Package ‘crossmeta’

March 29, 2024

Title Cross Platform Meta-Analysis of Microarray Data
Version 1.28.0
Author Alex Pickering
Maintainer Alex Pickering <alexvpickering@gmail.com>
Description Implements cross-platform and cross-species meta-analyses of Affymetrix, Illumina, and Agilent microarray data. This package automates common tasks such as downloading, normalizing, and annotating raw GEO data. The user then selects control and treatment samples in order to perform differential expression analyses for all comparisons. After analysing each contrast separately, the user can select tissue sources for each contrast and specify any tissue sources that should be grouped for the subsequent meta-analyses.
Depends R (>= 4.0)
SystemRequirements libxml2: libxml2-dev (deb), libxml2-devel (rpm)
libcurl: libcurl4-openssl-dev (deb), libcurl-devel (rpm)
openssl: libssl-dev (deb), openssl-devel (rpm), libssl_dev (csw), openssl@1.1 (brew)
License MIT + file LICENSE
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.2
VignetteBuilder knitr
URL https://github.com/alexvpickering/crossmeta
BugReports https://github.com/alexvpickering/crossmeta/issues
Suggests knitr, rmarkdown, lydata, org.Hs.eG.db, testthat
Imports affy (>= 1.52.0), affxparser (>= 1.46.0), AnnotationDbi (>= 1.36.2), Biobase (>= 2.34.0), BiocGenerics (>= 0.20.0), BiocManager (>= 1.30.4), DT (>= 0.2), DBI (>= 1.0.0), data.table (>= 1.10.4), edgeR, fdrtool (>= 1.2.15), GEOquery (>= 2.40.0), limma (>= 3.30.13), matrixStats (>= 0.51.0), metaMA (>= 3.1.2), miniUI (>= 0.1.1), methods, oligo (>= 1.38.0), reader(>= 1.0.6), RCurl (>= 1.95.4.11), RSQLite (>=
R topics documented:

2.1.1), stringr (>= 1.2.0), sva (>= 3.22.0), shiny (>= 1.0.0),
shinyjs (>= 2.0.0), shinyBS (>= 0.61), shinyWidgets (>= 0.5.3),
shinypanel (>= 0.1.0), tibble, XML (>= 3.98.1.17), readxl (>=
1.3.1)

biocViews GeneExpression, Transcription, DifferentialExpression,
Microarray, TissueMicroarray, OneChannel, Annotation,
BatchEffect, Preprocessing, GUI

git_url https://git.bioconductor.org/packages/crossmeta
git_branch RELEASE_3_18
git_last_commit 3ae7537
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-29

R topics documented:

addContrastInput .. 3
add_adjusted .. 4
add_sources .. 4
add_vsd ... 5
bulkAnnot ... 6
bulkAnnotInput .. 6
bulkForm ... 6
bulkFormInput .. 7
bulkPage ... 7
bulkPageUI .. 7
bulkTable .. 8
bulkTableOutput ... 8
ch2_subset .. 8
clean_y .. 9
delContrastsInput .. 9
diff_expr .. 10
es_meta ... 11
exprs.MA ... 13
filter_genes .. 13
fit_eBayes .. 14
fit_lm ... 15
fix_illum_headers .. 15
format_dl_annot ... 16
format_up_annot ... 16
get_ch2_mod .. 16
get_group_levels ... 17
get_palette .. 17
get_raw .. 18
get_sva_mods ... 18
get_top_table .. 19
addContrastInput

Description

Add contrast input

Usage

addContrastInput(id)
add_adjusted

Add expression data adjusted for pairs/surrogate variables

Description
Add expression data adjusted for pairs/surrogate variables

Usage
add.adjusted(eset, svobj = list(sv = NULL), numsv = 0)

Arguments
- eset: ExpressionSet
- svobj: surrogate variable object
- numsv: Number of surrogate variables to adjust for

Value
eset with adjusted element added

add_sources

Add sample source information for meta-analysis.

Description
User selects a tissue source for each contrast and indicates any sources that should be paired. This step is required if you would like to perform source-specific effect-size/pathway meta-analyses.

Usage
add_sources(diff_exprs, data_dir = getwd(), postfix = NULL)

Arguments
- diff_exprs: Previous result of diff_expr, which can be reloaded using load_diff.
- data_dir: String specifying directory of GSE folders.
- postfix: Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.
add_vsd

Add VST normalized assay data element to expression set

Description

For microarray datasets duplicates exprs slot into vsd slot.

