separated)

list.tracks
List of annotation tracks to visualise. Options include geneENSEMBL, CGI, ChromHMM, DNAse, RegENSEMBL, SNP, transcriptENSEMBL, SNPstru, SNPstrustoma, BindingMotifENSEMBL, otherRegulatoryENSEMBL, regulatoryEvidenceENSEMBL, regulatoryFeaturesENSEMBL, regulatorySegmentENSEMBL, miRNAENSEMBL, ImprintedtissuesGenes, COSMIC, GAD, ClinVar, GeneReviews, GWAS, ClinVarCNV, GCcontent, genesUCSC, xenogenesUCSC, SegDuplication, RepeatElt.

pattern.regulation
The cell/tissue or the list of cells/tissues to visualise in the regulation region defined by Broad ChromHMM

image.title
Title of the plot

image.name
The path and the name of the plot file without extension. The extension will be added by coMET depending on the option image.type.

image.type
Options: pdf or eps

image.size
Default: 3.5 inches. Possible sizes: 3.5 or 7

fontsize.gviz
Font size of writing in annotation track. Default value =5

font.factor
Font size of the sample labels. Range: 0-1

print.image
Print image in file or not.

config.file
Configuration file contains the values of these options instead of defining these by command line. It is a file where each line is one option. The name of option and its value are separated by "=". If there are multiple values such as for the option list.tracks or the options for additional data, you need to separated them by a "comma" and not extra space. (i.e. list.tracks=geneENSEMBL,CGI,ChromHMM,DNAse,RegENSEMBL)

verbose
logical option TRUE or FALSE. TRUE (default). If TRUE, shows comments.
Details
The function is limited to visualize 120 omic features.

Value
Create a plot in pdf or eps format depending to some options

Author(s)
Tiphaine Martin

References
http://epigen.kcl.ac.uk/comet/

See Also
comet, comet.list

Examples
extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
configfile <- file.path(extdata, "config_cyp1b1_zoom_4webserver.txt")
myinfofile <- file.path(extdata, "cyp1b1_infofile.txt")
myexpressfile <- file.path(extdata, "cyp1b1_infofile_exprGene_region.txt")
mycorrelation <- file.path(extdata, "cyp1b1_res37_rawMatrix.txt")

comet.web(config.file=configfile, mydata.file=myinfofile, cormatrix.file=mycorrelation,
 mydata.large.file=myexpressfile, print.image=FALSE, verbose=FALSE)

complementary

Complementary or opposite color

Description
Complementary or opposite color scheme is formed by colors that are opposite each other on the color wheel (example: red and green). The high contrast of complementary colors creates a vibrant look that must be managed well so it is not jarring.

Usage
complementary(color, plot = TRUE, bg = "white",
 labcol = NULL, cex = 0.8, title = TRUE)
compute.cormatrix

Compute the correlation matrix between CpG sites

Description

Compute the correlation matrix between CpG sites

Usage

compute.cormatrix(config.var, gbl.var)

Arguments

config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables
CoreillCNV_UCSC

Value

`gbl.var updated`

Author(s)

Tiphaine Martin

<table>
<thead>
<tr>
<th>CoreillCNV_UCSC</th>
<th>Create one track of the genomic positions of CNV in chromosomal aberration and inherited disorders from the NIGMS Human Genetic Cell Repository data</th>
</tr>
</thead>
</table>

Description

Create one track of the genomic positions of copy-number variants (CNVs) in chromosomal aberration and inherited disorder cell lines from the NIGMS Human Genetic Cell Repository using the Gviz bioconductor package.

Usage

`CoreillCNV_UCSC(gen, chr, start, end, title="Coriell CNVs", showId=FALSE)`

Arguments

- **gen**: the name of the genome. Data is not currently available for GRCh38 (hg38).
- **chr**: the chromosome of interest
- **start**: the first position in the region of interest (the smallest value)
- **end**: the last position in the region of interest (the largest value)
- **title**: The name of the annotation track
- **showId**: Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtDrFAy6dn&c=chr6&g=coriell
COSMIC_UCSC

Create one track of the genomic positions of variants from COSMIC
[obselete]

Description

[obselete] No more possible to extract COSMIC data from UCSC.
Create one track of the genomic positions of variants from COSMIC, the "Catalogue Of Somatic Mutations In Cancer" in extracting data from UCSC and using the Gviz bioconductor package.

Usage

COSMIC_UCSC(gen, chr, start, end, title= "COSMIC", showId=FALSE)

Arguments

gen the name of the genome. Data is not currently available for GRCh38 (hg38)
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
title The name of the annotation track
showId Show the ID of the genetic elements
cpgIslands_UCSC

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cosmic

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, snpBiomart_ENSEMBL, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples

library("Gviz")
chrom <- "chr2"
start <- 38290160
end <- 38303219
gen <- "hg19"
if(interactive()){
 cosmicVariant<-COSMIC_UCSC(gen,chrom,start,end)
 plotTracks(cosmicVariant, from = start, to =end,
 fontfamily="sans",fontfamily.title="sans")
}else {
 data(cosmicVarianttrack)
 plotTracks(cosmicVariant, from = start, to =end,
 fontfamily="sans",fontfamily.title="sans")
}

cpgIslands_UCSC create track CpG Island from UCSC

description

create track CpG Island from UCSC using the Gviz bioconductor package

Usage

cpgIslands_UCSC(gen, chr, start, end, title="CpG Islands UCSC")
cpgPvalue

Create a plot of pvalue of CpG with DataTrack of Gviz

Description

Create a plot of pvalue of CpG with DataTrack of Gviz

Arguments

- gen: the name of the genome
- chr: the chromosome of interest
- start: the first position in the region of interest (the smallest value)
- end: the last position in the region of interest (the largest value)
- title: Name of tracks

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=cpg

Examples

library("Gviz")
chrom <- "chr2"
start <- 100000
end <- 1000000
gen <- "hg38"

if(interactive()) {
 cpgIstrack<-cpgIslands_UCSC(gen, chrom, start, end)
 plotTracks(cpgIstrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(cpgIstrandtrack)
 plotTracks(cpgIstrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
Usage

cpgPvalue(cprange, data, chr, start, end, typefunction, title="CpG pvalue")

Arguments

cprange Range to visualise
data data to analyse
chr the chromosome of interest
start the first position of region of interest (the smallest value)
end the last position of region of interest (the biggest value)
typefunction Type of function to visualise the data
title Name of tracks

Value

the object DataTrack of Gviz

Author(s)

Tiphaine Martin

create.color.bar Create color bar of heatmap

Description

Create color legend for the correlation matrix

Usage

create.color.bar(config.var, gbl.var)

Arguments

cfg.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables
create.color.list

Value
list of different matrix

- color.cut
 the matrix of color related to correlation matrix

- color.cut.ref
 the vector of color related to the reference CpG

- cormatrix.key
 the generic panel having different panels associated with the correlation matrix

- map.label.ldtype
 the panel with the method of creation of correlation matrix

- map.label.distance
 the panel with the legend of distance

Author(s)
Tiphaine Martin

create.color.list Create color list for the main data

Description
Create color list for the main data

Usage
create.color.list(config.var, gbl.var)

Arguments
config.var
 list of all variables defined in configuration file or via options of comet function

gbl.var
 list of internal variables

Value
Return a list called split.tmp.color.list which contains the list of color for the info data

Author(s)
Tiphaine Martin
create.color.list.large

Create list of colors for the supplementary data

Description
Create list of colors for the supplementary data in the plot of pvalue

Usage
```r
create.color.list.large(config.var, gbl.var)
```

Arguments
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables

Value
Return a list called `large.split.tmp.color.list` which contains the list of color for the extra data

Author(s)
Tiphaine Martin

create.symbol.list

create symbol list for the upper plot in the grid

Description
create symbol list for the upper plot in the grid

Usage
```r
create.symbol.list(config.var, split.color.list, gbl.var)
```

Arguments
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `split.color.list`
- `gbl.var`: list of internal variables
create.symbol.list.large

Create a list of symbol for the supplementary data

Description

Create a list of symbol for the supplementary data

Usage

create.symbol.list.large(config.var, large.split.color.list, gbl.var)

Arguments

config.var list of all variables defined in configuration file or via options of comet function
large.split.color.list list of color
gbl.var list of internal variables

Value

return a list of symbol:

large.split.symbol.list a list which contains the list of symbol for the extra data

large.split.fill.list a list which contains the list of fill for the extra data

Author(s)

Tiphaine Martin
create.tracks.user Create track from the user data

Description
Create track from the user data

Usage
create.tracks.user(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Update the object listtracks_user of gbl.var from the user data if the user gives some data for the annotation tracks.

Author(s)
Tiphaine Martin

create.tracks.web Create tracks for the web page (see cometweb)

Description
Create tracks for the web page (see cometweb)

Usage
create.tracks.web(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Update the object listtracks_gviz of gbl.var with different annotation tracks selected with comet.web

Author(s)
Tiphaine Martin
createList.trackUser
Create list of Gviz’s tracks from user’s data

Description
Create list of Gviz’s tracks from user’s data

Usage
```
createList.trackUser(config.var, gbl.var)
```

Arguments
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables

Value
Update the object listtracks_user of gbl.var from the user data if the user gives some data for the annotation tracks.

