Package ‘corral’

May 15, 2024

Title Correspondence Analysis for Single Cell Data
Version 1.14.0
Date 2023-02-09

Description Correspondence analysis (CA) is a matrix factorization method, and is similar to principal components analysis (PCA). Whereas PCA is designed for application to continuous, approximately normally distributed data, CA is appropriate for non-negative, count-based data that are in the same additive scale. The corral package implements CA for dimensionality reduction of a single matrix of single-cell data, as well as a multi-table adaptation of CA that leverages data-optimized scaling to align data generated from different sequencing platforms by projecting into a shared latent space. corral utilizes sparse matrices and a fast implementation of SVD, and can be called directly on Bioconductor objects (e.g., SingleCellExperiment) for easy pipeline integration. The package also includes additional options, including variations of CA to address overdispersion in count data (e.g., Freeman-Tukey chi-squared residual), as well as the option to apply CA-style processing to continuous data (e.g., proteomic TOF intensities) with the Hellinger distance adaptation of CA.

Imports ggplot2, ggthemes, grDevices, gridExtra, irlba, Matrix, methods, MultiAssayExperiment, pals, reshape2, SingleCellExperiment, SummarizedExperiment, transport

Suggests ade4, BiocStyle, CellBench, DuoClustering2018, knitr, rmarkdown, scater, testthat

License GPL-2

RoxygenNote 7.1.2

VignetteBuilder knitr

biocViews BatchEffect, DimensionReduction, GeneExpression, Preprocessing, PrincipalComponent, Sequencing, SingleCell, Software, Visualization

Encoding UTF-8

git_url https://git.bioconductor.org/packages/corral

git_branch RELEASE_3_19

git_last_commit e87c56e
add_embeddings2scelist

Add embeddings to list of SCEs

Description

Add embeddings to list of SCEs

Usage

add_embeddings2scelist(scelist, embeddings, slotname = "corralm")
all_are

Arguments

- `scelist` list of `SingleCellExperiments`; to which the corresponding embeddings should be added
- `embeddings` matrix; the embeddings outputted from a dimension reduction, e.g. `corralm`. Rows in this table correspond to columns in the SCEs in `scelist` (if all the SCEs were column-bound), and row indices should correspond to cells.
- `slotname` character; name of the slot for the reduced dim embedding; defaults to `corral`

Value

list of `SingleCellExperiments` with respective embeddings stored in them

Examples

```r
library(DuoClustering2018)
sce <- sce_full_Zhengmix4eq()
sclist <- list(sce,sce)
embeddings <- matrix(sample(seq(0,20,1),dim(sce)[2]*6,replace = TRUE),nrow = dim(sce)[2]*2)
sclist <- add_embeddings2scelist(sclist, embeddings)
```

all_are

Description

Checks if all elements of a list or List are of a (single) particular type `typechar`

Usage

```r
all_are(inplist, typechar)
```

Arguments

- `inplist` list or List to be checked
- `typechar` char of the type to check for

Value

boolean, for whether the elements of `inplist` are all `typechar`

Examples

```r
x <- list(1,2)
all_are(x,'numeric')
all_are(x,'char')

y <- list(1,2,'c')
all_are(y,'numeric')
all_are(y,'char')
```
Description

Generate biplot for corral object

Usage

biplot_corral(
 corral_obj,
 color_vec,
 text_vec,
 feat_name = "(genes)",
 nfeat = 20,
 xpc = 1,
 plot_title = "Biplot",
 text_size = 2,
 xjitter = 0.005,
 yjitter = 0.005,
 coords = c("svd", "PC", "SC")
)

Arguments

corral_obj list outputted by the corral function
color_vec vector; length should correspond to the number of rows in v of corral_obj, and each element of the vector classifies that cell (entry) in the embedding to that particular class, which will be colored the same. (e.g., cell type)
text_vec vector; length should correspond to the number of rows in u of corral_obj, and each element of the vector is the label for the respective feature that would show on the biplot.
feat_name char; the label will in the legend. Defaults to (genes).
nfeat int; the number of features to include. The function will first order them by distance from origin in the selected dimensions, then select the top n to be displayed.
xpc int; which PC to put on the x-axis (defaults to 1)
plot_title char; title of plot (defaults to *Biplot*)
text_size numeric; size of the feature labels given in text_vec (defaults to 2; for ggplot2)
xjitter numeric; the amount of jitter for the text labels in x direction (defaults to .005; for ggplot2)
yjitter numeric; the amount of jitter for the text labels in y direction (defaults to .005; for ggplot2)
coords char; indicator for sets of coordinates to use. svd plots the left and right singular vectors as outputted by SVD (u and v), which PC and SC use the principal and standard coordinates, respectively (defaults to svd)
Value