Usage

```r
add_vsd(eset, rna_seq = TRUE)
```

Arguments

- `eset` ExpressionSet with group column in pData(eset)
- `rna_seq` Is this an RNA-seq eset? Default is TRUE.

Details

The **Sources** tab is used to add a source for each contrast. To do so: click the relevant contrast rows, search for a source in the *Sample source* dropdown box, and then click the *Add* button.

The **Pairs** tab is used to indicate sources that should be paired (treated as the same source for subsequent effect-size and pathway meta-analyses). To do so: select at least two sources from the *Paired sources* dropdown box, and then click the *Add* button.

For each GSE, analysis results with added sources/pairs are saved in the corresponding GSE folder (in `data_dir`) that was created by *get_raw*.

Value

Same as `diff_expr` with added slots for each GSE in `diff_exprs`:

- `sources` Named vector specifying selected sample source for each contrast. Vector names identify the contrast.
- `pairs` List of character vectors indicating tissue sources that should be treated as the same source for subsequent effect-size and pathway meta-analyses.

Examples

```r
library(lydata)

# load result of previous call to diff_expr:
data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
anals <- load_diff(gse_names, data_dir)

# run shiny GUI to add tissue sources
# anals <- add_sources(anals, data_dir)
```
Value

eset with 'vsd' assayDataElement added.

bulkAnnot

Logic for downloading and uploading bulk annotation

Description

Logic for downloading and uploading bulk annotation

Usage

bulkAnnot(input, output, session, dataset_name, pdata)

bulkAnnotInput

UI for Bulk Data annotation upload/download

Description

UI for Bulk Data annotation upload/download

Usage

bulkAnnotInput(id)

bulkForm

Logic for Bulk Data form

Description

Logic for Bulk Data form

Usage

bulkForm(input, output, session, pdata, prev)
bulkFormInput

bulkFormInput
Input form for Bulk Data page

Description

Input form for Bulk Data page

Usage

`bulkFormInput(id)`

bulkPage

bulkPage
Logic for Select Contrasts Interface

Description

Logic for Select Contrasts Interface

Usage

`bulkPage(input, output, session, eset, gse_name, prev)`

Arguments

- `input`, `output`, `session`
 shiny module boilerplate
- `eset`
 ExpressionSet
- `gse_name`
 GEO accession for the series.
- `prev`
 Previous result of `diff_expr`. Used to allow rechecking previous selections.

bulkPageUI

bulkPageUI
UI for Select Contrasts Interface

Description

UI for Select Contrasts Interface

Usage

`bulkPageUI(id)`

Arguments

- `id`
 The id string to be namespaced.
bulkTable

Logic for pdata table

Description
Logic for pdata table

Usage
bulkTable(input, output, session, eset, prev, up_annot)

bulkTableOutput
Tables for datasets page

Description
Tables for datasets page

Usage
bulkTableOutput(id)

ch2_subset
Subset for Paired Two-Channel ExpressionSet

Description
Two-channel esets use intraspotCorrelation and lmscFit so can’t use duplicateCorrelation. If not using one channel in contrasts (e.g. because all reference RNA) and have paired design, better to treat as single channel so that can use duplicateCorrelation.

Usage
ch2_subset(eset, prev_anal)

Arguments
eset Annotated ExpressionSet. Created by load_raw.
prev_anal One item (for eset) from previous result of diff_expr.

Value
ExpressionSet. If two-channel, paired and one channel not used will subset to used channel.
clean_y Adjusts expression data for surrogate variables.

Description

Factors out effect of surrogate variables discovered during surrogate variable analysis.

Usage

clean_y(y, mod, mod.clean)

Arguments

y Expression data of eset.
mod Full model matrix supplied to sva.
mod.clean Model matrix with factors to clean.

Value

Expression data with effects of sv's removed.

delContrastsInput Delete contrasts input

Description

Delete contrasts input

Usage

delContrastsInput(id)
diff_expr

Differential expression analysis of esets.

Description

After selecting control and test samples for each contrast, surrogate variable analysis (sva) and differential expression analysis is performed.

Usage

```r
diff_expr(
  esets,
  data_dir = getwd(),
  annot = "SYMBOL",
  prev_anals = list(NULL),
  svanal = TRUE,
  recheck = FALSE,
  postfix = NULL,
  port = 3838
)
```

Arguments

- **esets**
 List of annotated esets. Created by `load_raw`.
- **data_dir**
 String specifying directory of GSE folders.
- **annot**
 String, column name in fData common to all esets. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. If meta-analysis will follow, appropriate values are "SYMBOL" (default - for gene level analysis) or, if all esets are from the same platform, "PROBE" (for probe level analysis).
- **prev_anals**
 Previous result of `diff_expr`, which can be reloaded using `load_diff`. If present, previous selections, names, and pairs will be reused.
- **svanal**
 Use surrogate variable analysis? Default is `TRUE`.
- **recheck**
 Would you like to recheck previous group/contrast annotations? Requires `prev_anals`. Default is `FALSE`.
- **postfix**
 Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.
- **port**
 See `runApp()`.