Author(s)
Tiphaine Martin

dgfootprints_RoadMap
Creates a track of DNA motif positional bias in digital genomic Footprinting Sites (DGFP) from a file of RoadMap

Description
Creates a DGFP track from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage
```
dgfootprints_RoadMap(gen="hg19", chr, start, end, bedFilePath, tissueGroupDisplay='Blood & T-cell',showId=FALSE, type_stacking="dense", title= "DGFP RoadMap")
```
Arguments

- **gen**: the name of the genome. Default value=hg19
- **chr**: The chromosome of interest
- **start**: The starting position in the region of interest (the smallest value)
- **end**: The end position in the region of interest (the largest value)
- **bedFilePath**: The file path to the .BED file containing the data to be visualised
- **tissueGroupDisplay**: the group of tissue visualised among list("Neurosph","Epithelial","IMR90","Thymus","Heart","Brain","Digestive","Muscle","Other","iPSC","HSC & B-cell","Blood & T-cell"="ES-deriv")
- **showId**: logical. say if we write the name of group
- **type_stacking**: Object of class"character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option "stacking" in Gviz
- **title**: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to RoadMap Epigenome

Examples

```r
library("Gviz")
chr <- "chr1"
start <- 236728
end <- 238778
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/CD3-DS17198.hg19_subset.bed")

if(interactive()){
dgfootprints_RoadMapSingle <- dgfootprints_RoadMap(gen,chr,start, end, 
bedFilePath, tissueGroupDisplay='Blood & T-cell')
plotTracks(dgfootprints_RoadMapSingle, from = start, to = end, 
fontfamily="sans",fontfamily.title="sans")
} else {
data(dgfootprints_RoadMapSingle)
```
DNaseI_FANTOM

Creates a enhancer/promoter track from FANTOM

Description

Creates a track of promoters/enhancers from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

DNaseI_FANTOM(gen="hg19", chr, start, end, bedFilePath, featureDisplay='enhancer', stacking_type="dense", title="DNaseI Fantom")

Arguments

gen the name of the genome. Default value=hg19
chr The chromosome of interest
start The starting position in the region of interest (the smallest value)
end The end position in the region of interest (the largest value)
bedFilePath The path of the BED file from Kheradpour and Kellis, 2014.
featureDisplay A vector of regulatory features to be displayed, such as enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochromatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("enhancer","promoter")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.
stacking_type Object of class"character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack,full). More information cf the option "stacking" in Gviz
title The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
DNaseI_RoadMap

References

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<- "chr1"
start <- 6000000
end <- 6500000

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
enhFantomFile <- file.path(extdata,
"/FANTOM/human_permissive_enhancers_phase_1_and_2_example970.bed")

if(interactive()){
 enhFANTOMtrack <- DNaseI_FANTOM(gen,chr,start, end,
enhFantomFile, featureDisplay='enhancer')
 plotTracks(enhFANTOMtrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(enhFANTOMtrack)
 plotTracks(enhFANTOMtrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

DNaseI_RoadMap

Creates a promoter/enhancer regions track from a file of RoadMap

Description

Creates a track of promoter/enhancer regions from a file of RoadMap using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

DNaseI_RoadMap(gen="hg19", chr, start, end, bedFilePath,
featureDisplay='promoter',showId=TRUE, type_stacking="dense",
title = "DNaseI RoadMap")

Arguments

gen the name of the genome. Default value=hg19

chr The chromosome of interest

start The starting position in the region of interest (the smallest value)
end The end position in the region of interest (the largest value)

bedFilePath The file path to the .BED file containing the data to be visualised

featureDisplay A vector of features to be displayed, such as 1_TssA. Spelling and capitalisation of features must be identical to those in the user guide (in the ‘State & Acronym’ column). There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "1_TssA"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("1_TssA","2_TssAFlnk")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId Allows to visualise the Id of DNase group.

type_stacking Object of class "character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option "stacking" in Gviz

title The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to RoadMap Epigenome

Examples

```r
library("Gviz")
chr <- "chr2"
start <- 38300049
end <- 38302592
gen= "hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "RoadMap/regions_prom_E063.bed")

if(interactive()){
  DNaseI_RoadMapSingle <- DNaseI_RoadMap(gen,chr,start, end,
                                          bedFilePath, featureDisplay=’promotor’
                                          )
  plotTracks(DNaseI_RoadMapSingle, from = start, to = end,
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(DNaseI_RoadMapSingle)
```
Creation of a UCSC's DNase clusters track - obselete function

Description

Creation of DNase cluster track from a connection to UCSC genome browser in using the GViz bioconductor package. Obsolete function

Usage

```r
DNAse_UCSC(gen, chr, start, end, mySession, title="DNA cluster", track.name = "DNase Clusters", table.name = NULL)
```

Arguments

- **gen**: the name of the genome. Data is not currently available for GRCh38 (hg38).
- **chr**: the chromosome of interest
- **start**: the first position in the region of interest (the smallest value)
- **end**: the last position in the region of interest (the largest value)
- **mySession**: the object session from the function browserSession of rtracklayer
- **title**: Name of tracks
- **track.name**: the name of the track DNAse_UCSC. "DNase Clusters" (default)
- **table.name**: the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAY6dn&c=chr6&g=wg
Examples

```r
# library("Gviz")
# library("rtracklayer")

# gen <- "hg19"
# chr <- "chr7"
# start <- 38290160
# end <- 38303219
# if(interactive()){
#   BROWSER.SESSION="UCSC"
#   mySession <- browserSession(BROWSER.SESSION)
#   genome(mySession) <- gen
#   track.name="Broad ChromHMM"
#   tablestrack<-tableNames(ucscTableQuery(mySession, track=track.name))
#   table.name<-tablestrack[1]
#   dnasetrack<-DNAse_UCSC(gen,chr,start,end,mySession)
#   plotTracks(dnasetrack, from = start, to =end,
#             fontfamily="sans",fontfamily.title="sans")
# }else {
#   data(dnasetrack)
#   plotTracks(dnasetrack, from = start, to =end,
#             fontfamily="sans",fontfamily.title="sans")
# }
```

draw.legend

Display the legend of the plot

Description

display the legend of the plot

Usage

draw.legend(config.var, gbl.var)

Arguments

- `config.var` list of all variables defined in configuration file or via options of comet function
- `gbl.var` list of internal variables

Value

Nothing, but the function creates the panel for the legend in the plot

Author(s)

Tiphaine Martin
draw.name.genes.web

display the gene names

Description

display the gene names for the web page (see cometweb)

Usage

draw.name.genes.web(config.var, gbl.var)

Arguments

- config.var : list of all variables defined in configuration file or via options of comet function
- gbl.var : list of internal variables

Value

Updated gbl.var with the list of names of genes found the region of interest. This function is called only in comet.web

Author(s)

Tiphaine Martin

draw.name.tracks.web

Display names of tracks for web page (see cometweb)

Description

Display names of tracks for web page (see cometweb)

Usage

draw.name.tracks.web(config.var, gbl.var)

Arguments

- config.var : list of all variables defined in configuration file or via options of comet function
- gbl.var : list of internal variables

Value

Updated gbl.var with the name of annotation tracks. It is called only in the function comet.web

Author(s)

Tiphaine Martin
draw.plot.annotation
Display the annotation track from ENSEMBL and UCSC

Description
Display the annotation track from ENSEMBL and UCSC between the plot of pvalue and heatmap

Usage
```
draw.plot.annotation(config.var, gbl.var)
```

Arguments
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables

Value
Updated the plot with annotation tracks directly.

Author(s)
Tiphaine Martin

draw.plot.axis.data
Display the axis data of plot of pvalue

Description
Display the axis data of plot of pvalue

Usage
```
draw.plot.axis.data(top.vp, config.var, gbl.var)
```

Arguments
- `top.vp`: The viewport related to top of plot
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables

Value
Updated the plot with the different axis of pvalue plot

Author(s)
Tiphaine Martin
draw.plot.comet

Display the three plots of coMET

Description

Display the three plots of coMET according to configuration files: on the upper plot is the plot of p-value, the middle plot has the annotation tracks, and the lower plot is the heatmap of correlation between CpG sites.

Usage

```r
draw.plot.comet(config.var, gbl.var, newpage = TRUE)
```

Arguments

- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables
- `newpage`: Option to ask if the plot should create on new page or not

Value

Return `gbl.var` updated with the creation of elements composing the plot produced by the function `comet`.

Author(s)

Tiphaine Martin

draw.plot.comet.nopval

Display the three plots of coMET

Description

Display the three plots of coMET according to configuration files: on the upper plot is the plot of p-value, the middle plot has the annotation tracks, and the lower plot is the heatmap of correlation between CpG sites.

Usage

```r
draw.plot.comet.nopval(config.var, gbl.var, newpage = TRUE)
```
Arguments

config.var list of all variables defined in configuration file or via options of comet function

gbl.var list of internal variables

newpage Option to ask if the plot should create on new page or not

Value

Return gbl.var updated with only annotation tracks and correlation matrix visualised

Author(s)

Tiphaine Martin

draw.plot.comet.web Display the three plots of coMET for the web version

Description

Display the three plots of coMET according to configuration files: on the upper plot is the plot of pvalue, the middle plot has the annotation tracks, and the lower plot is the heatmap of correlation between CpG sites for the web version

Usage

draw.plot.comet.web(config.var, gbl.var, newpage = TRUE)

Arguments

config.var list of all variables defined in configuration file or via options of comet function

gbl.var list of internal variables

newpage Option to ask if the plot should create on new page or not

Value

Return gbl.var updated with different elements of plot produced by the function comet.web

Author(s)

Tiphaine Martin
draw.plot.cormatrix.plot

Display the correlation plot at the bottom of the grid

Description

Display the correlation plot at the bottom of the grid

Usage

draw.plot.cormatrix.plot(config.var, gbl.var)

Arguments

- **config.var**
 - list of all variables defined in configuration file or via options of comet function
- **gbl.var**
 - list of internal variables

Value

Return a viewport containing the correlation matrix

Author(s)

Tiphaine Martin

draw.plot.grid.mydata *Display a plot of pvalue of data from MYDATA.FILE*

Description

Display a plot of pvalue of data from MYDATA.FILE

Usage

draw.plot.grid.mydata(config.var, gbl.var)

Arguments

- **config.var**
 - list of all variables defined in configuration file or via options of comet function
- **gbl.var**
 - list of internal variables

Value

Return directly on the upper plot (omic-WAS results) the pvalues related to the primary data

Author(s)

Tiphaine Martin
draw.plot.grid.mydata.large

Display the plot of pvalue of the supplementary data

Description

Display the plot of pvalue of the supplementary data

Usage

draw.plot.grid.mydata.large(config.var, gbl.var)

Arguments

config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value

Update the upper plot (omic-WAS result plot) with the pvalues from extra data

Author(s)

Tiphaine Martin

draw.plot.grid.mydata.names

Display the name of elements defined in DATA.FILE

Description

Display the name of elements defined in DATA.FILE

Usage

draw.plot.grid.mydata.names(config.var, gbl.var)

Arguments

config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value

Return the names of omic features vertically between annotation tracks and correlation matrix directly on the plot
draw.plot.grid.setup

Set up the grid of plot

Description

Set up the grid of plot

Usage

```r
draw.plot.grid.setup(config.var, gbl.var)
```

Arguments

- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables

Value

Return `gbl.var` updated with different layout created

Author(s)

Tiphaine Martin

draw.plot.linesconnection

Display the connector lines for the probes

Description

Display the connector lines for the probes

Usage

```r
draw.plot.linesconnection(top.vp, config.var, gbl.var)
```

Arguments

- `top.vp`: panel of grid to visualise connector lines
- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables
Value

Updated the plot with the connection lines between the genomic position and the position on the correlation matrix.