ggplot2 object of the biplot

Examples

```r
library(DuoClustering2018)
library(SingleCellExperiment)
zm4eq.sce <- sce_full_Zhengmix4eq()
zm4eq.countmat <- counts(zm4eq.sce)
zm4eq.corral_obj <- corral(zm4eq.countmat)
gene_names <- rowData(zm4eq.sce)$symbol
cvec <- zm4eq.sce$phenoid

biplot_corral(corral_obj = zm4eq.corral_obj, color_vec = ctvec, text_vec = gene_names)
```

compsvd

compsvd: Compute Singular Value Decomposition (SVD)

Description

Computes SVD.

Usage

```r
compsvd(mat, method = c("irl", "svd"), ncomp = 30, ...)
```

Arguments

- **mat**: matrix, pre-processed input; can be sparse or full (pre-processing can be performed using `corral_preproc` from this package)
- **method**: character, the algorithm to be used for svd. Default is irl. Currently supports 'irl' for irlba::irlba or 'svd' for stats::svd
- **ncomp**: numeric, number of components; Default is 30
- **...**: (additional arguments for methods)

Value

SVD result - a list with the following elements:

- **d**: a vector of the diagonal singular values of the input mat. Note that using svd will result in the full set of singular values, while irlba will only compute the first ncomp singular values.
- **u**: a matrix of with the left singular vectors of mat in the columns
- **v**: a matrix of with the right singular vectors of mat in the columns
- **eigsum**: sum of the eigenvalues, for calculating percent variance explained

Examples

```r
mat <- matrix(sample(0:10, 2500, replace=TRUE), ncol=50)
compsvd(mat, method = 'irl', ncomp = 5)
```
Multi-table correspondence analysis (list of matrices)

Description

This multi-table adaptation of correspondence analysis applies the same scaling technique and enables data alignment by finding a set of embeddings for each dataset within shared latent space.

Usage

corralm_matlist(
 matlist,
 method = c("irl", "svd"),
 ncomp = 30,
 rtype = c("indexed", "standardized", "hellinger", "freemantukey", "pearson"),
 vst_mth = c("none", "sqrt", "freemantukey", "anscombe"),
 rw_contrib = NULL,
 ...
)

corralm_sce(
 sce,
 splitby,
 method = c("irl", "svd"),
 ncomp = 30,
 whichmat = "counts",
 fullout = FALSE,
 rw_contrib = NULL,
 ...
)

corralm(inp, whichmat = "counts", fullout = FALSE, ...)

S3 method for class 'corralm'
print(x, ...)

Arguments

- **matlist** (for `corralm_matlist`) list of input matrices; input matrices should be counts (raw or log). Matrices should be aligned row-wise by common features (either by sample or by gene).
- **method** character, the algorithm to be used for svd. Default is irl. Currently supports 'irl' for irlba::irlba or 'svd' for stats::svd.
- **ncomp** numeric, number of components; Default is 30
- **rtype** character indicating what type of residual should be computed; options are "indexed", "standardized" (or "pearson" is equivalent), "freemantukey",...
and "'hellinger'"; defaults to "'standardized'" for corral and "'indexed'" for corralm. "'indexed'", "'standardized'", and "'freemantukey'" compute the respective chi-squared residuals and are appropriate for count data. The "'hellinger'" option is appropriate for continuous data.

vst_mth character indicating whether a variance-stabilizing transform should be applied prior to calculating chi-squared residuals; defaults to "'none'".

rw_contrib numeric vector, same length as the matlist. Indicates the weight that each dataset should contribute to the row weights. When set to NULL the row weights are not combined and each matrix is scaled independently (i.e., using their observed row weights, respectively). When set to a vector of all the same values, this is equivalent to taking the mean. Another option is to the number of observations per matrix to create a weighted mean. Regardless of input scale, row weights for each table must sum to 1 and thus are scaled. When this option is specified (i.e., not 'NULL'), the 'rtype' argument will automatically be set to 'standardized', and whatever argument is given will be ignored.