Details

Click the Download icon and fill in the *Group name* column and optionally the *Pairs* column. Then save and upload the filled in metadata csv. After doing so, select a test and control group to compare and click the + icon to add the contrast. Repeat previous step to add additional contrasts.
After control and test samples have been added for all contrasts that you wish to include, click the *Done* button. Repeat for all GSEs.

Paired samples (e.g. the same subject before and after treatment) can be specified by filling out the *Pairs column* before uploading the metadata.

For each GSE, analysis results are saved in the corresponding GSE folder in `data_dir` that was created by `get_raw`. If analyses needs to be repeated, previous results can be reloaded with `load_diff` and supplied to the `prev_anals` parameter. In this case, previous selections, names, and pairs will be reused.

Value

List of named lists, one for each GSE. Each named list contains:

- `pdata` data.frame with phenotype data for selected samples. Columns `treatment` ('ctrl' or 'test'), `group`, and `pair` are added based on user selections.
- `top_tables` List with results of `topTable` call (one per contrast). These results account for the effects of nuisance variables discovered by surrogate variable analysis.
- `ebayes_sv` Results of call to `eBayes` with surrogate variables included in the model matrix.
- `annot` Value of `annot` variable.

Examples

```r
collection(lydata)

# location of raw data
data_dir <- system.file("extdata", package = "lydata")

# gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

# load first eset
esets <- load_raw(gse_names[1], data_dir)

# run analysis (opens GUI)
# anals_old <- diff_expr(esets, data_dir)

# re-run analysis on first eset
prev <- load_diff(gse_names[1], data_dir)
anals <- diff_expr(esets[1], data_dir, prev_anals = prev)
```

es_meta

Effect size combination meta analysis.

Description

Performs effect-size meta-analyses across all studies and separately for each tissue source.
Usage

`es_meta(diff_exprs, cutoff = 0.3, by_source = FALSE)`

Arguments

- `diff_exprs`: Previous result of `diff_expr`, which can be reloaded using `load_diff`.
- `cutoff`: Minimum fraction of contrasts that must have measured each gene. Between 0 and 1.
- `by_source`: Should separate meta-analyses be performed for each tissue source added with `add_sources`?

Details

Builds on `zScores` function from GeneMeta by allowing for genes that were not measured in all studies. This implementation also uses moderated unbiased effect sizes calculated by `effectsize` from metaMA and determines false discovery rates using `fdrtool`.

Value

A list of named lists, one for each tissue source. Each list contains two named data.frames. The first, `filt`, has all the columns below for genes present in cutoff or more fraction of contrasts. The second, `raw`, has only `dprime` and `vardprime` columns, but for all genes (NAs for genes not measured by a given contrast).

- `dprime`: Unbiased effect sizes (one column per contrast).
- `vardprime`: Variances of unbiased effect sizes (one column per contrast).
- `mu`: Overall mean effect sizes.
- `var`: Variances of overall mean effect sizes.
- `z`: Overall z score = μ/√var.
- `fdr`: False discovery rates calculated from column z using `fdrtool`.
- `pval`: p-values calculated from column z using `fdrtool`.

Examples

```r
library(lydata)

# location of data
data_dir <- system.file("extdata", package = "lydata")

# gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

# load previous analysis
anals <- load_diff(gse_names, data_dir)

# add tissue sources to perform separate meta-analyses for each source (optional)
# anals <- add_sources(anals, data_dir)
```
perform meta-analysis
es <- es_meta(anals, by_source = TRUE)

exprs.MA

Extract Log-Expression Matrix from MAList

Description

Converts M and A-values to log-expression values. The output matrix will have two columns for each array, in the order all red then all green. Adapted from `plotDensities.MAList` instead of `exprs.MA` so that order is same as `phenoData.ch2`.

Usage

`exprs.MA(MA)`

Arguments

- `MA` an `MAList` object.

Value

A numeric matrix with twice the columns of the input.

filter_genes

Filter genes in RNA-seq ExpressionSet

Description

Uses `filterByExpr` to filter based on 'counts' assay or 'exprs' assay if 'counts' isn’t available (for ARCHS4 data).

