Package ‘consICA’

March 22, 2024

Type Package

biocViews Technology, StatisticalMethod, Sequencing, RNASeq, Transcriptomics, Classification, FeatureExtraction

Title consensus Independent Component Analysis

Version 2.0.0

Description consICA implements a data-driven deconvolution method – consensus independent component analysis (ICA) to decompose heterogeneous omics data and extract features suitable for patient diagnostics and prognostics. The method separates biologically relevant transcriptional signals from technical effects and provides information about the cellular composition and biological processes. The implementation of parallel computing in the package ensures efficient analysis of modern multicore systems.

BugReports https://github.com/biomod-lih/consICA/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData false

Imports fastICA (>= 1.2.1), sm, org.Hs.eg.db, GO.db, stats, SummarizedExperiment, BiocParallel, graph, ggplot2, methods, Rfast, pheatmap, survival, topGO, graphics, grDevices

Depends R (>= 4.2.0)

Suggests knitr, BiocStyle, rmarkdown, testthat, Seurat

VignetteBuilder knitr

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/consICA
git_branch RELEASE_3_18
git_last_commit d7fa01e
git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-22
Author Petr V. Nazarov [aut, cre] (<https://orcid.org/0000-0003-3443-0298>),
Tony Kaoma [aut] (<https://orcid.org/0000-0002-1269-4826>),
Maryna Chepeleva [aut] (<https://orcid.org/0000-0003-3036-4916>)
Maintainer Petr V. Nazarov <petr.nazarov@lih.lu>

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anovaIC</td>
<td>2</td>
</tr>
<tr>
<td>consICA</td>
<td>3</td>
</tr>
<tr>
<td>coreICA</td>
<td>5</td>
</tr>
<tr>
<td>enrichGO</td>
<td>6</td>
</tr>
<tr>
<td>estimateVarianceExplained</td>
<td>7</td>
</tr>
<tr>
<td>getFeatures</td>
<td>8</td>
</tr>
<tr>
<td>getGO</td>
<td>9</td>
</tr>
<tr>
<td>get_score</td>
<td>10</td>
</tr>
<tr>
<td>get_X_num</td>
<td>11</td>
</tr>
<tr>
<td>is.consICA</td>
<td>12</td>
</tr>
<tr>
<td>oneICA</td>
<td>12</td>
</tr>
<tr>
<td>outICA</td>
<td>14</td>
</tr>
<tr>
<td>overlapGO</td>
<td>14</td>
</tr>
<tr>
<td>plotICVarianceExplained</td>
<td>16</td>
</tr>
<tr>
<td>samples_data</td>
<td>17</td>
</tr>
<tr>
<td>saveReport</td>
<td>17</td>
</tr>
<tr>
<td>setOrientation</td>
<td>18</td>
</tr>
<tr>
<td>set bpparam</td>
<td>19</td>
</tr>
<tr>
<td>sortDataFrame</td>
<td>20</td>
</tr>
<tr>
<td>sortFeatures</td>
<td>21</td>
</tr>
<tr>
<td>survivalAnalysis</td>
<td>21</td>
</tr>
</tbody>
</table>

Index 23

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anovaIC</td>
<td>23</td>
</tr>
</tbody>
</table>

Description

ANOVA (ANalysis Of VAriance) test produced for specific independent component across each (clinical) factor as 'aov(IC ~ factor)'. Plot distributions of samples’ weight for top 9 significant factors.