... (additional arguments for methods)

sce (for corralm_sce) SingleCellExperiment; containing the data to be integrated. Default is to use the counts, and to include all of the data in the integration. These can be changed by passing additional arguments. See sce2matlist function documentation for list of available parameters.

splitby character; name of the attribute from colData that should be used to separate the SCE.

whichmat char, when using SingleCellExperiment or other SummarizedExperiment, can be specified. default is 'counts'.

fullout boolean; whether the function will return the full corralm output as a list, or a SingleCellExperiment; defaults to SingleCellExperiment (FALSE). To get back the corralm_matlist-style output, set this to TRUE.

inp list of matrices (any type), a SingleCellExperiment, list of SingleCellExperiments, list of SummarizedExperiments, or MultiAssayExperiment. If using SingleCellExperiment or SummarizedExperiment, then include the whichmat argument to specify which slot to use (defaults to counts). Additionally, if it is one SingleCellExperiment, then it is also necessary to include the splitby argument to specify the batches. For a MultiAssayExperiment, it will take the intersect of the features across all the assays, and use those to match the matrices; to use a different subset, select desired subsets then call corral

x (print method) corralm object; the list output from corralm_matlist

Details

corralm is a wrapper for corralm_matlist and corralm_sce, and can be called on any of the acceptable input types (see inp below).

Value

When run on a list of matrices, a list with the correspondence analysis matrix decomposition result, with indices corresponding to the concatenated matrices (in order of the list):
corral_mat

d a vector of the diagonal singular values of the input mat (from SVD output)
u a matrix of with the left singular vectors of mat in the columns (from SVD output)
v a matrix of with the right singular vectors of mat in the columns. When cells are in the columns, these are the cell embeddings. (from SVD output)
eigsum sum of the eigenvalues for calculating percent variance explained

For SingleCellExperiment input, returns the SCE with embeddings in the reducedDim slot 'corralm'
For a list of SingleCellExperiment, returns a list of the SCEs with the embeddings in the respective reducedDim slot 'corralm'

Examples

```
listofmats <- list(matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 25),
                    matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 25))
result <- corral_matlist(listofmats)
library(DuoClustering2018)
library(SingleCellExperiment)
sce <- sce_full_Zhengmix4eq()[1:100,sample(1:3500,100,replace = FALSE)]
colData(sce)$Method <- matrix(sample(c('Method1','Method2'),100,replace = TRUE))
result <- corral_sce(sce, splitby = 'Method')
```

```
listofmats <- list(matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 20),
                    matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 20))
corral(listofmats)
library(DuoClustering2018)
library(SingleCellExperiment)
sce <- sce_full_Zhengmix4eq()[seq(1,100),sample(seq(1,3500),100,replace = FALSE)]
colData(sce)$Method <- matrix(sample(c('Method1','Method2'),100,replace = TRUE))
result <- corral(sce, splitby = 'Method')
```

default print method for corral objects

```
# corral_mat
```

corral: Correspondence analysis on a single matrix

description

corral can be used for dimension reduction to find a set of low-dimensional embeddings for a count matrix.
corral is a wrapper for corral_mat and corral_sce, and can be called on any of the acceptable input types.
corral_mat

Usage

corral_mat(
 inp,
 method = c("irl", "svd"),
 ncomp = 30,
 row.w = NULL,
 col.w = NULL,
 rtype = c("standardized", "indexed", "hellinger", "freemantukey", "pearson"),
 vst.mth = c("none", "sqrt", "freemantukey", "anscombe"),
 ...
)

corral_sce(
 inp,
 method = c("irl", "svd"),
 ncomp = 30,
 whichmat = "counts",
 fullout = FALSE,
 subset_row = NULL,
 ...
)

corral(inp, ...)

S3 method for class 'corral'
print(x, ...)