Usage

`filter_genes(eset)`

Arguments

- `eset` ExpressionSet with 'counts' assayDataElement and group column in pData

Value

`filtered eset`
See Also

filterByExpr

Examples

example ExpressionSet
eset <- makeExampleCountsEset()
eset <- filter_genes(eset)

fit_ebayes

Fit ebayes model

Description

Fit ebayes model

Usage

fit_ebayes(
 lm_fit,
 contrasts,
 robust = TRUE,
 trend = FALSE,
 allow.no.resid = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lm_fit</td>
<td>Result of call to run_limma</td>
</tr>
<tr>
<td>contrasts</td>
<td>Character vector of contrasts to fit.</td>
</tr>
<tr>
<td>robust</td>
<td>logical, should the estimation of df.prior and var.prior be robustified against outlier sample variances?</td>
</tr>
<tr>
<td>trend</td>
<td>logical, should an intensity-dependent trend be allowed for the prior variance? If FALSE then the prior variance is constant. Alternatively, trend can be a row-wise numeric vector, which will be used as the covariate for the prior variance.</td>
</tr>
<tr>
<td>allow.no.resid</td>
<td>Allow no residual degrees of freedom? if TRUE and the fit contrast matrix has no residual degrees of freedom, eBayes fit is skipped and the result of contrasts.fit is returned.</td>
</tr>
</tbody>
</table>

Value

result of eBayes
fit_lm

Run limma analysis.

Description

Runs limma differential expression analysis on all contrasts selected by `add_contrast`. Analysis performed with and without surrogate variables discovered by `diff_setup`. Also prints MDS plot and saves results.

Usage

```r
fit_lm(eset, svobj = list(sv = NULL), numsv = 0, rna_seq = TRUE)
```

Arguments

- `eset` Annotated eset created by `load_raw`. Replicate features and non-selected samples removed by `iqr_replicates`.
- `svobj` Surrogate variable analysis results. Returned from `run_sva`.
- `numsv` Number of surrogate variables to model.
- `rna_seq` Is this an RNA-seq eset? Default is TRUE.

Value

List with slots:

- `fit` Result of `lmFit`.
- `mod` Model matrix used for fit.

fix_illum_headers

Attempts to fix Illumina raw data header

Description

Reads raw data files and tries to fix them up so that they can be loaded by `read.ilmn`.

Usage

```r
fix_illum_headers(elist_paths, eset = NULL)
```

Arguments

- `elist_paths` Path to Illumina raw data files. Usually contain patterns: non_normalized.txt, raw.txt, or _supplementary_.txt
- `eset` ExpressionSet from `getGEO`.

Value

Character vector for annotation argument to `read.ilmn`. Fixed raw data files are saved with filename ending in _fixed.txt
format_d1_annot
Format downloaded annotation

Description

Format downloaded annotation

Usage

```r
format_d1_annot(annot)
```

format_up_annot
Format uploaded annotation

Description

Format uploaded annotation

Usage

```r
format_up_annot(up, ref)
```

get_ch2_mod
Get design matrix for two-channel array

Description

Get design matrix for two-channel array

Usage

```r
get_ch2_mod(eset)
```

Arguments

- `eset`
 ExpressionSet with colnames that end in ’_red’ and ’_green’ indicating channel and `eset$group` indicating group membership.

Value

model matrix for use by `intraspotCorrelation` and `lmseFit`
get_group_levels

Description
Get group levels for bulk data plots

Usage
get_group_levels(pdata)

Arguments
pdata Data.frame of phenotype data

get_palette

Description
Get a Pallete to Distinguish Groups

Usage
get_palette(levs, dark = FALSE, with_all = FALSE)

Arguments
levs Character vector of levels to get colour pallete for.

Value
Character vector with colour codes of length(levs).
get_raw

Download and unpack microarray supplementary files from GEO.

Description

Downloads and unpacks microarray supplementary files from GEO. Files are stored in the supplied data directory under the GSE name.

Usage

get_raw(gse_names, data_dir = getwd())

Arguments

- gse_names: Character vector of GSE names to download.
- data_dir: String specifying directory for GSE folders.

Value

NULL (for download/unpack only).

See Also

load_raw.

Examples

get_raw("GSE41845")

get_sva.mods

Get model matrices for surrogate variable analysis

Description

Used by add_adjusted to create model matrix with surrogate variables.

Usage

get_sva.mods(pdata)

Arguments

- pdata: data.frame of phenotype data with column 'group' and 'pair' (optional).