Usage

```r
anovaIC(
cica,
Var = NULL,
icomp = 1,
plot = TRUE,
)```

mode = "violin",
color_by_pv = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cica</td>
<td>list compliant to 'consICA()' result</td>
</tr>
<tr>
<td>Var</td>
<td>matrix with samples’ metadata. Samples in rows and factors in columns</td>
</tr>
<tr>
<td>icomp</td>
<td>number of component to analyse</td>
</tr>
<tr>
<td>plot</td>
<td>if plot weights distributions for top factors</td>
</tr>
<tr>
<td>mode</td>
<td>type of plot. Can be 'violin' or 'box'</td>
</tr>
<tr>
<td>color_by_pv</td>
<td>if TRUE plots will be colored by p-value ranges</td>
</tr>
</tbody>
</table>

Value

a data.frame with

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor</td>
<td>name of factor</td>
</tr>
<tr>
<td>p.value</td>
<td>p-value for ANOVA test for factor</td>
</tr>
<tr>
<td>p.value_disp</td>
<td>string for p-value printing</td>
</tr>
</tbody>
</table>

Examples

data("samples_data")
Var <- data.frame(SummarizedExperiment::colData(samples_data))
cica <- consICA(samples_data, ncomp=10, ntry=1, ncores=1, show.every=0)
# Run ANOVA for 4th independent component
anova <- anovaIC(cica, Var=Var, icomp = 4)

consICA  Calculate consensus Independent Component Analysis

Description

calculate consensus independent component analysis (ICA) Implements efficient ICA calculations.

Usage

consICA(
  X,
  ncomp = 10,
  ntry = 1,
  show.every = 1,
  filter.thr = NULL,
  ncores = 1,
  bpparam = NULL,
reduced = FALSE,
fun = "logcosh",
alg.typ = "deflation",
verbose = FALSE,
assay_string = NULL
)

Arguments

X input data with features in rows and samples in columns. Could be a ‘SummarizedExperiment’ object, matrix or ‘Seurat’ object. For ‘SummarizedExperiment’ with multiple assays or ‘Seurat’ pass the name with ‘assay_string’ parameter, otherwise the first will be taken. See SummarizedExperiment-class

ncomp number of components

ntry number of consensus runs. Default value is 1

show.every numeric logging period in iterations (disabled for ‘ncore’s > 1). Default value is 1

filter.thr Filter out genes (rows) with max value lower than this value from ‘X’

ncores number of cores for parallel calculation. Default value is 4

bpparam parameters from the ‘BiocParallel’

reduced If TRUE returns reduced result (no ‘X’, ‘i.best’, see ‘return’)

fun the functional form of the G function used in the approximation to neg-entropy in fastICA. Default value is "logcosh"

alg.typ parameter for fastICA(). If alg.typ == "deflation" the components are extracted one at a time. If alg.typ == "parallel" the components are extracted simultaneously. Default value is "deflation"

verbose logic TRUE or FALSE. Use TRUE for print process steps. Default value is FALSE

assay_string name of assay for ‘SummarizedExperiment’ or ‘Seurat’ input object ‘X’. Default value is NULL

Value

a list with

X input object

nsamples, nfeatures dimension of X

S, M consensus metagene and weight matrix

ncomp number of components

X_num input data in matrix format

mr2 mean R2 between rows of M

stab stability, mean R2 between consistent columns of S in multiple tries. Applicable only for ‘ntry’ > 1

i.best number of best iteration
coreICA

Author(s)
Petr V. Nazarov

See Also
fastICA

Examples

data("samples_data")
# Deconvolve into independent components
cica <- consICA(samples_data, ncomp=15, ntry=10, ncores=1, show.every=0)
# X = S * M, where S - independent signals matrix, M - weights matrix
dim(samples_data)
dim(cica$S)
dim(cica$M)

Description
Adaptation of fastICA for quick multiple-run calculations for consensus Independent Component Analysis (ICA)

Usage
coreICA(
  X,
  n.comp,
  preICA = NULL,
  alg.typ = c("parallel", "deflation"),
  fun = c("logcosh", "exp"),
  w.init = NULL,
  alpha = 1,
  row.norm = FALSE,
  maxit = 200,
  tol = 1e-04,
  verbose = FALSE
)

Arguments
X     matrix with features in rows and samples in columns
n.comp number of components.
preICA output of ‘outICA()‘. Default is NULL
alg.typ parameter for fastICA(). If alg.typ == "deflation" the components are extracted one at a time. If alg.typ == "parallel" the components are extracted simultaneously. Default value is "deflation"

fun the functional form of the G function used in the approximation to neg-entropy in fastICA. Default value is "logcosh"

w.init initial weights
alpha default is 1
row.norm set TRUE if the normalization by rows is needed. Default is FALSE
maxit default is 200
tol default is 1e-04
verbose logic TRUE or FALSE. Use TRUE for print process steps. Default value is FALSE

Value
a list with (compliant to `fastICA()`'s output)

X pre-processed data matrix
K pre-whitening matrix that projects data onto the first `n.comp` principal components
W estimated un-mixing matrix
A estimated mixing matrix
S estimated source matrix

Author(s)
Maryna Chepeleva

enrichGO

Enrichment analysis of GO-terms based on Ensembl IDs

Description
Enrichment analysis of GO-terms for independent components with Ensembl IDs based on topGO package

Usage

enrichGO(
genesis,
fdr = NULL,
fc = NULL,
ntop = NA,
thr.fdr = 0.05,
estimateVarianceExplained

thr.fc = NA,
db = "BP",
genome = "org.Hs.eg.db",
id = c("entrez", "alias", "ensembl", "symbol", "genename"),
algorithm = "weight",
do.sort = TRUE,
randomFraction = 0,
return.genes = FALSE
)

Arguments

genes character vector with list of ENSEMBL IDs
fdr numeric vector of FDR for each gene
fc numeric vector of logFC for each gene
ntop number of first taken genes
thr.fdr significance threshold for FDR
thr.fc significance threshold for absolute logFC
db name of GO database: "BP","MF","CC"
genome R-package for genome annotation used. For human - 'org.Hs.eg.db'
id id
algorithm algorithm for 'runTest()'
do.sort if TRUE - resulted functions sorted by p-value
randomFraction for testing only, the fraction of the genes to be randomized
return.genes If TRUE include genes in output. Default value is FALSE

Value

list with terms and stats

Author(s)

Petr V. Nazarov

estimateVarianceExplained

Estimate the variance explained by the model

Description

The method estimates the variance explained by the model and by each independent component. We used the coefficient of determination (R2) between the normalized input (X-mean(X)) and (S*M)
Usage

estimateVarianceExplained(cica, X = NULL)

Arguments

cica list compliant to ‘consICA()’ result

X a ‘SummarizedExperiment’ object. Assay used for the model. Will be used if consICA$X is NULL, ignore otherwise.

Value

a list of:

R2 total variance explained by the model

R2_ics Amount of variance explained by the each independent component

Examples

data("samples_data")
cica <- consICA(samples_data, ncomp=15, ntry=10, show.every=0)
var_ic <- estimateVarianceExplained(cica)

getFeatures

Get features from consICA deconvolution result

Description

Extract names of features (rows in ‘X’ and ‘S’ matrices) and their false discovery rates values

Usage

getFeatures(cica, alpha = 0.05, sort = FALSE)

Arguments

cica list compliant to ‘consICA()’ result

alpha value in [0,1] interval. Used to filter features with FDR < ‘alpha’. Default value is 0.05

sort sort features decreasing FDR. Default is FALSE

Value

list of dataframes ‘pos’ for positive and ‘neg’ for negative affecting features with columns:

features names of features

fdr false discovery rate value
getGO

Author(s)

Petr V. Nazarov

Examples

data("samples_data")
# Get deconvolution of X matrix
cica <- consICA(samples_data, ncomp=10, ntry=1, show.every=0)
# Get features names and FDR for each component
features <- getFeatures(cica)
# Positive affecting features for first components are
icl_pos <- features$ic.1=pos

getGO Assigns IC signatures to Gene Ontologies

Description

Assigns extracted independent components to Gene Ontologies and rotate independent components ('S' matrix) to set most significant Gene Ontologies as positive affecting features. Set 'ncores' param for paralleled calculations.

Usage

getGO(
cica,
alpha = 0.05,
genenames = NULL,
genome = "org.Hs.eg.db",
db = c("BP", "CC", "MF"),
ncores = 4,
rotate = TRUE
)

Arguments

cica list compliant to 'consICA()' result
alpha value in [0,1] interval. Used to filter features with FDR < ‘alpha’. Default value is 0.05
genenames alternative names of genes. If NULL we use rownames of ‘S’ matrix. We automatically identify type of gene identifier, you can use Ensembl, Symbol, Entrez, Alias, Genename IDs.
genome R-package for genome annotation used. For human - ‘org.Hs.eg.db’
db name of GO database: "BP","MF","CC"
ncores number of cores for parallel calculation. Default value is 4
rotate rotate components in 'S' and 'M' matrices in 'cica' object to set most significant Gene Ontologies as positive effective features. Default is TRUE
get_score

Create score depending on threshold and paradigm

Description
Create score depending on threshold and paradigm

Usage
get_score(genes, fc, thr.fc, fdr, thr.fdr, ntop)
**get_X_num**

**Arguments**

- **genes**: character vector with list of ENSEBML IDs
- **fc**: numeric vector of logFC for each gene
- **thr.fc**: significance threshold for absolute logFC
- **fdr**: numeric vector of FDR for each gene
- **thr.fdr**: significance threshold for FDR
- **ntop**: number of first taken genes

**Value**

numeric score vector

---

**get_X_num**  
Convert input object as numeric matrix

**Description**

Convert input object as numeric matrix

**Usage**