Arguments

inp | matrix (any type), SingleCellExperiment, or SummarizedExperiment. If using SingleCellExperiment or SummarizedExperiment, then include the whichmat argument to specify which slot to use (defaults to counts).

method | character, the algorithm to be used for svd. Default is irl. Currently supports 'irl' for irlba::irlba or 'svd' for stats::svd

ncomp | numeric, number of components; Default is 30

row.w | numeric vector; the row weights to use in chi-squared scaling. Defaults to 'NULL', in which case row weights are computed from the input matrix.

col.w | numeric vector; the column weights to use in chi-squared scaling. For instance, size factors could be given here. Defaults to 'NULL', in which case column weights are computed from the input matrix.

rtype | character indicating what type of residual should be computed; options are "indexed", "standardized" (or "pearson" is equivalent), "freemantukey", and "hellinger"; defaults to "standardized" for corral and "indexed" for corralm. "indexed", "standardized", and "freemantukey" compute the respective chi-squared residuals and are appropriate for count data. The "hellinger" option is appropriate for continuous data.
corral_mat

vst_mth character indicating whether a variance-stabilizing transform should be applied prior to calculating chi-squared residuals; defaults to "none";

... (additional arguments for methods)

whichmat character; defaults to counts, can also use logcounts or normcounts if stored in the sce object

fullout boolean; whether the function will return the full corral output as a list, or a SingleCellExperiment; defaults to SingleCellExperiment (FALSE). To get back the corral_mat-style output, set this to TRUE.

subset_row numeric, character, or boolean vector; the rows to include in corral, as indices (numeric), rownames (character), or with booleans (same length as the number of rows in the matrix). If this parameter is NULL, then all rows will be used.

x (print method) corral object; the list output from corral_mat

Value

When run on a matrix, a list with the correspondence analysis matrix decomposition result:

d a vector of the diagonal singular values of the input mat (from SVD output)

u a matrix of with the left singular vectors of mat in the columns (from SVD output)

v a matrix of with the right singular vectors of mat in the columns. When cells are in the columns, these are the cell embeddings. (from SVD output)

eigsum sum of the eigenvalues for calculating percent variance explained

SCu and SCv standard coordinates, left and right, respectively

PCu and PCv principal coordinates, left and right, respectively

When run on a SingleCellExperiment, returns a SCE with the embeddings (PCv from the full corral output) in the reducedDim slot corral (default). Also can return the same output as corral_mat when fullout is set to TRUE.

For matrix and SummarizedExperiment input, returns list with the correspondence analysis matrix decomposition result (u,v,d are the raw svd output; SCu and SCv are the standard coordinates; PCu and PCv are the principal coordinates)

For SummarizedExperiment input, returns the same as for a matrix.

Examples

mat <- matrix(sample(0:10, 5000, replace=TRUE), ncol=50)
result <- corral_mat(mat)
result <- corral_mat(mat, method = 'irl', ncomp = 5)

library(DuoClustering2018)
sce <- sce_full_Zhengmix4eq()[1:100,1:100]
result_1 <- corral_sce(sce)
result_2 <- corral_sce(sce, method = 'svd')
result_3 <- corral_sce(sce, method = 'irl', ncomp = 30, whichmat = 'logcounts')
library(DuoClustering2018)
sce <- sce_full_Zhengmix4eq()[1:100,1:100]
corral_sce <- corral(sce, whichmat = 'counts')

mat <- matrix(sample(0:10, 500, replace=TRUE), ncol=25)
corral_mat <- corral(mat, ncomp=5)

mat <- matrix(sample(1:100, 10000, replace = TRUE), ncol = 100)
corral(mat)

corral_preproc

Preprocess a matrix for SVD to perform Correspondence Analysis (CA)

Description

This function performs the row and column scaling pre-processing operations, prior to SVD, for the corral methods. See corral for single matrix correspondence analysis and corralm for multi-matrix correspondence analysis.

Usage

corral_preproc(
 inp,
 rtype = c("standardized", "indexed", "hellinger", "freemantukey", "pearson"),
 vst_mth = c("none", "sqrt", "freemantukey", "anscombe"),
 powdef_alpha = NULL,
 row.w = NULL,
 col.w = NULL,
 smooth = FALSE,
 ...
)

Arguments

inp matrix, numeric, counts or logcounts; can be sparse Matrix or matrix
rtype character indicating what type of residual should be computed; options are "indexed", "standardized" (or "pearson" is equivalent), "freemantukey", and "hellinger"; defaults to "standardized" for corral and "indexed" for corralm. "indexed", "standardized", and "freemantukey" compute the respective chi-squared residuals and are appropriate for count data. The "hellinger" option is appropriate for continuous data.
vst_mth character indicating whether a variance-stabilizing transform should be applied prior to calculating chi-squared residuals; defaults to "none"
powdef_alpha numeric for the power that should be applied if using power deflation. Must be in (0,1), and if provided a number outside this range, will be ignored. Defaults to 'NULL' which does not perform this step.
row.w numeric vector; Default is NULL, to compute row.w based on inp. Use this parameter to replace computed row weights with custom row weights

col.w numeric vector; Default is NULL, to compute col.w based on inp. Use this parameter to replace computed column weights with custom column weights

smooth logical; Whether or not to perform the additional smoothing step with 'trim_matdist'. Default is FALSE. Incompatible with 'powdef_alpha', so that parameter takes precedence over this one.