Value

List with model matrix(mod) and null model matrix (mod0) used for sva.
get_top_table

Description

Get top table

Usage

get_top_table(
 lm_fit,
 groups = c("test", "ctrl"),
 with.es = TRUE,
 robust = FALSE,
 trend = FALSE,
 allow.no.resid = FALSE
)

Arguments

lm_fit Result of run_limma
groups Test and Control group as strings.
with.es Add 'dprime' and 'vardprime' from effectsize? Default is TRUE.
robust logical, should the estimation of df.prior and var.prior be robustified against
 outlier sample variances?
trend logical, should an intensity-dependent trend be allowed for the prior variance?
 If FALSE then the prior variance is constant. Alternatively, trend can be a row-
 wise numeric vector, which will be used as the covariate for the prior variance.
allow.no.resid Allow no residual degrees of freedom? if TRUE and the fit contrast matrix has no
 residual degrees of freedom, eBayes fit is skipped and the result of contrasts.fit
 is returned.

Value

result of toptable
get_vsd
Get variance stabilized data for exploratory data analysis

Description
Get variance stabilized data for exploratory data analysis

Usage
get_vsd(eset)

Arguments
eset
ExpressionSet loaded with load_raw.

Value
matrix with variance stabilized expression data.

gs.names
Map between KEGG pathway numbers and names.

Description
Used to map human KEGG pathway numbers to names. Updated Feb 2017.

Usage
data(gs.names)

Format
An object of class character of length 310.

Value
A named character vector of human KEGG pathway names. Names of vector are KEGG pathway numbers.
gslist

KEGG human pathway genes.

Description

Usage

```r
data(gslist)
```

Format

An object of class `list` of length 310.

Value

A named list with entrez ids of genes for human KEGG pathways. List names are KEGG pathway numbers.

ilmn.nnum

Count numeric columns in raw Illumina data files

Description

Excludes probe ID cols

Usage

```r
ilmn.nnum(elist_paths)
```

Arguments

- `elist_paths`: Paths to raw illumina data files

Value

Number of numeric columns in `elist_paths` excluding probe ID columns.
iqr_replicates (Removes features with replicated annotation.)

Description
For rows with duplicated annot, highested IQR retained.

Usage
iqr_replicates(eset, annot = "SYMBOL", rm.dup = FALSE)

Arguments
- eset: Annotated eset created by load_raw.
- annot: feature to use to remove replicates.
- rm.dup: remove duplicates (same measure, multiple ids)? Used for Pathway analysis so that doesn’t treat probes that map to multiple genes as distinct measures.

Value
Expression set with unique features at probe or gene level.

is_invertible (Check uploaded bulk pdata to make sure the study design is invertible)

Description
Check uploaded bulk pdata to make sure the study design is invertible

Usage
is_invertible(pdata)
load_agil_plat Load Agilent raw data

Description

Load Agilent raw data

Usage

load_agil_plat(eset, gse_name, gse_dir, ensql)

Arguments

eset
ExpressionSet from getGEO.
gse_name
Accession name for eset.
gse_dir
Direction with Agilent raw data.
ensql
For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Value

ExpressionSet

load_diff Load previous differential expression analyses.

Description

Loads previous differential expression analyses.

Usage

load_diff(gse_names, data_dir = getwd(), annot = "SYMBOL", postfix = NULL)

Arguments

gse_names
Character vector specifying GSE names to be loaded.
data_dir
String specifying directory of GSE folders.
annot
Level of previous analysis (e.g. "SYMBOL" or "PROBE").
postfix
Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.

Value

Result of previous call to diff_expr.
Examples

```r
library(lydata)

data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
prev <- load_diff(gse_names, data_dir)
```

load_illum_plat

Illumina loader utility for load_plat.

Description

Used by load_plat to load an eset.

Usage

```r
load_illum_plat(eset, gse_name, gse_dir, ensql)
```

Arguments

- `eset`: Expression set obtained by `getGEO`.
- `gse_name`: String specifying GSE name.
- `gse_dir`: String specifying path to GSE folder.

Value

Annotated eset.

See Also

- `load_plat`.

load_plat

Load and pre-process raw Affymetrix, Illumina, and Agilent microarrays.

Description

Load raw files previously downloaded with `get_raw`. Used by `load_raw`.

Usage

```r
load_plat(gse_name, data_dir, gpl_dir, ensql)
```
load_raw

Arguments

- **gse_name**: GSE names.
- **data_dir**: String specifying directory with GSE folder.
- **gpl_dir**: String specifying parent directory to search for previously downloaded GPL.soft files.
- **ensql**: For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Details

Data is normalized, SYMBOL and PROBE annotation are added to fData slot.