```r
get_X_num(obj, assay_string = NULL)
```

**Arguments**

- **obj**: input data with features in rows and samples in columns. Could be a ‘SummarizedExperiment’ object, matrix or ‘Seurat’ object. For ‘SummarizedExperiment’ with multiple assays or ‘Seurat’ pass the name with ‘assay_string’ parameter, otherwise the first will be taken. See `SummarizedExperiment-class`
- **assay_string**: name of assay for ‘SummarizedExperiment’ or ‘Seurat’ input object ‘obj’. Default value is NULL

**Value**

matrix
is.consICA  
Is the object is consensus ICA compliant?

Description
Check if the object is a list in the same format as the result of `consICA()`

Usage
is.consICA(cica)

Arguments
cica  list

Value
TRUE or FALSE

Examples
# returns TRUE
is.consICA(list("ncomp" = 2, "nsples" = 2, "nfeatures" = 2,
    "S" = matrix(0,2,2),"M" = matrix(0,2,2)))

---

oneICA  
Runs fastICA

Description
Runs fastICA once and store in a consICA manner

Usage
oneICA(
    X, 
    ncomp = 10,
    filter.thr = NULL,
    reduced = FALSE,
    fun = "logcosh",
    alg.typ = "deflation",
    assay_string = NULL
)
oneICA

Arguments

- **X**: input data with features in rows and samples in columns. Could be a `SummarizedExperiment` object, matrix or `Seurat` object. For `SummarizedExperiment` with multiple assays or `Seurat` pass the name with `assay_string` parameter, otherwise the first will be taken. See `SummarizedExperiment-class`.
- **ncomp**: number of components. Default value is 10.
- **filter.thr**: filter rows in input matrix with max value > `filter.thr`. Default value is NULL.
- **reduced**: If TRUE returns reduced result (no X, see `return`).
- **fun**: the functional form of the G function used in the approximation to neg-entropy in fastICA. Default value is "logcosh".
- **alg.typ**: parameter for fastICA(). if `alg.typ == "deflation"` the components are extracted one at a time. if `alg.typ == "parallel"` the components are extracted simultaneously. Default value is "deflation".
- **assay_string**: name of assay for `SummarizedExperiment` or `Seurat` input object ‘X’. Default value is NULL.

Value

A list with

- **X**: input `SummarizedExperiment` object
- **nsamples, nfeatures**: dimension of X assay
- **S, M**: consensus metagene and weight matrix
- **ncomp**: number of components

Author(s)

Petr V. Nazarov

See Also

- fastICA

Examples