... (additional arguments for methods)

Value

matrix, processed for input to compsvd to finish CA routine

Examples

mat <- matrix(sample(0:10, 500, replace=TRUE), ncol=25)
mat_corral <- corral_preproc(mat)
coral_output <- compsvd(mat_corral, ncomp = 5)

= earthmover_dist

Description

i.e., wasserstein distance with L1 (p_param = 1); can also use other penalties > 1 (Not technically earthmover distance if using other p_param values)

Usage

earthmover_dist(batch1, batch2, whichdim = 1, numbins = 100, p_param = 1)

Arguments

batch1 matrix; subset of observations from an embedding corresponding to some attribute (e.g., batch or phenotype)

batch2 matrix; subset of observations from an embedding corresponding to some attribute (e.g., batch or phenotype)

whichdim int; which dimension (i.e., column) from the embeddings is used. defaults on first

numbins int; number of bins for the probability discretization (defaults to 100)

p_param int; penalty parameter for general Wasserstein distance. Defaults to 1, which corresponds to earthmover.

Value

num; the distance
get_pct_var_exp_svd

Examples

To compare distributions of reduced dimension values to assess similarity,
e.g. as a metric for batch integration
embedding <- matrix(sample(x = seq(0,10,.1),1000, replace = TRUE),ncol = 5)
batch <- matrix(sample(c(1,2),200, replace = TRUE))
earthmover_dist(embedding[which(batch == 1),],embedding[which(batch == 2),])

get_pct_var_exp_svd

Compute percent of variance explained

Description

Compute percent of variance explained

Usage

get_pct_var_exp_svd(thissvd, preproc_mat = thissvd$d)

Arguments

thissvd list outputted from an svd function (svd, irlba; can also take output from corral_mat and corralm_matlist)

preproc_mat matrix of pre-processed values (optional) - important to include if the svd is only partial as this is used to compute the sum of eigenvalues

Value

vector of percent variance explained values, indexed by PC

Examples

mat <- matrix(sample(seq(0,20,1),100,replace = TRUE),nrow = 10)
my_svd <- svd(mat)
get_pct_var_exp_svd(my_svd) # this works if my_svd is a full svd
my_irl <- irlba::irlba(mat,nv = 2)
get_pct_var_exp_svd(my_irl, preproc_mat = mat) # ... otherwise use this
get_weights

Description
Computes row weights and column weights

Usage
get_weights(inp_mat)

Arguments
inp_mat matrix for which weights should be calculated (sparse or full)

Value
list of 2 elements: 'row.w' and 'col.w' contain the row and column weights respectively

Examples
mat <- matrix(sample(seq(0,20,1),100,replace = TRUE),nrow = 10)
ws <- get_weights(mat)

list2mat

Description
List to Matrix

Usage
list2mat(matlist, direction = c("c", "r")[1])

Arguments
matlist list of matrices to concatenate
direction character, r or c, to indicate whether should be row-wise (i.e., rbind to match on columns) or column-wise (i.e., cbind to match on rows). Defaults to columnwise (matching on rows) to match convention of SingleCellExperiments

Value
matrix
Examples

```r
listofmats <- list(matrix(sample(seq(0,20,1),100,replace = TRUE),nrow = 10),
                     matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 10))
newmat <- list2mat(listofmats) # to "cbind" them
listofmats_t <- lapply(listofmats,t)
newmat_t <- list2mat(listofmats_t, 'r') # to "rbind" them
```

na2zero

Set na to 0

Description

Set na to 0

Usage

```r
na2zero(x)
```

Arguments

- `x`: matrix of values for which na values should be changed to 0

Value

matrix, where na values are set to 0

Examples

```r
x <- matrix(sample(0:10, 5000, replace = TRUE), ncol = 25)
x[sample(1:5000, 10)] <- NA
na2zero(x)
```

obs2probs

Observations -> discrete probabilities

Description

usage: `embedding <- matrix(sample(x = seq(0,10,.1),200, replace = TRUE)) disc_probs <- obs2probs(embedding)`