Value

List of annotated esets, one for each platform in gse_name.

See Also

- `get_raw` to obtain raw data.

Description

Loads and annotates raw data previously downloaded with `get_raw`. Supported platforms include Affymetrix, Agilent, and Illumina.

Usage

```r
load_raw(
  gse_names,
  data_dir = getwd(),
  gpl_dir = "..",
  overwrite = FALSE,
  ensql = NULL
)
```

Arguments

- **gse_names**: Character vector of GSE names.
- **data_dir**: String specifying directory with GSE folders.
- **gpl_dir**: String specifying parent directory to search for previously downloaded GPL.soft files.
- **overwrite**: Do you want to overwrite saved esets from previous `load_raw`?
- **ensql**: For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.
Value

List of annotated esets.

Examples

```r
library(lydata)
data_dir <- system.file("extdata", package = "lydata")
eset <- load_raw("GSE9601", data_dir = data_dir)
```

makeExampleCountsEset
Make example ExpressionSet

Description

adapted from DESeq2::makeExampleDESeqDataSet

Usage

```r
makeExampleCountsEset(
  n = 1000,
  m = 12,
  betaSD = 0,
  interceptMean = 4,
  interceptSD = 2,
  dispMeanRel = function(x) 4/x + 0.1,
  sizeFactors = rep(1, m)
)
```

Arguments

- `n` number of rows
- `m` number of columns
- `betaSD` the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)
- `interceptMean` the mean of the intercept betas (log2 scale)
- `interceptSD` the standard deviation of the intercept betas (log2 scale)
- `dispMeanRel` a function specifying the relationship of the dispersions on $2^{\text{trueIntercept}}$
- `sizeFactors` multiplicative factors for each sample

Examples

```r
eset <- makeExampleCountsEset()
```
match_prev_eset

Reuse contrast selections from previous analysis.

Description

Transfers user-supplied selections from previous call of `diff_expr`.

Usage

```r
match_prev_eset(eset, prev_anal)
```

Arguments

- `eset` Annotated eset. Created by `load_raw`.
- `prev_anal` One item (for eset) from previous result of `diff_expr`. If present, previous selections and names will be reused.

Value

Expression set with samples and pData as in `prev_anal`.

See Also

- `diff_expr`

open_raw_illum

Open raw Illumina microarray files.

Description

Helper function to open raw Illumina microarray files in order to check that they are formatted correctly. For details on correct format, please see 'Checking Raw Illumina Data' in vignette.

Usage

```r
open_raw_illum(gse_names, data_dir = getwd())
```

Arguments

- `gse_names` Character vector of Illumina GSE names to open.
- `data_dir` String specifying directory with GSE folders.

Value

Character vector of successfully formated Illumina GSE names.
Examples

library(lydata)

Illumina GSE names
illum_names <- c("GSE50841", "GSE34817", "GSE29689")

location of raw data
data_dir <- system.file("extdata", package = "lydata")

open raw data files with default text editor
open_raw_illum(illum_names)

PhenoData.ch2

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Description

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Usage

phenoData.ch2(eset)

Arguments

eset ExpressionSet with pData for two-channel Agilent array.

Value

AnnotatedDataFrame with twice as many rows as eset, one for each channel of each array in order all red then all green.

prefix_illum_headers

Run prefix on Illumina raw data files

Description

Run prefix on Illumina raw data files

Usage

prefix_illum_headers(elist_paths)

Arguments

elist_paths Paths to raw Illumina data files
query_ref

Paths to fixed versions of elist_paths

Description

Determines the pearson correlation between the query and each reference signature.

Usage

```r
query_ref(query, ref, sorted = TRUE, ngenes = 200)
```

Arguments

- `query`: Named numeric vector of differential expression values for query genes. Usually 'meta' slot of get_dprimes result.
- `ref`: A matrix of differential expression to query against (rows are genes, columns are samples).
- `sorted`: Would you like the results sorted by decreasing similarity? Default is TRUE.
- `ngenes`: The number of top differentially-regulated (up and down) query genes to use.

Value

Vector of pearson correlations between query and reference signatures.

remove_autonamed

Remove columns that are autonamed by data.table

Description

Auto-named columns start with 'V' followed by the column number.

Usage

```r
remove_autonamed(ex)
```

Arguments

- `ex`: data.frame loaded with fread

Value

ex with auto-named columns removed.
Description

After selecting control and test samples for a contrast, surrogate variable analysis (sva) and linear model fitting with lmFit is performed.