Author(s)

Tiphaine Martin

draw.plot.mydata.ggbio

plot tracks created by ggbio that you want to visualise

Description

plot tracks created by ggbio that you want to visualise

Usage

draw.plot.mydata.ggbio(config.var, gbl.var, numfile)

Arguments

- `config.var`: list of all variables defined in configuration file or via options of comet function
- `gbl.var`: list of internal variables
- `numfile`: the number of file to visualise

Value

Return on the plot the annotation tracks created with the functions of ggbio package

Author(s)

Tiphaine Martin
eQTL

Creates a track from a file for eQTL data

Description

Creates a track from a BED file for eQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```r
eQTL(gen, chr, start, end, bedFilePath, featureDisplay, showId=FALSE, type_stacking="squish", just_group="above", title="eQTL")
```

Arguments

- `gen`: the name of the genome.
- `chr`: The chromosome of interest.
- `start`: The starting position in the region of interest (the smallest value).
- `end`: The end position in the region of interest (the largest value).
- `bedFilePath`: The file path to the .BED file containing the data to be visualised.
- `featureDisplay`: A vector of eQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. `featureDisplay <- "CpG"`), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. `featureDisplay <- c("SNP","CpG")`). Finally, visualisation of all features in the genomic region, achieved by using the word "all" (e.g. `featureDisplay <- "all"`), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.
- `showId`: Allows to visualise the Id of eQTL group.
- `type_stacking`: Object of class "character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option "stacking" in Gviz.
- `just_group`: Position. says where we write the name of group (choice in c("above","right","left"))
- `title`: The name of the annotation track.

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

Tom Hardiman
References

Got to ENSEMBL regulation binding motif biomart

Examples

library("Gviz")
chr <- "chr15"
start <- 74889136
end <- 75018200
featureDisplay <- "SNP"
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
 eQTLTrackSingle <- eQTL(gen,chr,start, end, bedFilePath,
featureDisplay = featureDisplay)
 plotTracks(eQTLTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(eQTLTrackSingle)
 plotTracks(eQTLTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")
chr <- "chr15"
start <- 74889136
end <- 75018200
featureDisplay <- c("SNP","mRNA_pheno")
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
 eQTLTrackMultiple <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay)
 plotTracks(eQTLTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(eQTLTrackMultiple)
 plotTracks(eQTLTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")
chr <- "chr15"
start <- 74889136
end <- 75018200
featureDisplay <- "all"
gen="hg19"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "eQTL.bed")

if(interactive()){
eQTLTrackAll <- eQTL(gen,chr,start, end, bedFilePath, featureDisplay = featureDisplay)
plotTracks(eQTLTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
data(eQTLTrackAll)
plotTracks(eQTLTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

eQTL_GTEx

Description

Creates a track of eQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

eQTL_GTEx(gen="hg19",chr,start, end, bedFilePath, featureDisplay = 'all',
 showId=FALSE, type_stacking="squish",just_group="above",title="eQTL GTEX")

Arguments

table

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen</td>
<td>the name of the genome. Default value=hg19</td>
</tr>
<tr>
<td>chr</td>
<td>The chromosome of interest</td>
</tr>
<tr>
<td>start</td>
<td>The starting position in the region of interest (the smallest value)</td>
</tr>
<tr>
<td>end</td>
<td>The end position in the region of interest (the largest value)</td>
</tr>
<tr>
<td>bedFilePath</td>
<td>The path of the BED file from Kheradpour and Kellis, 2014.</td>
</tr>
<tr>
<td>featureDisplay</td>
<td>A vector of regulatory features to be displayed, such as Predicted heterochromatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochromatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity","Predicted heterochromatin")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.</td>
</tr>
</tbody>
</table>
showId logical. say if we write the name of group

type_stacking Object of class ’character’, the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option “stacking” in Gviz

just_group position. say where we write the name of group (choice in c(“above”, “right”, “left”))
title The name of the annotation track

Value
An AnnotationTrack object of Gviz

Author(s)
Tiphaine Martin

References
Got to BindingMotifsBiomart binding motif biomart

Examples
library(“Gviz”)
gen <- “hg19”
chr<-“chr3”
start <- 132423172
end <- 132442807
extdata <- system.file(“extdata”, package=“coMET”,mustWork=TRUE)
bedFilePath <- file.path(extdata, “/GTEX/eQTL_Uterus_Analysis_extract100.snpgenes”)

if(interactive()){
eGTexTrackall <- eQTL_GTEx(gen,chr,start, end, bedFilePath,
featureDisplay=“all”, showId=TRUE,just_group=“left”)
plotTracks(eGTexTrackall, from = start, to = end,
fontfamily=“sans”,fontfamily.title=“sans”)
}
else {
data(eGTexTrackall)
plotTracks(eGTexTrackall, from = start, to = end,
fontfamily=“sans”,fontfamily.title=“sans”)
}

if(interactive()){
eGTexTrackSNP <- eQTL_GTEx(gen,chr,start, end, bedFilePath,
featureDisplay=“SNP”, showId=TRUE,just_group=“left”)
plotTracks(eGTexTrackSNP, from = start, to = end,
fontfamily=“sans”,fontfamily.title=“sans”)
}
else {
data(eGTexTrackSNP)
plotTracks(eGTexTrackSNP, from = start, to = end,
fontfamily=“sans”,fontfamily.title=“sans”)
}
fix.values

Fix and update the values of variables related to main data

Description
Fix and update the values of variables related to main data

Usage
fix.values(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Return the list of config.var and gbl.var updated

Author(s)
Tiphaine Martin

fix.values.generic Fix and update the values of generic variables

Description
Fix and update the values of generic variables

Usage
fix.values.generic(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Return the list of config.var and gbl.var updated
Author(s)
Tiphaine Martin

fix.values.large Fix and update the values of supplementary data

Description
Fix and update the values of supplementary data

Usage
fix.values.large(config.var, gbl.var)

Arguments
- config.var: list of all variables defined in configuration file or via options of comet function
- gbl.var: list of internal variables

Value
Return the list of config.var and gbl.var updated

Author(s)
Tiphaine Martin

GAD_UCSC Create one track of the genomic positions of variants from the Genetic Association Database (GAD)

Description
Create one track of the genomic positions of variants from the Genetic Association Database (GAD) (archive of human genetic association studies of complex diseases and disorders) using the Gviz bioconductor package

Usage
GAD_UCSC(gen, chr, start, end, title="GAD", showId=FALSE)
Arguments

- **gen** the name of the genome. Data is not currently available for GRCh38 (hg38).
- **chr** the chromosome of interest
- **start** the first position in the region of interest (the smallest value)
- **end** the last position in the region of interest (the largest value)
- **title** The name of the annotation track
- **showId** Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=gad

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL.

Examples

```r
library("Gviz")
gen2 <- "hg19"
chrom2 <- "chr2"
start2 <- 38290160
end2 <- 38303219

if(interactive()) {
gadtrack<-GAD_UCSC(gen=gen2 ,chr=chrom2 ,start=start2 ,end=end2)
plotTracks(gadtrack, from = start2, to =end2,
          fontfamily="sans",fontfamily.title="sans")
} else {
data(gadtrack)
plotTracks(gadtrack, from = start2, to =end2,
          fontfamily="sans",fontfamily.title="sans")
}
```
Create one track of GC content from UCSC

Description
Create a track of GC content from UCSC using the Gviz bioconductor package

Usage

```r
gcContent_UCSC(gen, chr, start, end, title="GC Percent")
```

Arguments

- `gen`: the name of the genome
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `title`: Name of tracks

Value

A UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtdrFAy6dn&c=chr6&g=gc5

Examples

```r
library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()){
gctrack<-gcContent_UCSC(gen,chr,start,end)
plotTracks(gctrack,from= start, to=end,
          fontfamily="sans",fontfamily.title="sans")
} else {
data(gctrack)
plotTracks(gctrack,from= start, to=end,
          fontfamily="sans",fontfamily.title="sans")
```
Create one track of the genomic positions of variants from GeneReviews using the Gviz bioconductor package

```r
GeneReviews_UCSC(gen, chr, start, end, title="GeneReviews", showId=FALSE)
```

Arguments
- `gen`: the name of the genome
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `title`: The name of the annotation track
- `showId`: Show the ID of the genetic elements

Value
An UcscTrack object of Gviz

Author(s)
Tiphaine Martin

References
- http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1B0uBMAR620GjrtdrFAy6dn&c=chr6&g=geneReviews

See Also
- `ISCA_UCSC`, `GWAScatalog_UCSC`, `knownGenes_UCSC`, `genesName_ENSEMBL`, `GAD_UCSC`, `genes_ENSEMBL`,
- `xenorefGenes_UCSC`, `transcript_ENSEMBL`,
- ...
Examples