```r
data("samples_data")
res <- oneICA(samples_data)
```
outICA

*Outside part of multiple run Independent Component Analysis*

**Description**

Calculate a common part for consensus Independent Component Analysis (ICA)

**Usage**

```r
outICA(X, n.comp, row.norm = FALSE, verbose = FALSE)
```

**Arguments**

- **X**: matrix with features in rows and samples in columns
- **n.comp**: number of components
- **row.norm**: rows normalization flag. Default value is FALSE
- **verbose**: logic TRUE or FALSE. Use TRUE for print process steps. Default value is FALSE

**Value**

- a list with
  - **X**: input matrix
  - **X1**: interim calculated matrix
  - **K**: pre-whitening matrix that projects data onto the first 'n.comp' principal components

**Author(s)**

Maryna Chepeleva

overlapGO

*Similarity of two gene ontologies lists*

**Description**

Calculate similarity matrix of gene ontologies (GOs) of independent components. The measure could be cosine similarity or Jaccard index (see details)

**Usage**

```r
overlapGO(GO1, GO2, method = c("cosine", "jaccard"), fdr = 0.01)
```
Arguments

- **GO1**: list of GOs for each independent component got from `getGO()`
- **GO2**: list of GOs for each independent component got from `getGO()`
- **method**: can be 'cosine' for non-parametric cosine similarity or 'jaccard' for Jaccard index. See details
- **fdr**: FDR threshold for GOs that would be used in measures. Default value is 0.01

Details

Jaccard index is a measure of the similarity between two sets of data. It calculated as intersection divided by union

\[ J(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

Results are from 0 to 1.

Cosine similarity here is calculated in a non-parametric way: for two vectors of gene ontologies, the space is created as a union of GOs in both vectors. Then, two rank vectors in this space created, most enriched GOs get the biggest rank and GOs from space not included in the GO vector get 0. Cosine similarity is calculated between two scaled rank vectors. Such approach allows to take the order of enriched GO into account. Results are from -1 to 1. Zero means no similarity.

Value

A similarity matrix of cosine or Jaccard values, rows corresponds to independent components in ‘GO1’, columns to independent components in ‘GO2’.

Author(s)

Maryna Chepeleva

Examples