Usage

```r
run_limma(
  eset,
  annot = "SYMBOL",
  svobj = list(sv = NULL),
  numsv = 0,
  filter = TRUE
)
```

Arguments

- `eset`: Annotated eset created by `load_raw`.
- `annot`: String, column name in fData. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. Appropriate values are "SYMBOL" (default - for gene level analysis) or "ENTREZID_HS" (for probe level analysis).
- `svobj`: Surrogate variable analysis results. Returned from `run_sva`.
- `numsv`: Number of surrogate variables to model.
- `filter`: For RNA-seq. Should genes with low counts be filtered? dseqr shiny app performs this step separately. Should be TRUE (default) if used outside of dseqr shiny app.

Details

If analyses need to be repeated, previous results can be reloaded with `readRDS` and supplied to the `prev_anal` parameter. In this case, previous selections will be reused.

Value

List with:

- `fit`: result of `lmFit`.
- `mod`: model.matrix used for fit.
run_limma_setup

Setup ExpressionSet for running limma analysis

Description

Setup ExpressionSet for running limma analysis

Usage

run_limma_setup(eset, prev)

Arguments

eset: ExpressionSet
prev: previous result of call to diff_expr

Value

eset ready for run_limma

run_lmfit

Perform lmFit analysis from limma.

Description

If paired samples, runs duplicateCorrelation to estimate intra-patient variance.

Usage

run_lmfit(eset, mod, rna_seq = TRUE)

Arguments

eset: Annotated eset created by load_raw. Non-selected samples and duplicate features removed by add_contrasts and iqr_replicates.
mod: Model matrix generated by diff_setup. With or without surrogate variables.
rna_seq: Is this an RNA-seq eset? Default is TRUE.

Value

result from call to limma lmFit.
run_select_contrasts
Shiny gadget to upload groups and select contrasts

Description

Shiny gadget to upload groups and select contrasts

Usage

```r
run_select_contrasts(
  eset,
  gse_name,
  prev = NULL,
  app_dir = system.file("select_contrasts", package = "crossmeta", mustWork = TRUE),
  port = 3838
)
```

Arguments

- **eset**: ExpressionSet
- **gse_name**: GEO accession for the series.
- **prev**: Previous result of `diff_expr`. Used to allow rechecking previous selections.
- **app_dir**: Directory to shiny app. For local development use `inst/select_contrasts`. Default is in `select_contrasts` sub directory of crossmeta package.
- **port**: See `runApp()`.

Value

result of `setup_prev`. Used to specify sample groups and contrasts for differential expression analysis.

run_sva
Run surrogate variable analysis

Description

Run surrogate variable analysis

Usage

```r
run_sva(mods, eset, svanal = TRUE)
```
setup_prev

Arguments

- **mods**: result of `get_sva.mods`
- **eset**: `ExpressionSet`
- **svanal**: Should surrogate variable analysis be run? If FALSE, returns dummy result.

Description

Function is useful when number of samples makes manual selection with `diff_expr` error prone and time-consuming. This is often true for large clinical data sets.

Usage

```r
setup_prev(eset, contrasts)
```

Arguments

- **eset**: List containing one expression set with pData 'group' and 'pair' (optional) columns. Name of eset should be the GSE name.
- **contrasts**: Character vector specifying contrasts to analyse. Each contrast must take the form "B-A" where both "B" and "A" are present in eset pData 'group' column. "B" is the treatment group and "A" is the control group.

Value

List containing necessary information for `prev_anal` parameter of `diff_expr`.

Examples

```r
library(lydata)
library(Biobase)

# location of raw data
data_dir <- system.file("extdata", package = "lydata")

# load eset
gse_name <- c("GSE34817")
eset <- load_raw(gse_name, data_dir)

# inspect pData of eset
# View(pData(eset$GSE34817))  # if using RStudio
head(pData(eset$GSE34817))  # otherwise

# get group info from pData (differs based on eset)
group <- pData(eset$GSE34817)$characteristics_ch1.1
```
make group names concise and valid
group <- gsub("treatment: ", "", group)
group <- make.names(group)

add group to eset pData
pData(eset$GSE34817)$group <- group

setup selections
sel <- setup_prev(eset, contrasts = "LY-DMSO")

run differential expression analysis
anal <- diff_expr(eset, data_dir, prev_anal = sel)

symbol_annot

Add hgnc symbol to expression set.

Description

Function first maps entrez gene ids to homologous human entrez gene ids and then to hgnc symbols.

Usage

symbol_annot(eset, gse_name = "", ensql = NULL)

Arguments

eset Expression set to annotate.
gse_name GSE name for eset.
ensql For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Details

Initial entrez gene ids are obtained from bioconductor annotation data packages or from feature data of supplied expression set. Homologous human entrez ids are obtained from homologene and then mapped to hgnc symbols using org.Hs.eg.db. Expression set is expanded if 1:many mappings occur.