```r
library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 10000000
end <- 100000000
if(interactive(){
geneRtrack <- GeneReviews_UCSC(gen, chrom, start, end, showId=TRUE)
plotTracks(geneRtrack, from = start, to = end,
          fontfamily="sans", fontfamily.title="sans")
}) else {
data(GeneReviewTrack)
plotTracks(geneRtrack, from = start, to = end,
          fontfamily="sans", fontfamily.title="sans")
}
```

genesName_ENSEMBL

Obtain the genes names in the genomic regions of interest from ENSEMBL

Usage

`genesName_ENSEMBL(gen, chr, start, end, dataset)`

Arguments

- `gen`: the name of the genome
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `dataset`: Name of the database to select genes

Details

Can be null

Value

List of name of genes found in this region of interest.

Author(s)

Tiphaine Martin
genes_ENSEMBL

References

go to ENSEMBL

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()):
 dataset<- "hsapiens_gene_ensembl"
geneNameEnsembl<- genesName_ENSEMBL(gen,chr,start,end,dataset)
geneNameEnsembl
} else {
 data(geneNameEnsembl)
geneNameEnsembl
}

Create one track of the genes in the genomic regions of interest from ENSEMBL

Description

Create one track of the genes in the genomic regions of interest from ENSEMBL using the Gviz bioconductor package

Usage

genes_ENSEMBL(gen, chr, start, end, showId=FALSE,title="genes (ENSEMBL)")

Arguments

gen the name of the genome
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
showId Show the ID of the genetic elements
title Name of tracks
Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAuBMAR620GjtrdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

library("Gviz")
gen <- "hg19"
chrom <- "chr2"
start <- 38290160
end <- 38303219
if(interactive()) {
genetrack <-genes_ENSEMBL(gen,chrom,start,end,showId=TRUE)
plotTracks(genetrack, from = start, to =end,
 fontfamily="sans",fontfamily.title="sans")
} else {
data(geneENSEMBLtrack)
plotTracks(genetrack, from = start, to =end,
 fontfamily="sans",fontfamily.title="sans")
}

GWAScatalog_UCSC

Create one track of the genomic positions of variants from the GWAS catalog

Description

Create one track of the genomic positions of variants from the NHGRI Catalog of Published Genome-Wide Association Studies using the Gviz bioconductor package

Usage

GWAScatalog_UCSC(gen, chr, start, end, title="GWAS Catalog", showId=FALSE)
Arguments

gen the name of the genome
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
title The name of the annotation track
showId Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtdrFAY6dn&c=chr6&g=gwasCatalog

See Also

ISCA_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL.

Examples

library("Gviz")
gen <- "hg38"
chrom <- "chr2"
start <- 10000
end <- 100000

if(interactive()) {
 gwastrack <- GWAScatalog_UCSC(gen, chrom, start, end)
 plotTracks(gwastrack, from = start, to = end,
 fontfamily="sans", fontfamily.title="sans")
} else {
 data(GWASTrack)
 plotTracks(gwastrack, from = start, to = end,
 fontfamily="sans", fontfamily.title="sans")
}
HiCdata2matrix

Creates a HiC matrix from a file (Rao et al., 2014)

Description

Creates a HiC matrix from Rao et al., 2014.

Usage

HiCdata2matrix(chr, start, end, bedFilePath)

Arguments

chr
The chromosome of interest

start
The starting position in the region of interest (the smallest value)

end
The end position in the region of interest (the largest value)

bedFilePath
The path of the BED file from Kheradpour and Kellis, 2014.

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

Got to BindingMotifsBiomart binding motif biomart

Examples

library("corrplot")
gen <- "hg19"
chr<-"chr1"
start <- 5000000
end <- 9000000

extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
bedFilePath <- file.path(extdata, "HiC/chr1_1mb.RAWobserved")

if(interactive()){
 matrix_HiC_Rao <- HiCdata2matrix(chr,start, end, bedFilePath)
cor_matrix_HiC <- cor(matrix_HiC_Rao)
diag(cor_matrix_HiC)<-1
corrplot(cor_matrix_HiC, method = "circle")
} else {
HistoneAll_UCSC

Create multiple tracks of histone modifications from the UCSC genome browser

Description

Create multiple tracks of histone modifications from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package

Usage

```r
HistoneAll_UCSC(gen, chr, start, end, mySession, pattern = NULL,
                 track.name = "Broad Histone", table.name = NULL)
```

Arguments

- `gen`: the name of the genome. Data is not currently available for GRCh38 (hg38).
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `mySession`: the object session from the function browserSession of rtracklayer
- `pattern`: The cell type
- `track.name`: the name of the track, for example: "Broad Histone"
- `table.name`: the name of the table from the track

Value

A list of AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQBAOuBMAR620GjtdrFy6dn&c=chr6&g=wg6
See Also

HistoneOne_UCSC.

Examples

library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38313219

if(interactive()){
 BROWSER.SESSION="UCSC"
 mySession <- browserSession(BROWSER.SESSION)
 genome(mySession) <- gen
 pattern1 <- "GM12878"

 histonalltrack<-HistoneAll_UCSC(gen,chr,start,end,mySession,
 pattern=pattern1,track.name="Broad Histone")
 plotTracks(histonalltrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(histonalltrack)
 plotTracks(histonalltrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

HistoneOne_UCSC Create one track of one histone modification profile from the UCSC genome browser

Description

Create one track of one histone modification profile from the UCSC genome browser (ENCODE/Broad) using the Gviz bioconductor package

Usage

HistoneOne_UCSC(gen, chr, start, end, mySession, title="Broad Histone",
 track.name = "Broad Histone", table.name = NULL)

Arguments

gen the name of the genome. Data is not currently available for GRCh38 (hg38).
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
HistoneOne_UCSC

mySession
the object session from the function browserSession of rtracklayer

title
Name of tracks

track.name
the name of the track, for example: "Broad Histone"

value.name
the name of the table from the track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAY6dn&c=chr6&g=wgEncodeHistone

See Also

HistoneAll_UCSC

Examples

```r
library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()) {
  BROWSER.SESSION="UCSC"
  mySession <- browserSession(BROWSER.SESSION)
  genome(mySession) <- gen
  histoneonetrack<-HistoneOne_UCSC(gen,chr,start,end,mySession)
  plotTracks(histoneonetrack, from = start, to =end,
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(histoneonetrack)
  plotTracks(histoneonetrack, from = start, to =end,
             fontfamily="sans",fontfamily.title="sans")
}
```
imprintedGenes_GTEx

Creates a imprinted genes track from GTEx

Description

Creates a track of imprinted genes from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```r
imprintedGenes_GTEx(gen="hg19", chr, start, end, tissues="all", classification="all", showId=FALSE, title="Imprinted genes GTEx")
```

Arguments

- `gen`: the name of the genome. Default value=hg19
- `chr`: The chromosome of interest
- `start`: The starting position in the region of interest (the smallest value)
- `end`: The end position in the region of interest (the largest value)
- `tissues`: list of tissues among 33 tissues in GTEx
- `classification`: list of classification from 5 types (biallelic, consistent with biallelic, consistent with imprinting, imprinted, NC)
- `showId`: logical. say if we write the name of group
- `title`: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

- Got to BindingMotifsBiomart binding motif biomart

Examples

```r
library("Gviz")
gen<="hg19"
chr<- "chr6"
start <- 144251437
end <- 144330541
```
if(interactive()){
 allIGtrack <- imprintedGenes_GTEx(gen,chr,start,end,
 tissues="all", classification="imprinted",showId=TRUE)
 allimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start,end,
 tissues="all", classification="imprinted",showId=TRUE)
 StomachIGtrack <- imprintedGenes_GTEx(gen,chr,start,end,
 tissues="Stomach", classification="all",showId=TRUE)
 PancreasIGtrack <- imprintedGenes_GTEx(gen,chr,start,end,
 tissues="Pancreas", classification="all",showId=TRUE)
 PancreasimprintedIGtrack <- imprintedGenes_GTEx(gen,chr,start,end,
 tissues="Pancreas", classification="biallelic",showId=TRUE)
 imprintinglist <- list(allIGtrack,allimprintedIGtrack,
 StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack)
 plotTracks(imprintinglist, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(allIGtrack)
 data(allimprintedIGtrack)
 data(StomachIGtrack)
 data(PancreasIGtrack)
 data(PancreasimprintedIGtrack)
 imprintinglist <- list(allIGtrack,allimprintedIGtrack,
 StomachIGtrack,PancreasIGtrack,PancreasimprintedIGtrack)
 plotTracks(imprintinglist, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

interestGenes_ENSEMBL Create one track of the genes in the genomic regions of interest from EMSEMBL

Description

Create one track of the genes in the genomic regions of interest from EMSEMBL using the Gviz bioconductor package

Usage

interestGenes_ENSEMBL(gen, chr, start, end, interestfeatures,interestcolor,
 showId=FALSE,title="genes (ENSEMBL)")
interestGenes_ENSEMBL

Arguments

- **gen**: the name of the genome
- **chr**: the chromosome of interest
- **start**: the first position in the region of interest (the smallest value)
- **end**: the last position in the region of interest (the largest value)
- **interestfeatures**: A data frame with 3 columns: start of features, end of features, and type of features
- **interestcolor**: A list with the color for each new features defined
- **showId**: Show the ID of the genetic elements
- **title**: Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=ensGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

```r
library("Gviz")
gen <- "hg19"
chr <- "chr15"
start <- 75011669
end <- 75019876
interestfeatures <- rbind(c("75011883","75013394","bad"),c("75013932","75014410","good"))
interestcolor <- list("bad"="red", "good"="green")

if(interactive()) {
  interestgenesENSMBLtrack<-interestGenes_ENSEMBL(gen,chr,start,end,
  interestfeatures,interestcolor,showId=TRUE)
  plotTracks(interestgenesENSMBLtrack, from = start, to =end,
  fontfamily="sans",fontfamily.title="sans")
} else {
  data(interestgenesENSMBLtrack)
  plotTracks(interestgenesENSMBLtrack, from = start, to =end,
```
Create a track of transcripts from ENSEMBL

Usage

interestTranscript_ENSEMBL(gen, chr, start, end, interestfeatures, interestcolor, showId = FALSE, title = "transcripts ENSEMBL")

Arguments

gen: the name of the genome
chr: the chromosome of interest
start: the first position in the region of interest (the smallest value)
end: the last position in the region of interest (the largest value)
interestfeatures: A data frame with 3 columns: start of features, end of features, and type of features
interestcolor: A list with the color for each new features defined
showId: Show the ID of the genetic elements
title: Name of tracks

Value

A BiomartGeneRegionTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAY6dn&c=chr6&g=ens
See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC.

