Package ‘consensus’

May 29, 2024

Title Cross-platform consensus analysis of genomic measurements via interlaboratory testing method

Version 1.22.0

Date 2020-05-22

Author Tim Peters

Maintainer Tim Peters <t.peters@garvan.org.au>

Description An implementation of the American Society for Testing and Materials (ASTM) Standard E691 for interlaboratory testing procedures, designed for cross-platform genomic measurements. Given three (3) or more genomic platforms or laboratory protocols, this package provides interlaboratory testing procedures giving per-locus comparisons for sensitivity and precision between platforms.

Depends R (>= 3.5), RColorBrewer

Imports matrixStats, gplots, grDevices, methods, graphics, stats, utils

biocViews QualityControl, Regression, DataRepresentation, GeneExpression, Microarray, RNASeq

Suggests knitr, RUnit, markdown, BiocGenerics

License BSD_3_clause + file LICENSE

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/consensus

git_branch RELEASE_3_19

git_last_commit d30e191

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Contents

 consensus-package .. 2
 Agilent ... 2
consensus-package Cross-platform consensus analysis of genomic measurements via interlaboratory testing method

Description
An implementation of the American Society for Testing and Materials (ASTM) Standard E691 for interlaboratory testing procedures, designed for cross-platform genomic measurements. Given three (3) or more genomic platforms or laboratory protocols, this package provides interlaboratory testing procedures giving per-locus comparisons for sensitivity and precision between platforms.

Author(s)
Tim J. Peters <t.peters@garvan.org.au>

Examples

data("TCGA")
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNA-Seq"),
data=list(U133A, Huex, Agilent, RNASeq))
fit <- fitConsensus(tcga_mm)

Agilent Agilent microarray gene expression data

Description
Gene expression data from 27 Glioblastoma Multiforme (GBM) patients measured on a custom Agilent Gene Expression Microarray.

Usage
data("TCGA")
Format

Numeric matrix.

Source

References

Examples

```r
data("TCGA")
```

consensus-internal

Internal consensus objects and functions

ConsensusFit-class

Row-linear fit from multiple platforms/conditions - class

Description

An S4 class that stores parameter value output from `fitConsensus`.

Slots

This class has eight slots, each containing parameters from the row-linear fit:

- **a_i**: Platform-wise average (intercepts).
- **b_i**: Platform-wise sensitivity (slopes).
- **d_i**: Platform-wise precision (residual mean squares). Note that higher values correspond to lower precision.
- **V_a**: Variance of a_i. High values indicate high discordance in dynamic range.
- **V_b**: Variance of b_i. High values indicate high discordance in sensitivity.
- **V_d**: Averaged precision across platforms.
fitConsensus

z_0: Point of approximate concurrence for all regression lines. Only applicable when a_i and b_i are highly correlated. See Equations 13.16 and 13.39 of Mandel (2012).

$V_{\delta}\ell t$: Residual variance about the line when b_i is regressed against a_i. Lower values indicate a higher degree of concurrence, assuming that a_i and b_i are highly correlated. See Equation 13.36 of Mandel (2012).

Methods

ConsensusFit objects have a `show` method that describes the dimensions of the data, in the form: “ConsensusFit object with i platforms/conditions and k measured loci”.

Author(s)

Tim Peters <t.peters@garvan.org.au>

References

See Also

`fitConsensus`: outputs ConsensusFit objects.

fitConsensus
Fit row-linear models to all loci

Description

The main function of this package. Fits a number of row-linear models from a `MultiMeasure` object, one for each matching row of the data matrices contained within it. Outputs a ConsensusFit object containing per-platform, per locus consensus values for average, sensitivity and precision.