```r
Not run:
data("samples_data")
Calculate ICA (run with ntry=1 for quick test, use more in real analysis)
cica1 <- consICA(samples_data, ncomp=5, ntry=1, show.every=0)
Search enriched gene ontologies
cica1 <- getGO(cica1, db = "BP", ncores = 1)
Calculate ICA and GOs for another dataset
cica2 <- consICA(samples_data[,1:100], ncomp=4, ntry=1, show.every=0)
cica2 <- getGO(cica2, db = "BP", ncores = 1)
Compare two lists of enriched GOs
Jaccard index
jc <- overlapGO(GO1 = cica1GOGOBP, GO2 = cica2GOGOBP,
method = "jaccard", fdr = 0.01)
Cosine similarity
cos_sim <- overlapGO(GO1 = cica1GOGOBP, GO2 = cica2GOGOBP,
method = "cosine", fdr = 0.01)
End(Not run)
```
plotICVarianceExplained

Barplot variance explained by each IC

Description

Method to plot variance explained (R-squared) by the MOFA model for each view and latent factor. As a measure of variance explained for gaussian data we adopt the coefficient of determination (R2). For details on the computation see the help of the estimateVarianceExplained function.

Usage

plotICVarianceExplained(
  cica,
  sort = NULL,
  las = 2,
  title = "Variance explained per IC",
  x.cex = NULL,
  ...
)

Arguments

cica consICA compliant list
sort specify the arrangement as 'asc'/desc'. No sorting if NULL
las orientation value for the axis labels (0 - always parallel to the axis, 1 - always horizontal, 2 - always perpendicular to the axis, 3 - always vertical)
title character string with title of the plot
x.cex specify the size of the tick label numbers/text with a numeric value of length 1
...
extra arguments to be passed to barplot

Value

A numeric vector compliant to 'barplot' output

Examples

data("samples_data")
cica <- consICA(samples_data, ncomp=15, ntry=10, show.every=0)
p <- plotICVarianceExplained(cica, sort = "asc")
samples_data  

Samples of gene expression

Description

A dataset containing the expression of 2454 genes for 472 samples from skin cutaneous melanoma (SKCM) TCGA cohort, their metadata such as age, gender, cancer type etc. and survival time-to-event data

Usage

data(samples_data)

Format

A SummarizedExperiment object:

- **assay** expression matrix with genes by rows and samples by columns
- **colData** data frame with sample metadata (clinical variables)

saveReport  

Save PDF report with analysis of each independent component

Description

Save PDF report with description of each independent component (IC) consists of most affected genes, significant Go terms, survival model for the component, ANOVA analysis for samples characteristics and stability

Usage

```
saveReport(
 cica,
 Genes = NULL,
 Var = NULL,
 surv = NULL,
 genenames = NULL,
 file = sprintf("report_ICA_%d.pdf", ncol(IC$S)),
 main = "Component # %d (stability = %.3f)",
 show.components = seq.int(1, ncol(cica$S))
)
```
Arguments

cica list compliant to ‘consICA()’ result. May include GO list with enrichment analysis appended with ‘getGO()’ function
Genes features list compliant to ‘getFeatures’ output (list of dataframes ‘pos’ for positive and ‘neg’ for negative affecting features with names of features false discovery rates columns). If NULL will generated automatically
Var matrix with samples metadata
surv dataframe with time and event values for each sample
genenames alternative gene names for printing in the report
file report filename, ends with ".pdf"
main title for each list describes the component
show.components which component will be shown

Value
TRUE when successfully generate report

Author(s)
Petr V. Nazarov

Examples

data("samples_data")
cica <- consICA(samples_data, ncomp=40, ntry=10, show.every=0)
if(FALSE){
cica <- getGO(cica, db = "BP")
}
saveReport(cica, Var=samples_data$Var, surv = samples_data$Surv)

Description
Set orientation for independent components as positive in most enriched direction. Use first element of ‘GOs’ for direction establishment.

Usage
setOrientation(cica, verbose = FALSE)

Arguments

cica list compliant to ‘consICA()’ result. Must contain GO, see ‘getGO()’
verbose logic TRUE or FALSE. Use TRUE for print process steps. Default is FALSE
**set bpparam**

---

**Value**

cica object after rotation, with rotated ‘S’, ‘M’ and added ‘compsign’ which is vector defined rotation: ‘S_rot = S * compsign, M_rot = M * compsign, GO_rot = GO * compsign’

**Note**

Implemented inside ‘getGO()’ in version >= 1.1.1.

**Author(s)**

Petr V. Nazarov

**Examples**