Examples

```r
library("Gviz")
gen <- "hg19"
chr <- "chr15"
start <- 75011669
end <- 75019876
interestfeatures <- rbind(c("75017782","75017835","bad"),c("75013755","75013844","good"))
interestcolor <- list("bad"="red", "good"="green")

if(interactive()){  
  interesttransENSMBLtrack<-interestTranscript_ENSEMBL(gen,chr,start,end,  
  interestfeatures,interestcolor,showId=TRUE)
  plotTracks(interesttransENSMBLtrack, from=start, to=end,  
            fontfamily="sans",fontfamily.title="sans")
} else {  
data(interesttransENSMBLtrack)
  plotTracks(interesttransENSMBLtrack, from=start, to=end,  
            fontfamily="sans",fontfamily.title="sans")
}
```

ISCA_UCSC

Create one track of the genomic positions of variants from ISCA [obsolete database]

Description

Create one track of the genomic positions of variants from International Standards for Cytogenomic Arrays (ISCA) Consortium using the Gviz bioconductor package (obsolete database, Impossible to access to data from UCSC from September 2015)

Usage

```r
ISCA_UCSC(gen, chr, start, end, mySession, table.name,title="ISCA", showId=FALSE)
```

Arguments

- `gen` the name of the genome
- `chr` the chromosome of interest
- `start` the first position in the region of interest (the smallest value)
- `end` the last position in the region of interest (the largest value)
- `mySession` the object session from the function browserSession of rtracklayer
table.name A table of ISCAT classifications: iscaBenign, iscaCuratedBenign, iscaCuratedPathogenic, iscaLikelyBenign, iscaLikelyPathogenic, iscaPathGainCum, iscaPathLossCum, iscaPathogenic, iscaUncertain

title The name of the annotation track

showId Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=isca

See Also

GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,

Examples

Obsolet function

library("Gviz")
library("rtracklayer")
gen <- "hg19"
chr <- "chr2"
start <- 38292433
end <- 38305492

if(interactive()){
 BROWSER.SESSION="UCSC"
 mySession <- browserSession(BROWSER.SESSION)
genome(mySession) <- gen
iscatrack <- ISCA_UCSC(gen, chr, start, end, mySession, title="ISCA", table="iscaPathogenic")
plotTracks(iscatrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(ISCAtrack_Grch38)
 plotTracks(iscatrack, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
knownGenes_UCSC

Create a track of known genes from the UCSC genome browser

Description

Create a track of known genes from the UCSC genome browser using the Gviz bioconductor package

Usage

knownGenes_UCSC(gen, chr, start, end, title="UCSC known Genes", showId=TRUE)

Arguments

gen the name of the genome
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
title Name of tracks
showId Show the ID of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=knownGenes

See Also

ISCA_UCSC, GWAScatalog_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL,
Examples

```r
library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()) {
  genesUcsctrack<-knownGenes_UCSC(gen,chr,start,end,showId=TRUE)
  plotTracks(genesUcsctrack, from = start, to =end,
                fontfamily="sans",fontfamily.title="sans")
} else {
  data(genesUcsctrack)
  plotTracks(genesUcsctrack, from = start, to =end,
                fontfamily="sans",fontfamily.title="sans")
}
```

metQTL

Creates a track from a file for metQTL data

Description

Creates a track from a BED file for metQTL data using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```r
metQTL(gen, chr, start, end, bedFilePath, featureDisplay, showId=FALSE,
type_stacking="squish",just_group="above", title="metQTL")
```

Arguments

- **gen**: the name of the genome. Default value=hg19
- **chr**: The chromosome of interest
- **start**: The starting position in the region of interest (the smallest value)
- **end**: The end position in the region of interest (the largest value)
- **bedFilePath**: The file path to the .BED file containing the data to be visualised
- **featureDisplay**: A vector of metQTL features to be displayed, such as SNP. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "CpG"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("SNP","CpG")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.
showId
 Allows the visualization of the Id of metQTL group.

type_stacking
 Sets the type of stacking used by Gviz for plots. By default this is set to ‘squish’.
 For more information see Gviz user guide.

just_group
 position. say where we write the name of group (choice in c("above","right","left"))

title
 The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <- 75018200
featureDisplay <- "trans_local_metQTL"
type_stacking <- "squish"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
mqtlbedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
 metQTLTrackSingle <- metQTL(gen,chr,start,end,mqtlbedFilePath,
 featureDisplay = featureDisplay)
 plotTracks(metQTLTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(metQTLTrackSingle)
 plotTracks(metQTLTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

###

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <- 75018200

featureDisplay <- c("trans_local_metQTL","CpG")

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
 metQTLTrackMultiple <- metQTL(gen,chr,start, end, bedFilePath,
 featureDisplay = featureDisplay)
 plotTracks(metQTLTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(metQTLTrackMultiple)
 plotTracks(metQTLTrackMultiple, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")

gen <- 'hg19'
chr <- "chr15"
start <- 74889136
end <- 75018200

featureDisplay <- "all"

extdata <- system.file("extdata", package="coMET",mustWork=TRUE)
bedFilePath <- file.path(extdata, "metQTL.bed")

if(interactive()){
 metQTLTrackAll <- metQTL(gen,chr,start, end, bedFilePath,
 featureDisplay = featureDisplay)
 plotTracks(metQTLTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(metQTLTrackAll)
 plotTracks(metQTLTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
Description

Creates a track of miRNA target regions from ENSEMBL using the Gviz bioconductor package.

Usage

miRNATargetRegionsBiomart_ENSEMBL(gen, chr, start, end, showId=FALSE, datasetEnsembl = "hsapiens_mirna_target_feature", title="miRNA Target Regions ENSEMBL")

Arguments

<table>
<thead>
<tr>
<th>param</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen</td>
<td>The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).</td>
</tr>
<tr>
<td>chr</td>
<td>The chromosome of interest</td>
</tr>
<tr>
<td>start</td>
<td>The starting position in the region of interest (the smallest value)</td>
</tr>
<tr>
<td>end</td>
<td>The end position in the region of interest (the largest value)</td>
</tr>
<tr>
<td>showId</td>
<td>Show the ID of the genetic elements</td>
</tr>
<tr>
<td>datasetEnsembl</td>
<td>Allows the user to manually set which data set is used if required.Default=hsapiens_mirna_target_feature</td>
</tr>
<tr>
<td>title</td>
<td>The name of the annotation track</td>
</tr>
</tbody>
</table>

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to ENSEMBL regulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 1000000
end <- 2000000

if(interactive()){
 miRNATargetRegionsBiomartTrack<-miRNATargetRegionsBiomart_ENSEMBL(gen,chr,start,end, datasetEnsembl = "hsapiens_mirna_target_feature")
 plotTracks(miRNATargetRegionsBiomartTrack, from = start, to = end,}
otherRegulatoryRegionsBiomart_ENSEMBL

Creates a track of other regulatory regions from ENSEMBL

Description

Creates a track from ENSEMBL of other regulatory regions using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_external_feature", title="Other Regulatory Regions ENSEMBL")

Arguments

gen
The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).

chr
The chromosome of interest

start
The starting position in the region of interest (the smallest value)

end
The end position in the region of interest (the largest value)

featureDisplay
A vector of regulatory features to be displayed, such as Enhancer. Spelling and capitalisation of features must be identical to those in the user guide. There are two possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Enhancer"), only the name of the specific feature is required. Second, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

datasetEnsembl
Allows the user to manually set which data set is used if required.

title
The name of the annotation track

Value

An AnnotationTrack object of Gviz
Author(s)
Tiphaine Martin
Tom Hardiman

References
Got to ENSEMBLregulation binding motif biomart

Examples
library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 100000
end <- 5000000
featureDisplay <- "Enhancer"

if(interactive()){
 otherRegulatoryRegionsTrackSingle<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
 plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(otherRegulatoryRegionsTrackSingle)
 plotTracks(otherRegulatoryRegionsTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 100000
end <- 5000000
featureDisplay <- "all"

if(interactive()){
 otherRegulatoryRegionsTrackAll<-otherRegulatoryRegionsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
 plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(otherRegulatoryRegionsTrackAll)
 plotTracks(otherRegulatoryRegionsTrackAll, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}
Description

This function displays a color wheel with specified colors

Usage

pizza(colors, bg = "gray95", border = NA,
 init.angle = 105, cex = 0.8, lty = 1, labcol = NULL,
 ...)

Arguments

 colors a vector with R color names of colors in hexadecimal notation
 bg background color of the plot. Default "gray95"
 border color of the border separating the pizza slices
 init.angle integer value indicating the start angle (in degrees) for the slices
 cex numeric value indicating the character expansion of the labels
 lty argument passed to polygon which draws each slice
 labcol color for the labels (i.e. names of the colors)
 ... graphical parameters (par) can be given as argument to pizza

Details

This function is based on the pie function

Author(s)

Gaston Sanchez

Examples

pizza color wheel for rainbow colors
pizza(rainbow(7))

pizza color wheel for tomato (18 colors)
pizza(setColors("tomato", 18), bg = "gray20", cex = 0.7)
printPlot.comet

Create the plot on file from coMet function

Description
Create the plot on file from coMet function

Usage
printPlot.comet(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Return the plot produced by comet function in a file

Author(s)
Tiphaine Martin

printPlot.comet.nopval

Create the plot on file from coMet function

Description
Create the plot on file from coMet function

Usage
printPlot.comet.nopval(config.var, gbl.var)

Arguments
config.var list of all variables defined in configuration file or via options of comet function
gbl.var list of internal variables

Value
Return the plot produced by comet function without the upper plot (the pvalue plot) in a file

Author(s)
Tiphaine Martin
printPlot.comet.web

Display the plot from cometWeb function

Description

Display the plot from cometWeb function

Usage

printPlot.comet.web(config.var, gbl.var)

Arguments

config.var list of all variables defined in configuration file or via options of comet function

config.var list of internal variables

gbl.var

Value

Return the plot produced by comet.web function in a file

Author(s)

Tiphaine Martin

psiQTL_GTEx

Creates a psiQTL track from GTEx

Description

Creates a track of psiQTL from GTEx using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

psiQTL_GTEx(gen, chr, start, end, bedFilePath, featureDisplay = 'all',
 showId=FALSE, type_stacking="squish",just_group="above", title="psiQTL GTEx")

Arguments

gen the name of the genome.

chr The chromosome of interest

start The starting position in the region of interest (the smallest value)

end The end position in the region of interest (the largest value)

bedFilePath The path of the BED file from Kheradpour and Kellis, 2014.
featureDisplay A vector of regulatory features to be displayed, such as Predicted heterochromatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Predicted heterochromatin"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("Predicted low activity", "Predicted heterochromatin")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"). "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

showId logical. say if we write the name of group

type_stacking Object of class "character", the stacking type of overlapping items on the final plot. One in c(hide, dense, squish, pack, full). More information cf the option "stacking" in Gviz

just_group position. say where we write the name of group (choice in c("above", "right", "left"))

title The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References

Got to BindingMotifsBiomart binding motif biomart

Examples

library("Gviz")
gen <- "hg19"
chr<"chr13"
start <- 52713837
end <- 52715894
extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
psiQTLfilePath <- file.path(extdata, "/GTEX/psiQTL_Assoc-total.AdiposeTissue.txt")

if(interactive()){
 psiQTexTrackall<- psiQTL_GTEx(gen,chr,start, end, psiQTLfilePath,
 featureDisplay = 'all', showId=TRUE, type_stacking="squish",
 just_group="above")
 plotTracks(psiQTexTrackall, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
read.config

Extract the values of variables from configuration file

Description

Extract the values of variables from configuration file

Usage

read.config(config.file, config.var)

Arguments

config.file Configuration file
config.var list of all variables defined in configuration file or via options of comet function

Value

Return config.var updated with the different values of options found in the configuration file

Author(s)

Tiphaine Martin
read.file.cormatrix
Read, compute and extract the values from correlation matrix file

Description

Read, compute and extract the values from correlation matrix file

Usage