Usage

```
fitConsensus(multimeas)
```

Arguments

- `multimeas`
 An object of class `MultiMeasure`.
Details

For each locus, a row-linear model (Mandel 1994) is fit of the form

\[Z_{ij} = a_i + b_i(x_j - \bar{x}) + d_{ij} \]

where \(Z_{ij} \) is a matrix of measurements at the same genomic locus \(k \), the row index \(i = 1, \ldots, p \) labels the platform or condition (microarray, library prep method for sequencing assay etc.) used and the column index \(j = 1, \ldots, n \) labels the biological samples that are interrogated at that locus on each of the \(p \) platforms. Hence \(a_i \) is the intercept (row averages of \(Z_{ij} \)), \(b_i \) the slope of the regression line (sensitivity) and \(d_i = (n - 2)^{-1} \sum_j d_{ij}^2 \) the residual mean square (precision) about the \(i \)th fitted line, noting that higher \(d_i \) corresponds to lower precision. Values of \(a_i, b_i \) and \(d_i \) can be found in the slots of the ConsensusFit object.

For MultiMeasure objects with 10,000 loci or more, a progress message is printed for every 10,000 loci fitted.

Value

A ConsensusFit object with slots containing various parameter values from the row-linear fits. More information can be found in the linked class description. Output from this function can then be passed to various plotting functions for data exploration.

Author(s)

Tim Peters <t.peters@garvan.org.au>

References

Examples

data("TCGA")
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNA-Seq"),
data=list(U133A, Huex, Agilent, RNASeq))
fit <- fitConsensus(tcga_mm)
Affymetrix Huex gene expression data

Description

Gene expression data from 27 Glioblastoma Multiforme (GBM) patients measured on the Affymetrix HuEx GeneChip.

Usage

data("TCGA")

Format

Numeric matrix.

Source

References

Examples

data("TCGA")

MultiMeasure Constructor

Description

Creates a MultiMeasure object from a set of 3 or more numeric matrices, in preparation to pass to fitConsensus.

Usage

MultiMeasure(names=NA_character_, data=list())
MultiMeasure-class

Arguments

names character vector contains the names of each data type (e.g. RNA-Seq, Agilent etc.). Must be the same length as data.

data list of numeric matrices of identical dim, rownames and colnames where each matrix contains the measurements from the platform/condition described in names. Rows of each matrix correspond to genomic features and columns to samples. Must be the same length as, and have order correspond to, names.

Details

A MultiMeasure contains a list of numeric matrices with identical dimensions and matching row names and column names, to which multiple row-linear models can be fit using fitConsensus. Users should pass a vector of names describing the platform/conditions the genomic measurements are made under, and a corresponding list of matrices to the data argument. A series of validity checks will be made on data correctness and a helpful error message will be returned if the structure does not conform to the above description.

Value

a MultiMeasure object

Author(s)

Tim Peters <t.peters@garvan.org.au>

See Also

MultiMeasure-class

Examples

data(TCGA)
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNA-Seq"),
data=list(U133A, Huex, Agilent, RNASeq))

MultiMeasure-class

Multi-platform genomic measurements across the same samples - class

Description

An S4 class that stores normalised matched genomic data from multiple platforms and/or laboratory conditions (e.g. from microarrays, RNA-Seq and other sequencing assays).
List Components

This class has two slots, names and data.

names: character vector contains the names of each data type (e.g. RNA-Seq, Agilent etc.). Must be the same length as data.

data: list of numeric matrices of identical dim, rownames and colnames where each matrix contains the measurements from the platform/condition described in names. Rows of each matrix correspond to genomic features and columns to samples. Must be the same length as names.

Methods

MultiMeasure objects have a show method that describes the dimensions of the data, in the form:
MultiMeasure object with i platforms/conditions, j samples and k measured loci.

Author(s)

Tim Peters <t.peters@garvan.org.au>

See Also

MultiMeasure constructs MultiMeasure objects.

plotMarginals

Density plots of per-platform marginal distributions

Description

Plots a series of marginal densities for each platform for either (a) average, (b) sensitivity or (c) precision.

Usage

plotMarginals(consfit,
param=c("average", "sensitivity", "precision"),
pal=palette(), xlim=NULL, ...)

Arguments

consfit An object of class ConsensusFit.
param Whether average (a_i), sensitivity (b_i) or precision (d_i) is plotted.
pal Colour palette. Length must be at least the number of platforms/conditions.
xlim Range of values to be plotted. If NULL then the entire density is plotted.
... Extra arguments passed to legend().