```r
Not run:
data("samples_data")
Get deconvolution of X matrix
#cica <- consICA(samples_data, ncomp=10, ntry=1, show.every=0)
cica <- consICA(samples_data, ncomp=2, ntry=1, show.every=0) # timesaving example
GOs <- getGO(cica, db = "BP")
Get already rotated S matrix and Gene Ontologies
cica <- getGO(cica, db = "BP")

Get Gene Ontologies without rotation (actually, you don’t need to do this)
This may used for GO generated with version < 1.1.1. Add GO to cica list.
cica <- getGO(cica, db = "BP", rotate = FALSE)
Rotate components
cica <- setOrientation(cica, verbose = T)
Which components was rotated
which(cica$compsign == -1)
```

`## End(Not run)`

---

**set bpparam**

*Set up for the parallel computing for biocParallel Adapt from ‘FEAST’*

*This function sets up the environment for parallel computing.*

---

**Description**

Set up for the parallel computing for biocParallel Adapt from ‘FEAST’ This function sets up the environment for parallel computing.

**Usage**

```r
set bpparam(ncores = 0, BPPARAM = NULL)
```
sortDataframe

Arguments

ncores number of processors
BPPARAM bpparameter from bpparam

Value

BAPPARAM settings

sortDataframe | Sort dataframe

Description

Sort dataframe, adapted from http://snippets.dzone.com/user/r-fanatic

Usage

sortDataframe(x, key, ...)

Arguments

x a data.frame
key sort by this column
... other parameters for ‘order’ function (e.g. ‘decreasing’)

Value

sorted dataframe

Examples

df <- data.frame("features" = c("f1", "f2", "f3"), fdr = c(0.02, 0.002, 1))
sortDataframe(df, "fdr")
sortFeatures

Sort Genes of consICA object

Description

Sort Genes for independent components

Usage

sortFeatures(Genes)

Arguments

Genes  list compilant to 'getFeatures' output

Value

sorted list

Examples

#features <- list("ic1" = list(
  #   "pos" = data.frame("features" = c("f1", "f2", "f3"),
  #     "fdr" = c(0.0043, 0.4, 0.04)),
  #   "neg" = data.frame("features" = c("f1", "f2", "f3"),
  #     "fdr" = c(0, 0.1, 0.9)))
#sortFeatures(features)

survivalAnalysis

Survival analysis based on significant IC

Description

Cox regression (based on R package 'survival') on the weights of independent components with significant contribution in individual risk model. For more see Nazarov et al. 2019 In addition the function plot Kaplan-Meier diagram.

Usage

survivalAnalysis(cica, surv = NULL, time = NULL, event = NULL, fdr = 0.05)
survivalAnalysis

Arguments
- cica: list compliant to `consICA()` result
- surv: dataframe with time and event values for each sample. Use this parameter or 'time' and 'event'
- time: survival time value for each sample
- event: survival event factor for each sample (TRUE or FALSE)
- fdr: false discovery rate threshold for significant components involved in final model. Default value is 0.05

Value
- a list with
  - cox.model: an object of class `coxph` representing the fit. See `coxph.object` for details
  - hazard.score: hazard score for significant components (fdr < 'fdr' in individual cox model)

Examples
```r
data("samples_data")
Get deconvolution of X matrix
 cica <- consICA(samples_data, ncomp=10, ntry=1, show.every=0)
surv <- survivalAnalysis(cica,
 surv = SummarizedExperiment::colData(samples_data)[,c("time", "event")])
```
Index

* datasets
  samples_data, 17
* internal
  coreICA, 5
  get_score, 10
  get_X_num, 11
  outICA, 14
  set bpparam, 19
  sortFeatures, 21

anovaIC, 2
barplot, 16
consICA, 3
coreICA, 5

enrichGO, 6
estimateVarianceExplained, 7, 16

fastICA, 5, 12, 13
get_score, 10
get_X_num, 11
getFeatures, 8
getGO, 9
is.consICA, 12
oneICA, 12
outICA, 14
overlapGO, 14

plotICVarianceExplained, 16
samples_data, 17
saveReport, 17
set bpparam, 19
setOrientation, 18
sortDataFrame, 20
sortFeatures, 21
survivalAnalysis, 21