```r
read.file.cormatrix(config.var, gbl.var, split.cormatrix.file = NULL)
```

Arguments

- **config.var**: list of all variables defined in configuration file or via options of comet function
- **gbl.var**: list of internal variables
- **split.cormatrix.file**: File of correlation matrix

Value

Return `gbl.var` updated with the raw data of the correlation matrix and the correlation matrix computed

Author(s)

Tiphaine Martin

read.file.mydata
Read the files of main data and extract data

Description

Read the files of main data and extract data

Usage

```r
read.file.mydata(split.mydata.file, config.var, gbl.var, numfile)
```

Arguments

- **split.mydata.file**: List of files to main data
- **config.var**: list of all variables defined in configuration file or via options of comet function
- **gbl.var**: list of internal variables
- **numfile**: The number of file in the list
read.file.mydata.large

Read the files of supplementary data and extract data

Description

Read the files of supplementary data and extract data

Usage

```r
read.file.mydata.large(large.split.mydata.file, config.var, gbl.var, numfile.large)
```

Arguments

- `large.split.mydata.file`
 List of supplementary files to check format
- `config.var`
 list of all variables defined in configuration file or via options of comet function
- `gbl.var`
 list of internal variables
- `numfile.large`
 The number of file to check in the list

Value

Return gbl.var updated after reading the extra data

Author(s)

Tiphaine Martin
Create a track of RefSeq genes from the UCSC genome browser

Description

Create a track of RefSeq genes from the UCSC genome browser using the Gviz bioconductor package.

Usage

refGenes_UCSC(gen, chr, start, end, title="Ref Genes UCSC", track = "refGene", IdType="Ref", showId=TRUE)

Arguments

- `gen` The name of the genome
- `chr` The chromosome of interest
- `start` The first position in the region of interest (the smallest value)
- `end` The last position in the region of interest (the largest value)
- `title` Name of tracks
- `track` the name of table in UCSC for the group "Genes and Gene Prediction"
- `IdType` When set to 'ref' shows the gene reference, when set to "name" shows the gene name
- `showId` Shows the ID or name of the genetic elements

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtdrFAy6dn&c=chr6&g=knownGene

See Also

ISCA_UCSC, GWAScatalog_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC, transcript_ENSEMBL, knownGenes_UCSC
Examples

```r
library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38203219
end <- 38303219
IdType <- "name"
track <- "refGene"

if(interactive()) {
    genesUcsctrack<-refGenes_UCSC(gen,chr,start,end,track,IdType)
    plotTracks(genesUcsctrack, from = start, to =end)
} else {
    data(genesUcsctrack)
    plotTracks(genesUcsctrack, from = start, to =end)
}
```

regulationBiomart_ENSEMBL

Create a regulation track from ENSEMBL

Description
Create a 'Regulation' track from ENSEMBL using the Gviz bioconductor package

Usage

```r
regulationBiomart_ENSEMBL(gen, chr, start, end,title="Regulation ENSEMBL")
```

Arguments

- `gen`: the name of the genome
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `title`: Name of tracks

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
regulatoryEvidenceBiomart_ENSEMBL

Creates a regulatory feature track from ENSEMBL

Description

Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

regulatoryEvidenceBiomart_ENSEMBL (gen, chr, start, end,
featureDisplay = "all", datasetEnsembl = "hsapiens_annotated_feature",
title="Other Regulatory Regions ENSEMBL")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen</td>
<td>The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).</td>
</tr>
<tr>
<td>chr</td>
<td>The chromosome of interest</td>
</tr>
<tr>
<td>start</td>
<td>The starting position in the region of interest (the smallest value)</td>
</tr>
<tr>
<td>end</td>
<td>The end position in the region of interest (the largest value)</td>
</tr>
</tbody>
</table>
featureDisplay A vector of regulatory features to be displayed, such as DNase1. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "DNase1"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("CTCF","DNase1")). Finally, visualisation all features in the genomic region, achieved by using the word "all" (e.g. featureDisplay <- "all"). "all" is set by default. You can find the complete list of features and their associated colours in the user guide.

dataSetEnsembl Allows the user to manually set which data set is used if required.

title The name of the annotation track

Value
An AnnotationTrack object of Gviz

Author(s)
Tiphaine Martin
Tom Hardiman

References
Got to ENSEMBLregulation binding motif biomart

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 40000
end <- 50000
featureDisplay <- "H3K27me3"

if(interactive()){
 regulatoryEvidenceBiomartTrackSingle <- regulatoryEvidenceBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
 plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
} else {
 data(regulatoryEvidenceBiomartTrackSingle)
 plotTracks(regulatoryEvidenceBiomartTrackSingle, from = start, to = end,
 fontfamily="sans",fontfamily.title="sans")
}

library("Gviz")
gen <- "hg38"
regulatoryFeaturesBiomart_ENSEMBL

Creates a regulatory feature track from ENSEMBL

Description

Creates a regulatory feature track from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

```r
regulatoryFeaturesBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = "all", datasetEnsembl = "hsapiens_regulatory_feature", title="Regulatory Features ENSEMBL")
```
Arguments

- **gen**: The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).
- **chr**: The chromosome of interest
- **start**: The starting position in the region of interest (the smallest value)
- **end**: The end position in the region of interest (the largest value)
- **featureDisplay**: A vector of regulatory features to be displayed, such as Promoter. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay <- "Promoter"), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay <- c("TF binding site","Promoter")). Finally, visualison all features in the genomic region, achived by using the word "all" (e.g. featureDisplay <- "all"), "all" is set by default. You can find the complete list of features and their associated colours in the user guide.
- **datasetEnsembl**: Allows the user to manually set which data set is used if required.Default=hsapiens_regulatory_feature
- **title**: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to ENSEMBLregulation binding motif biomart

Examples

```r
library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 500000
featureDisplay <- "Enhancer"

if(interactive()){
  regulatoryFeaturesBiomartTrackSingle<-regulatoryFeaturesBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
  plotTracks(regulatoryFeaturesBiomartTrackSingle, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")
}
regulatorySegmentsBiomart_ENSEMBL

Creates a binding motif track from ENSEMBL [obselete]
Description

[obselete] Creates a track of regulatory segments from ENSEMBL using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

regulatorySegmentsBiomart_ENSEMBL(gen, chr, start, end, featureDisplay = 'all', datasetEnsembl = "hsapiens_external_feature", title="External Regulatory ENSEMBL")

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen</td>
<td>The name of the genome. Currently only handles human data from either the previous version, GRCh37 (also known as hg19) or the current version, GRCh38 (also known as hg38).</td>
</tr>
<tr>
<td>chr</td>
<td>The chromosome of interest</td>
</tr>
<tr>
<td>start</td>
<td>The starting position in the region of interest (the smallest value)</td>
</tr>
<tr>
<td>end</td>
<td>The end position in the region of interest (the largest value)</td>
</tr>
<tr>
<td>featureDisplay</td>
<td>A vector of regulatory features to be displayed, such as Predicted heterochromatin. Spelling and capitalisation of features must be identical to those in the user guide. There are three possibilities. First, the visualisation of only one feature (e.g. featureDisplay &lt;- &quot;Predicted heterochromatin&quot;), only the name of the specific feature is required. Second, visualisation of a set of features, for this a vector of features is required (e.g. featureDisplay &lt;- c(&quot;Predicted low activity&quot;,&quot;Predicted heterochromatin&quot;)). Finally, visualison all features in the genomic region, achived by using the word &quot;all&quot; (e.g. featureDisplay &lt;- &quot;all&quot;), &quot;all&quot; is set by default. You can find the complete list of features and their associated colours in the user guide.</td>
</tr>
<tr>
<td>datasetEnsembl</td>
<td>Allows the user to manually set which data set is used if required. Default=hsapiens_segmentation_feature</td>
</tr>
<tr>
<td>title</td>
<td>The name of the annotation track</td>
</tr>
</tbody>
</table>

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

Got to ENSEMBLregulation binding motif biomart
Examples

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "CTCF enriched"

if(interactive()){
  regulatorySegmentsBiomartTrackSingle<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatorySegmentsBiomartTrackSingle)
  plotTracks(regulatorySegmentsBiomartTrackSingle, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")
}

###

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- c("CTCF enriched","Predicted Promoter Flank")

if(interactive()){
  regulatorySegmentsBiomartTrackMultiple<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(regulatorySegmentsBiomartTrackMultiple)
  plotTracks(regulatorySegmentsBiomartTrackMultiple, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")
}

###

library("Gviz")
gen <- "hg38"
chr <- "chr1"
start <- 10000
end <- 50000
featureDisplay <- "all"
if(interactive()){
  regulatorySegmentsBiomartTrackAll<-regulatorySegmentsBiomart_ENSEMBL(gen, chr,start,end,featureDisplay)
  plotTracks(regulatorySegmentsBiomartTrackAll, from = start, to = end, 
             fontfamily="sans",fontfamily.title="sans")}
repeatMasker_UCSC

Create one track of the genomic positions of regions from repeatMasker_UCSC

Description

Create one track of the genomic positions of regions from repeatMasker_UCSC using the Gviz bioconductor package

Usage

```r
repeatMasker_UCSC(gen, chr, start, end, title="RepeatMasker", showId=FALSE, type_stacking="full")
```

Arguments

- `gen`: the name of the genome
- `chr`: the chromosome of interest
- `start`: the first position in the region of interest (the smallest value)
- `end`: the last position in the region of interest (the largest value)
- `title`: The name of the annotation track
- `showId`: Show the ID of the genetic elements
- `type_stacking`: the type of stacking data for this track. More information go to Gviz (the option "stacking")

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin

References

- http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrtdrFAy6dn&c=chr6&g=rmsk
Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
    rmtrack <- repeatMasker_UCSC(gen,chr,start,end,showId=TRUE)
    plotTracks(rmtrack, from = start, to = end,
              fontfamily="sans",fontfamily.title="sans")
} else {
    data(repeatMaskerTrack)
    plotTracks(rmtrack, from = start, to = end,
              fontfamily="sans",fontfamily.title="sans")
}