Usage

```r
obs2probs(obs, numbins = 100, startbin = min(obs), endbin = max(obs) + 1e-05)
```
pairwise_rv

Arguments

- obs: vector of numeric, with the observations
- numbins: int, the number of evenly sized bins to discretize the observations to
- startbin: numeric, the starting value for the smallest bin. Defaults to taking the minimum of obs
- endbin: numeric, the ending value for the largest bin. Defaults to taking the maximum of obs (plus a tiny decimal to ensure full range of obs is captured)

Value

dataframe, results has rows corresponding to each bin with columns for probability (‘prob’), cumulative frequency (‘cumfreq’), and frequency (‘freq’) of observations falling into that bin. The ‘bins’ column indicates the end of the bin (start is the preceding column)

Description

Pairwise rv coefficient

Usage

pairwise_rv(matlist)

Arguments

- matlist: list of matrices (or matrix-like; see rv function) for which to compute pairwise RV coefficients

Value

matrix of the pairwise coefficients

Examples

a <- matrix(sample(1:10,100,TRUE), nrow = 10)
b <- matrix(sample(1:10,50,TRUE), nrow = 5)c <- matrix(sample(1:10,20,TRUE), nrow = 2)
matlist <- list(a,b,c)
pairwise_rv(matlist)
pairwise_rv(lapply(matlist, t))
plot_embedding

Plot selected PCs from an embedding

Description

Plot selected PCs from an embedding

Usage

plot_embedding(
 embedding,
 xpc = 1,
 ypc = xpc + 1,
 plot_title = paste0("Dim", xpc, " by Dim", ypc),
 color_vec = NULL,
 color_title = NULL,
 ellipse_vec = NULL,
 facet_vec = NULL,
 ptsize = 0.8,
 saveplot = FALSE,
 plotfn = paste(plot_title, xpc, sep = "_"),
 showplot = TRUE,
 returngg = FALSE,
 color_pal_vec = NULL,
 dimname = "Dim"
)

Arguments

embedding matrix or other tabular format where columns correspond to PCs and rows correspond to cells (entries). corral and corralm objects are also accepted.

xpc int; which PC to put on the x-axis (defaults to 1)

ypc int; which PC to put on the y-axis (defaults to the one after xpc)

plot_title char; title of plot (defaults to titling based on xpc and ypc)

color_vec vector; length should correspond to the number of rows in embedding, and each element of the vector classifies that cell (entry) in the embedding to that particular class, which will be colored the same. (e.g., this could be indicating which batch each cell is from)

color_title char; what attribute the colors represent

ellipse_vec vector; length should correspond to the number of rows in embedding, and each element of the vector classifies that cell (entry) in the embedding to that particular class, and elements of the same class will be circled in an ellipse. (e.g., this could be indicating the cell type or cell line; works best for attributes intended to be compact)
plot_embedding_sce

facet_vec
vector; length should correspond to the number of rows in embedding, and each element of the vector classifies that cell (entry) in the embedding to that particular class. Plot will be faceted by this attribute.

ptsize
numeric; the size of the points as passed to `geom_point()`. Defaults to 0.8.

saveplot
boolean; whether or not to save the plot, defaults `FALSE`

plotfn
char; what the filename is to be called. (defaults to making a name based on `plot_title` and `xpc`)

showplot
boolean; whether or not to show the plot, defaults `TRUE`

returngg
boolean; whether or not to return a `ggplot2` object, defaults `FALSE`

color_pal_vec
char; hex codes for the color palette to be used. Default is to use the `ggthemes` few for plots with less than 9 colors, and to use /"stretch" pals polychrome if more colors are needed.

dimname
char; the name of the dimensions. defaults to "Dim"

Value
default none; options to display plot (showplot), save plot (saveplot), and/or return `ggplot2` object (returngg)