Value

Expression set with hgnc symbols ("SYMBOL") and row names ("PROBE") added to fData slot.

See Also

load_raw.
Examples

library(lydata)

location of raw data
data_dir <- system.file("extdata", package = "lydata")

load eset
eset <- load_raw("GSE9601", data_dir)[[1]]

annotate eset (need if load_raw failed to annotate)
eset <- symbol_annot(eset)

to_eset

Convert limma object to ExpressionSet

Description

Convert limma object to ExpressionSet

Usage

```
to_eset(object, eset)
```

Arguments

- `object` an EList of MAList object containing expression data.
- `eset` ExpressionSet from `getGEO`. Used for annotation.

Value

ExpressionSet using expression data from `object` and annotation from `eset`.

to_ma

Convert expression values to MAList

Description

Convert expression values to MAList

Usage

```
to_ma(y)
```

Arguments

- `y` Expression values from two-channel agilent array in order all red then all green.
which_max_iqr

Value

MAList

Examples

```
A <- matrix(rnorm(100), ncol = 5)
M <- matrix(rnorm(100), ncol = 5)
MA <- new('MAList', list(M=M, A=A))
colnames(MA) <- letters[1:5]

y <- exprs.MA(MA)
MA2 <- crossmeta:::to_ma(y)
all.equal(MA, MA2)
```

validate_up_annot

Validate uploaded bulk annotation

Description

Validate uploaded bulk annotation

Usage

```
validate_up_annot(up, ref)
```

which_max_iqr

Get row indices of maximum IQR within annotation groups

Description

Groups by group_by and determines row with maximum IQR.

Usage

```
which_max_iqr(eset, group_by, x = exprs(eset))
```

Arguments

- `eset` ExpressionSet
- `group_by` Column in fData(eset) to group by
- `x` matrix of expression values to use for IQR

Value

Integer vector of row numbers representing rows with the maximum IQR after grouping by group_by
Description

For converting Illumina _Supplementary_.*.xls files to .txt for load_illum_plat.

Usage

```r
taxs_to_txt(xls_paths)
```

Arguments

- `xls_paths` Paths to .xls files
* z
 run_select_contrasts, 32

add_adjusted, 4
add_sources, 4, 12
add_vsd, 5
addContrastInput, 3

bulkAnnot, 6
bulkAnnotInput, 6
bulkForm, 6
bulkFormInput, 7
bulkPage, 7
bulkPageUI, 7
bulkTable, 8
bulkTableOutuput, 8

ch2_subset, 8
clean_y, 9
contrasts.fit, 14, 19
delContrastsInput, 9
diff_expr, 4, 5, 10, 10, 12, 23, 27, 33
duplicateCorrelation, 31
eBayes, 11, 14, 19
effectsize, 12, 19
es_meta, 11
exprs.MA, 13, 13

fdrtool, 12
filter_genes, 13
filterByExpr, 13, 14
fit_ebayes, 14
fit_lm, 15
fix_illum_headers, 15
format_dl_annot, 16
format_up_annot, 16
fread, 29

get_ch2_mod, 16
get_group_levels, 17
get_palette, 17
get_raw, 5, 11, 18, 25
get_sva_mods, 18, 33
get_top_table, 19
get_vsd, 20
getGEO, 15, 23, 35
gs.names, 20
gslist, 21

ilmm.nnum, 21
intraspotCorrelation, 16
iqr_replicates, 22
is_invertible, 22

lmFit, 15, 30
lmFscFit, 16
load_agil_plat, 23
load_diff, 4, 10–12, 23
load_illum_plat, 24
load_plat, 24, 24
load_raw, 10, 18, 20, 25, 34

makeExampleCountsEset, 26
match_prev_eset, 27

open_raw_illum, 27

phenoData.ch2, 13, 28
plotDensities.MAList, 13
prefix_illum_headers, 28

query_ref, 29

read.ilmn, 15
readRDS, 30
remove_autonamed, 29
run_limma, 14, 19, 30
run_limma_setup, 31
run_lmf, 31
run_select_contrasts, 32
run_sva, 15, 30, 32
runApp(), 10, 32

setup_prev, 32, 33
sva, 10, 30
symbol_annot, 34

to_eset, 35
to.ma, 35
topTable, 11
toptable, 19

validate_up_annot, 36

which_max_iqr, 36

xls_to_txt, 37

zScores, 12