---

**retrieve.data**

Retrieve the data from configuration file and data files

**Description**

Retrieve the data from configuration file and data files

**Usage**

`retrieve.data(config.var, gbl.var)`

**Arguments**

- `config.var` list of all variables defined in configuration file or via options of comet function
- `gbl.var` list of internal variables

**Value**

Return `config.var` and `gbl.var` updated after reading all data files given

**Author(s)**

Tiphaine Martin
segmentalDups_UCSC  

Create one track of the genomic positions of regions from segmentalDups_UCSC using the Gviz bioconductor package

Usage

segmentalDups_UCSC(gen, chr, start, end, title="Segmental Dups UCSC")

Arguments

- gen: the name of the genome
- chr: the chromosome of interest
- start: the first position in the region of interest (the smallest value)
- end: the last position in the region of interest (the largest value)
- title: The name of the annotation track

Value

An UcscTrack object of Gviz

Author(s)

Tiphaine Martin
Tom Hardiman

References

http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjtrdFAY6dn&c=chr6&g=rmsk

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 100000
end <- 200000

if(interactive()){
  DupTrack <- segmentalDups_UCSC(gen, chr, start, end)
  plotTracks(DupTrack, from = start, to = end,
             fontfamily="sans", fontfamily.title="sans")}
```r
} else {
 data(DupTrack)
 plotTracks(DupTrack, from = start, to = end,
 fontfamily="sans", fontfamily.title="sans")
}
```

---

### set.image.parameters

**Description**

Set up the parameters of image

**Usage**

```r
set.image.parameters(config.var, gbl.var)
```

**Arguments**

- `config.var` list of all variables defined in configuration file or via options of comet function
- `gbl.var` list of internal variables

**Value**

Return a list of parameter for the production of image

**Author(s)**

Tiphaine Martin

---

### setColors

**Description**

This function set a given number of colors to create a color wheel

**Usage**

```r
setColors(color, num)
```

**Arguments**

- `color` an R color name or a color in hexadecimal notation
- `num` integer value indicating how many colors to be added to the wheel
snpBiomart_ENSEMBL

Value
A character vector with the given color and the set of colors to create a wheel color

Author(s)
Gaston Sanchez

See Also
col2HSV

Examples

# create a color wheel based on 'tomato'
setColors("tomato", 12)

# set 7 colors for '#3D6DCC'
setColors("#3D6DCC", 7)

snpBiomart_ENSEMBL  Create a short variation track from ENSEMBL

Description
Create a 'Short Variation' track from ENSEMBL using the Gviz bioconductor package

Usage
snpBiomart_ENSEMBL(gen, chr, start, end, dataset, showId=FALSE, title = "SNPs ENSEMBL")

Arguments

gene  the name of the genome
chr   the chromosome of interest
start the first position in the region of interest (the smallest value)
end   the last position in the region of interest (the largest value)
dataset The name of the database. Example "hsapiens_snp_som"
showId Show the the ID of element or not
title  The name of the annotation track

Value
An AnnotationTrack object of Gviz

Author(s)
Tiphaine Martin
snpLocations_UCSC

Create a SNP track from UCSC

Create a SNP track from UCSC using the Gviz bioconductor package

Usage

snpLocations_UCSC(gen, chr, start, end, title = "SNPs UCSC", track = "All SNPs(142)")

Arguments

gen the name of the genome. Data is not currently available for GRCh38 (hg38).
chr the chromosome of interest
start the first position in the region of interest (the smallest value)
end the last position in the region of interest (the largest value)
title Name of tracks
track The name of the database. Default "All SNPs(142)"

References

Go to ENSEMBL Biomart

See Also

snpLocations_UCSC, structureBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC.

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){  
snptrack <- snpBiomart_ENSEMBL(gen, chr, start, end,  
dataset = "hsapiens_snp", showId = FALSE)  
plotTracks(snptrack, from=start, to=end,  
fontfamily = "sans", fontfamily.title = "sans")
} else {  
data(snpBiomarttrack)  
plotTracks(snptrack, from=start, to=end,  
fontfamily = "sans", fontfamily.title = "sans")
}
Value
An UcscTrack object of Gviz

Author(s)
Tiphaine Martin

References
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAOuBMAR620GjrdrF4y6dn&c=chr6&g=snp

See Also
snpLocations_UCSC, structureBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC,

Examples
library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 38303219

if(interactive()) {
  snpUCSCtrack<-snpLocations_UCSC(gen,chr,start,end,"All SNPs(142)"
  plotTracks(snpUCSCtrack, from = start, to =end,
            fontfamily="sans",fontfamily.title="sans")
} else {
  data(snpUCSCtrack)
  plotTracks(snpUCSCtrack, from = start, to =end,
            fontfamily="sans",fontfamily.title="sans")
}

structureBiomart_ENSEMBL

Create a structural variation track from ENSEMBL

Description
Create a 'Structural Variation' track from ENSEMBL using the Gviz bioconductor package

Usage
structureBiomart_ENSEMBL(gen, chr, start, end, strand, dataset,
                      showId=FALSE, title = "Structural variation")
structureBiomart_ENSEMBL

Arguments

gen      the name of the genome
chr      the chromosome of interest
start    the first position in the region of interest (the smallest value)
end      the last position in the region of interest (the largest value)
strand   the strand to extract structure data for
dataset  The name of the database. Example "hsapiens_structvar_som"
showId   Show the the ID of the element
title    The name of the annotation track

Value
An AnnotationTrack object of Gviz

Author(s)
Tiphaine Martin

References
Go to ENSEMBL Biomart

See Also
snpLocations_UCSC, snpBiomart_ENSEMBL, COSMIC_UCSC, CoreillCNV_UCSC, ClinVarMain_UCSC, ClinVarCnv_UCSC.

Examples
library("Gviz")
gen <- "hg38"
chr <- "chr2"
start <- 38290160
end <- 38303219

if(interactive()){
  strutrack <- structureBiomart_ENSEMBL(chr, start, end,
                                         strand, dataset="hsapiens_structvar_som")
  plotTracks(strutrack, from=start, to=end,
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(strucBiomarttrack)
  plotTracks(strutrack, from=start, to=end,
             fontfamily="sans",fontfamily.title="sans")
}
Description

Creates a track of TFBS motifs from FANTOM using the Gviz bioconductor package. A complete list of features and their associated colours can be found in the user guide.

Usage

TFBS_FANTOM(gen, chr, start, end, bedFilePath,title="TF motif FANTOM5")

Arguments

- gen: the name of the genome.
- chr: The chromosome of interest
- start: The starting position in the region of interest (the smallest value)
- end: The end position in the region of interest (the largest value)
- title: The name of the annotation track

Value

An AnnotationTrack object of Gviz

Author(s)

Tiphaine Martin

References


Got to BindingMotifsBiomart binding motif biomart

Examples

```r
library("Gviz")
gen <- "hg19"
chr<- "chr1"
start <- 6000000
end <- 6500000

extdata <- system.file("extdata", package="coMET", mustWork=TRUE)
AP1FantomFile <- file.path(extdata, "FANTOM/Fantom_hg19.AP1_MA0099.2.sites_example970.txt")

if(interactive()){
 tfbsFANTOMtrack <- TFBS_FANTOM(gen,chr,start, end, AP1FantomFile)
}
transcript_ENSEMBL

Create a track of transcripts from ENSEMBL

Description
Create a track to visualize different transcripts from ENSEMBL using the Gviz bioconductor package

Usage
transcript_ENSEMBL(gen, chr, start, end, showId = FALSE, title = "transcripts ENSEMBL")

Arguments
- gen: the name of the genome
- chr: the chromosome of interest
- start: the first position in the region of interest (the smallest value)
- end: the last position in the region of interest (the largest value)
- showId: Show the ID of the genetic elements
- title: Name of tracks

Value
A BiomartGeneRegionTrack object of Gviz

Author(s)
Tiphaine Martin

References
http://genome-euro.ucsc.edu/cgi-bin/hgTrackUi?hgsid=202839739_2hYQ1BAoBMAR620GjrtdrFAYa6dn&c=chr6&g=ensGene

See Also
ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, xenorefGenes_UCSC,
Examples

```r
library("Gviz")
gen <- "hg19"
chr <- "chr2"
start <- 32290160
end <- 33303219

if(interactive()){
  transENSMBLtrack<-transcript_ENSEMBL(gen,chr,start,end,showId=TRUE)
  plotTracks(transENSMBLtrack, from=start, to=end,
             fontfamily="sans",fontfamily.title="sans")
} else {
  data(transENSMBLtrack)
  plotTracks(transENSMBLtrack, from=start, to=end,
             fontfamily="sans",fontfamily.title="sans")
}
```

xenorefGenes_UCSC

Create a track for xeno-reference genes from the UCSC genome browser

Description

Create a track for xeno-reference genes from the UCSC genome browser using the Gviz bioconductor package

Usage