Examples

```r
listofmats <- list(matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 20),
                    matrix(sample(seq(0,20,1),1000,replace = TRUE),nrow = 20))
corralm_obj <- corralm(listofmats, ncomp = 5)
embed_mat <- corralm_obj$v
cell_type_vec <- sample(c('type1','type2','type3'),100,replace = TRUE)
plot_embedding(embedding = embed_mat,
               xpc = 1,
               plot_title = 'corralm plot',
               color_vec = cell_type_vec,
               color_title = 'cell type',
               saveplot = FALSE)
```

or, call directly on the corralm object
plot_embedding(corralm_obj)

plot_embedding_sce

Plot selected PCs from an embedding saved in a SingleCellExperiment object

Description

Plot selected PCs from an embedding saved in a SingleCellExperiment object
plot_embedding_sce

Usage

plot_embedding_sce(
 sce,
 which_embedding,
 color_attr = NULL,
 color_title = color_attr,
 ellipse_attr = NULL,
 facet_attr = NULL,
 ...
)

Arguments

sce SingleCellExperiment object; contains the embedding within the reducedDim slot
which_embedding character; for the embedding to plot
color_attr character; name of the attribute within colData to use for assigning colors (in lieu of color_vec in the plot_embedding function)
color_title character; title to use for colors legend, defaults to the same as color_attr
ellipse_attr character; name of the attribute within colData to use for drawing ellipse(s) (in lieu of ellipse_vec in the plot_embedding function)
facet_attr character; name of the attribute within colData to use for faceting (in lieu of facet_vec in the plot_embedding function)
... additional optional arguments - see plot_embedding function for details on other potential arguments: xpc, ypc, plot_title, color_title (if title is different from color_attr), ptsize, saveplot, plotfn, showplot, returngg, color_pal_vec, dimname

Value
default none; options to display plot (showplot), save plot (saveplot), and/or return ggplot2 object (returngg)

Examples

library(DuoClustering2018)
library(SingleCellExperiment)
sce <- sce_full_Zhengmix4eq()[1:100,sample(1:3500,100,replace = FALSE)]
colData(sce)$Method <- matrix(sample(c('Method1', 'Method2'),100,replace = TRUE))
sce <- corralm(sce, splitby = 'Method')

to plot and show only
plot_embedding_sce(sce = sce,
 which_embedding = 'corralm',
 xpc = 1,
 plot_title = 'corralm: PC1 by PC2',
 color_attr = "Method",
 ...)
ellipse_attr = 'phenoid',
saveplot = FALSE)

to return ggplot2 object and display, but not save
corralm_ggplot <- plot_embedding_sce(sce = sce,
 which_embedding = 'corralm',
 xpc = 1,
 plot_title = 'corralm: PC1 by PC2',
 color_attr = 'Method',
 ellipse_attr = 'phenoid',
 returngg = TRUE,
 saveplot = FALSE)

rv

rv coefficient

Description

rv coefficient

Usage

rv(mat1, mat2)

Arguments

| mat1 | matrix (or matrix-like, e.g., df); either columns or rows should be matched with mat2 |
| mat2 | matrix (or matrix-like, e.g., df); either columns or rows should be matched with mat1 |

Value

numeric; RV coefficient between the matched matrices

Examples

```r
a <- matrix(sample(1:10,100, TRUE), nrow = 10)
b <- matrix(sample(1:10,50, TRUE), nrow = 5)
rv(a, b) # matched by columns
rv(t(a), t(b)) # matched by rows
```
scal_var
Generate a scaled variance plot for an integrative embedding

Description
Generate a scaled variance plot for an integrative embedding

Usage
```r
scal_var(
  inp,
  batchvec = NULL,
  pcs = seq(3),
  returngg = FALSE,
  showplot = TRUE,
  plot_subtitle = NULL
)
```

Arguments
- `inp`: corralm object or matrix; embedding to compute scaled variances
- `batchvec`: vector; batch labels (can be numeric or char). Defaults to `NULL`, which is appropriate for using a corralm object. If using an embedding matrix for `inp`, then this argument must be given and length must correspond to number of rows in `inp`.
- `pcs`: numeric; vector of which PCs should be shown. Defaults to 1:3
- `returngg`: boolean; whether or not to return a `ggplot2` object, defaults `FALSE`
- `showplot`: boolean; whether or not to show the plot, defaults `TRUE`
- `plot_subtitle`: string; the text that should show in the subtitle for the plot. defaults to `NULL`

Value
N/A or a ggplot object

Examples
```r
dat <- matrix(rnorm(10000), ncol = 50)
bv <- rep(seq(4),c(10,30,60,100))
scal_var(dat,bv, pcs = seq(4))
```
scal_var_mat

Generate a matrix of the scaled variance values

Description

Generate a matrix of the scaled variance values

Usage

scal_var_mat(inp, batchvec = NULL)

Arguments

inp
corralm object or matrix; embedding to compute scaled variances

batchvec
vector; batch labels (can be numeric or char). Defaults to ‘NULL’, which is appropriate for using a corralm object. If using an embedding matrix for inp, then this argument must be given and length must correspond to number of rows in ‘inp’.