Details

Precision is plotted on the log scale.
plotMostDiscordant

Value

A plot to the current device.

Author(s)

Tim Peters <t.peters@garvan.org.au>

Examples

```r
data("TCGA")
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNASeq"), data=list(U133A, Huex, Agilent, RNASeq))
fit <- fitConsensus(tcga_mm)
plotMarginals(fit, "sensitivity", brewer.pal(n = 4, name = "Dark2"))
```

plotMostDiscordant
Plot a heatmap showing a selection of loci

Description

Plots a heatmap of a specified number of loci showing per-platform, values for either (a) average (a_i), (b) sensitivity (b_i) or (c) precision (d_i) for the most discordant for each. Discordance is ranked by $V(a_i)$, $V(b_i)$ or $\frac{\Sigma(d_i)}{p-1}$ where p = the number of platforms/conditions.

Usage

```r
plotMostDiscordant(consfit, param=c("average", "sensitivity", "precision"), numloci=20, pal=colorRampPalette(brewer.pal(9, "RdYlGn")))
```

Arguments

- **consfit**: An object of class ConsensusFit.
- **param**: Whether average (a_i), sensitivity (b_i) or precision (d_i) is plotted.
- **numloci**: The number of loci to plot.
- **pal**: Colour palette. Length must be at least the number of platforms/conditions.

Value

A plot to the current device.

Author(s)

Tim Peters <t.peters@garvan.org.au>
Examples

```r
data("TCGA")
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNASeq"),
data=list(U133A, Huex, Agilent, RNASeq))
fit <- fitConsensus(tcga_mm)
plotMostDiscordant(fit, "sensitivity", 25)
```

plotOneFit

Plot a single row-linear fit from a genomic locus

Description

Plots a series of regressions of platform measurements against their consensus mean.

Usage

```r
plotOneFit(multimeas, idx, pal=palette(), ...)
```

Arguments

- `multimeas`: An object of class MultiMeasure.
- `idx`: Row index of the set of matrices in `multimeas`.
- `pal`: Color palette. Length must be at least the length of `multimeas@data`.
- `...`: Extra arguments passed to `legend()`.

Details

Visualises a row-linear fit explicitly in the measurement space. Steeper (positive) slopes mean greater sensitivity, and greater scatter around the regression line indicates lower precision.

Value

A plot to the current device.

Author(s)

Tim Peters <t.peters@garvan.org.au>

Examples

```r
data("TCGA")
tcga_mm <- MultiMeasure(names=c("U133A", "Huex", "Agilent", "RNASeq"),
data=list(U133A, Huex, Agilent, RNASeq))
plotOneFit(tcga_mm, "TP53", brewer.pal(n = 4, name = "Dark2"))
```
RNASeq

RNA-Seq gene expression data

Description
Limma-voom normalised gene expression data from 27 Glioblastoma Multiforme (GBM) patients measured via RNA-Seq.

Usage
```
data("TCGA")
```

Format
Numeric matrix.

Source

References

Examples
```
data("TCGA")
```

U133A

Affymetrix U133A gene expression data

Description

Usage
```
data("TCGA")
```

Format
Numeric matrix.
Source
https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/Broad202.txt

References

Examples
data("TCGA")
Index

* classes
 ConsensusFit-class, 3
 MultiMeasure-class, 7

* datasets
 Agilent, 2
 Huex, 6
 RNASeq, 11
 U133A, 11

* internal
 consensus-internal, 3

Agilent, 2
checkMM (consensus-internal), 3
consensus (consensus-package), 2
consensus-internal, 3
consensus-package, 2
ConsensusFit-class, 3
fitConsensus, 3, 4, 4
fitMandel (consensus-internal), 3
getBlock (consensus-internal), 3

Huex, 6
MultiMeasure, 4, 5, 6, 7, 8
MultiMeasure-class, 7

plotMarginals, 8
plotMostDiscordant, 9
plotOneFit, 10

RNASeq, 11

U133A, 11