```r
xenorefGenes_UCSC(gen, chr, start, end,title="Other RefSeq", showId=FALSE)
```

Arguments

- `gen` the name of the genome
- `chr` the chromosome of interest
- `start` the first position in the region of interest (the smallest value)
- `end` the last position in the region of interest (the largest value)
- `title` Name of tracks
- `showId` Show the ID of the genetic elements

Value

A UcscTrack object of Gviz

Author(s)

Tiphaine Martin
References

See Also

ISCA_UCSC, GWAScatalog_UCSC, knownGenes_UCSC, genesName_ENSEMBL, GeneReviews_UCSC, GAD_UCSC, genes_ENSEMBL, transcript_ENSEMBL.

Examples

library("Gviz")
gen <- "hg38"
chr <- "chr7"
start <- 38290160
end <- 3830219

if(interactive()){
xenogenestrack <- xenorefGenes_UCSC(gen,chr,start,end,showId=TRUE)
plotTracks(xenogenestrack, from=start, to=end,
 fontfamily="sans",fontfamily.title="sans")
} else {
data(xenogenestrack)
plotTracks(xenogenestrack, from=start, to=end,
 fontfamily="sans",fontfamily.title="sans")
}
Index

* datasets
 - clinCNV, 17
* dplot
 - chrUCSC2ENSEMBL, 16
 - create.tracks.web, 43
 - createList.trackUser, 44
 - fix.values, 63
 - fix.values.generic, 63
 - fix.values.large, 64
 - printPlot.comet, 90
 - read.config, 93
 - read.file.cormatrix, 94
 - read.file.mydata, 94
 - read.file.mydata.large, 95
 - retrieve.data, 106
 - set.image.parameters, 108
* hplot
 - bindingMotifsBiomart_ENSEMBL, 5
 - ChIPTF_ENCODE, 9
 - chromatinHMMAll_UCSC, 11
 - chromatinHMMOne_UCSC, 13
 - chromHMM_RoadMap, 14
 - ClinVarCnv_UCSC, 17
 - ClinVarMain_UCSC, 18
 - comet, 20
 - comet.list, 27
 - comet.web, 28
 - CoreillCNV_UCSC, 35
 - COSMIC_UCSC, 36
 - cpgIslands_UCSC, 37
 - dgfootprints_RoadMap, 44
 - DNAse_UCSC, 49
 - DNaseI_FANTOM, 46
 - DNaseI_RoadMap, 47
 - eQTL, 59
 - eQTL_GTEx, 61
 - GAD_UCSC, 64
 - gcContent_UCSC, 66
 - GeneReviews_UCSC, 67
 - genes_ENSEMBL, 69
 - GWAScatalog_UCSC, 70
 - HiCdata2matrix, 72
 - HistoneAll_UCSC, 73
 - HistoneOne_UCSC, 74
 - imprintedGenes_GTEx, 76
 - interestGenes_ENSEMBL, 77
 - interestTranscript_ENSEMBL, 79
 - ISCA_UCSC, 80
 - knownGenes_UCSC, 82
 - metQTL, 83
 - miRNATargetRegionsBiomart_ENSEMBL, 85
 - otherRegulatoryRegionsBiomart_ENSEMBL, 87
 - psiQTL_GTEx, 91
 - refGenes_UCSC, 96
 - regulationBiomart_ENSEMBL, 97
 - regulatoryEvidenceBiomart_ENSEMBL, 98
 - regulatoryFeaturesBiomart_ENSEMBL, 100
 - regulatorySegmentsBiomart_ENSEMBL, 102
 - repeatMasker_UCSC, 105
 - segmentalDups_UCSC, 107
 - snpBiomart_ENSEMBL, 109
 - snpLocations_UCSC, 110
 - structureBiomart_ENSEMBL, 111
 - TFBS_FANTOM, 113
 - transcript_ENSEMBL, 114
 - xenorefGenes_UCSC, 115
* internal
 - check.configVar, 8
 - check.configVar.cometlist, 8
 - check.format.mydata, 9
 - clinCNV, 17
 - compute.cormatrix, 34
 - cpgPvalue, 38

117
create.color.bar, 39
create.color.list, 40
create.color.list.large, 41
create.symbol.list, 41
create.symbol.list.large, 42
create.tracks.user, 43
create.tracks.web, 43
createList.trackUser, 44
draw.legend, 50
draw.name.genes.web, 51
draw.name.tracks.web, 51
draw.plot.annotation, 52
draw.plot.axis.data, 52
draw.plot.comet, 53
draw.plot.comet.nopval, 53
draw.plot.comet.web, 54
draw.plot.cormatrix.plot, 55
draw.plot.grid.mydata, 55
draw.plot.grid.mydata.large, 56
draw.plot.grid.mydata.names, 56
draw.plot.grid.setup, 57
draw.plot.linesconnection, 57
draw.plot.mydata.ggbio, 58
fix.values, 63
fix.values.generic, 63
fix.values.large, 64
printPlot.comet, 90
printPlot.comet.nopval, 90
printPlot.comet.web, 91
read.config, 93
read.file.cormatrix, 94
read.file.mydata, 94
read.file.mydata.large, 95
retrieve.data, 106
set.image.parameters, 108
xenorefGenes UCSC, 115
* misc
genesName_ENSEMBL, 68
* package
cOMET-package, 4
* print
draw.name.genes.web, 51
draw.name.tracks.web, 51
draw.plot.annotation, 52
draw.plot.axis.data, 52
draw.plot.comet, 53
draw.plot.comet.nopval, 53
draw.plot.comet.web, 54
draw.plot.cormatrix.plot, 55
draw.plot.grid.mydata, 55
draw.plot.grid.mydata.large, 56
draw.plot.grid.mydata.names, 56
draw.plot.grid.setup, 57
draw.plot.linesconnection, 57
printPlot.comet.nopval, 90
printPlot.comet.web, 91
allIG (clinCNV), 17
allIGtrack (clinCNV), 17
allimprintedIG (clinCNV), 17
allimprintedIGtrack (clinCNV), 17
BindingMotifAll (clinCNV), 17
BindingMotifMultiple (clinCNV), 17
bindingMotifsBiomart_ENSEMBL, 5
BindingMotifSingle (clinCNV), 17
bindMotifsBiomartTrackAll (clinCNV), 17
bindMotifsBiomartTrackDouble (clinCNV), 17
bindMotifsBiomartTrackMultiple (clinCNV), 17
bindMotifsBiomartTrackSingle (clinCNV), 17
check.configVar, 8
check.configVar.cometlist, 8
check.configVarcometlist
(check.configVar.cometlist), 8
check.format.mydata, 9
ChiPTF_ENCODE, 9
chipTFtrack (clinCNV), 17
chromatinHMMAll_UCSC, 11, 13
chromatinHMMOne_UCSC, 12, 13
chromatinHMMRoadMapAll (clinCNV), 17
chromatinHMMRoadMapMultiple (clinCNV), 17
chromatinHMMRoadMapSingle (clinCNV), 17
chromHMM_RoadMap, 14
chromHMM_RoadMapAll (clinCNV), 17
chromHMM_RoadMapAllE063 (clinCNV), 17
chromHMM_RoadMapMultiple (clinCNV), 17
chromHMM_RoadMapSingle (clinCNV), 17
chromhmmNoPattern (clinCNV), 17
chromhmmPattern (clinCNV), 17
chromhmmtrackone (clinCNV), 17
chrUCSC2ENSEMBL, 16
clinCNV, 17
interestGenes_ENSEMBL, 77
interestgenesENSMBLtrack (clinCNV), 17
interestTranscript_ENSEMBL, 79
interesttransENSMBLtrack (clinCNV), 17
ISCA_UCSC, 65, 67, 69–71, 78, 80, 82, 96, 114, 116
iscatrack (clinCNV), 17
knownGenes_UCSC, 65, 67, 69–71, 78, 80, 81, 82, 96, 114, 116
matrix_HiC_Rao (clinCNV), 17
metQTL, 83
metQTLTrackAll (clinCNV), 17
metQTLTrackMultiple (clinCNV), 17
metQTLTrackSingle (clinCNV), 17
miRNATargetRegionsBiomart_ENSEMBL, 85
miRNATargetRegionsBiomartTrack (clinCNV), 17
opposite (complementary), 33
otherRegulatoryRegionsBiomart_ENSEMBL, 87
OtherRegulatoryRegionsTrackAll (clinCNV), 17
OtherRegulatoryRegionsTrackAll (clinCNV), 17
OtherRegulatoryRegionsTrackSingle (clinCNV), 17
OtherRegulatoryRegionsTrackSingle (clinCNV), 17
PancreasIG (clinCNV), 17
PancreasIGtrack (clinCNV), 17
PancreasimprintedIG (clinCNV), 17
PancreasimprintedIGtrack (clinCNV), 17
par, 89
pie, 89
pizza, 89
polygon, 89
printPlot.comet, 90
printPlot.comet.nopval, 90
printPlot.comet.web, 91
promRMtrack (clinCNV), 17
promRMtrackE063 (clinCNV), 17
psiGTex (clinCNV), 17
psiGTexTrackall (clinCNV), 17
psiGTexTrackSNP (clinCNV), 17
psiQTL_GTEX, 91
read.config, 93
read.file.cormatrix, 94
read.file.mydata, 94
read.file.mydata.large, 95
refGenes_UCSC, 96
regulationBiomart_ENSEMBL, 97
regulationENSMBLtrack (clinCNV), 17
regulatoryEvidenceBiomart_ENSEMBL, 98
RegulatoryEvidenceBiomartTrackAll (clinCNV), 17
regulatoryEvidenceBiomartTrackAll (clinCNV), 17
RegulatoryEvidenceBiomartTrackMultiple (clinCNV), 17
RegulatoryEvidenceBiomartTrackMultiple (clinCNV), 17
RegulatoryEvidenceBiomartTrackSingle (clinCNV), 17
RegulatoryEvidenceBiomartTrackSingle (clinCNV), 17
regulatoryFeaturesBiomart_ENSEMBL, 100
RegulatoryFeaturesBiomartTrackAll (clinCNV), 17
regulatoryFeaturesBiomartTrackAll (clinCNV), 17
RegulatoryFeaturesBiomartTrackMultiple (clinCNV), 17
RegulatoryFeaturesBiomartTrackMultiple (clinCNV), 17
RegulatoryFeaturesBiomartTrackSingle (clinCNV), 17
RegulatoryFeaturesBiomartTrackSingle (clinCNV), 17
regulatoryFeaturesBiomartTrackSingle (clinCNV), 17
regulatorySegmentsBiomart_ENSEMBL, 102
RegulatorySegmentsBiomartTrackAll (clinCNV), 17
RegulatorySegmentsBiomartTrackAll (clinCNV), 17
RegulatorySegmentsBiomartTrackMultiple (clinCNV), 17
RegulatorySegmentsBiomartTrackMultiple (clinCNV), 17
RegulatorySegmentsBiomartTrackSingle (clinCNV), 17
RegulatorySegmentsBiomartTrackSingle (clinCNV), 17
repeatMasker_UCSC, 105
repeatMaskerTrack (clinCNV), 17
INDEX

retrieve.data, 106
rmtrack (clinCNV), 17

segmentalDups_UCSC, 107
set.image.parameters, 108
setColors, 108
snpBiomart_ENSEMBL, 18, 19, 36, 37, 109, 112
snpLocations_UCSC, 18, 19, 36, 37, 110, 110, 111, 112
snptrack (clinCNV), 17
snpUCSCtrack (clinCNV), 17
StomachIG (clinCNV), 17
StomachIGtrack (clinCNV), 17
structureBiomart_ENSEMBL, 18, 19, 36, 37, 110, 111, 111
strutrack (clinCNV), 17

TFBS_FANTOM, 113
tfbsFANTOMtrack (clinCNV), 17
transcript_ENSEMBL, 65, 67, 69–71, 78, 81, 82, 96, 114, 116
transENSMBLtrack (clinCNV), 17

xenogenestrack (clinCNV), 17
xenorefGenes_UCSC, 65, 67, 69–71, 78, 80–82, 96, 114, 115