Value

matrix of the scaled variance values by PC (batches in rows; PCs in columns)

Examples

dat <- matrix(rnorm(5000), ncol = 50)
bv <- rep(seq(3),c(10,30,60))
scal_var_mat(dat, bv)

sce2matlist

SingleCellExperiment to list of matrices

Description

SingleCellExperiment to list of matrices

Usage

sce2matlist(sce, splitby, to_include = NULL, whichmat = "counts")
trim_matdist

Arguments

- **sce**: SingleCellExperiment that is to be separated into list of count matrices
- **splitby**: character; name of the attribute from colData that should be used to separate the SCE
- **to_include**: (optional) character vector; determines which values from the "splitby" column will be included in the outputted matlist. NULL is the default, and will result in selecting all elements
- **whichmat**: character; defaults to counts, can also use logcounts or normcounts if stored in the sce object

Value

list of matrices

Examples

```r
library(DuoClustering2018)
sce <- sce_full_Zhengmix4eq()
matlist <- sce2matlist(sce = sce, splitby = 'phenoid', whichmat = 'logcounts')
```

trim_matdist
Trim extreme values in a pre-processed matrix

Description

Smooths the extreme values in a chi-square-transformed matrix to lessen the influence of "rare objects."

Usage

```r
trim_matdist(mat, pct_trim = 0.01)
```

Arguments

- **mat**: matrix; should be pre-processed/normalized to some sort of approximately normally distributed statistic (e.g., chi-squared transformation with 'corral_preproc' or Z-score normalization)
- **pct_trim**: numeric; the percent of observations to smooth. Defaults to 'pct_trim' = .01, which corresponds to smoothing all observations to be between the .5 percentile and 99.5 percentile range of the input matrix

Details

(Usually not called directly; can be included by using the ‘smooth’ argument in the ‘corral’, ‘corralm’, and ‘corral_preproc’ functions)
var_stabilize

Value
smoothed matrix

Examples
```r
count_mat <- matrix(rpois(10000, 300) * rbinom(10000, 1, .1), ncol = 100)
smoothed_preproc_mat <- corral_preproc(count_mat, smooth = TRUE)
```

var_stabilize
Apply a variance stabilizing transformation

Description
Prior to running CA, there is an option to apply a variance stabilizing transformation. This function can be called explicitly or used with the `vst_mth` argument in `corral` and `corral_preproc`.

Usage
```r
var_stabilize(inp, transform = c("sqrt", "freemantukey", "anscombe"))
```

Arguments
- **inp**: matrix, numeric, counts or logcounts; can be sparse Matrix or matrix
- **transform**: character indicating which method should be applied. Defaults to the square root transform ("sqrt"). Other options include "freemantukey" and "anscombe".

Value
variance-stabilized matrix; sparse if possible

Examples
```r
x <- as.matrix(rpois(100, lambda = 50), ncol = 10)
vst_x <- var_stabilize(x)
```
Index

* internal
 - obs2probs, 15

add_embeddings2scelist, 2
all_are, 3
biplot_corral, 4

compsvd, 5
corrall, 7, 9, 11
corrall (corrall_mat), 8
corrall_mat, 8, 8, 10, 13
corrall_preproc, 5, 11
corrall_sce, 8
corrall_sce (corrall_mat), 8
corralm, 3, 7, 9, 11
corralm (corralm_matlist), 6
corralm_matlist, 6, 7, 13
corralm_sce, 7
corralm_sce (corralm_matlist), 6

earthmover_dist, 12
get_pct_var_exp_svd, 13
get_weights, 14
ggplot2, 18, 19, 21

list2mat, 14
na2zero, 15
obs2probs, 15

pairwise_rv, 16
plot_embedding, 17, 19
plot_embedding_sce, 18
print.corral (corrall_mat), 8
print.corralm (corralm_matlist), 6

rv, 20
scal_var, 21