Package ‘crossmeta’

May 1, 2024

Title Cross Platform Meta-Analysis of Microarray Data
Version 1.30.0
Author Alex Pickering
Maintainer Alex Pickering <alexvpickering@gmail.com>
Description Implements cross-platform and cross-species meta-analyses of Affymetrix, Illumina, and Agilent microarray data. This package automates common tasks such as downloading, normalizing, and annotating raw GEO data. The user then selects control and treatment samples in order to perform differential expression analyses for all comparisons. After analysing each contrast seperately, the user can select tissue sources for each contrast and specify any tissue sources that should be grouped for the subsequent meta-analyses.
Depends R (>= 4.0)
SystemRequirements libxml2; libxml2-dev (deb), libxml2-devel (rpm)
libcurl: libcurl4-openssl-dev (deb), libcurl-devel (rpm)
openssl: libssl-dev (deb), openssl-devel (rpm), libssl_dev (csw), openssl@1.1 (brew)
License MIT + file LICENSE
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.2
VignetteBuilder knitr
URL https://github.com/alexvpickering/crossmeta
BugReports https://github.com/alexvpickering/crossmeta/issues
Suggests knitr, rmarkdown, lydata, org.Hs.eg.db, testthat
Imports affy (>= 1.52.0), affxparser (>= 1.46.0), AnnotationDbi (>= 1.36.2), Biobase (>= 2.34.0), BiocGenerics (>= 0.20.0), BiocManager (>= 1.30.4), DT (>= 0.2), DBI (>= 1.0.0), data.table (>= 1.10.4), edgeR, fdrtool (>= 1.2.15), GEOquery (>= 2.40.0), limma (>= 3.30.13), matrixStats (>= 0.51.0), metaMA (>= 3.1.2), miniUI (>= 0.1.1), methods, oligo (>= 1.38.0), reader(>= 1.0.6), RCurl (>= 1.95.4.11), RSQLite (>=
2.1.1), stringr (>= 1.2.0), sva (>= 3.22.0), shiny (>= 1.0.0),
shinyjs (>= 2.0.0), shinyBS (>= 0.61), shinyWidgets (>= 0.5.3),
shinypanel (>= 0.1.0), tibble, XML (>= 3.98.1.17), readxl (>=
1.3.1)

biocViews GeneExpression, Transcription, DifferentialExpression,
Microarray, TissueMicroarray, OneChannel, Annotation,
BatchEffect, Preprocessing, GUI

git_url https://git.bioconductor.org/packages/crossmeta

git_branch RELEASE_3_19

git_last_commit 7500c56

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-04-30

Contents

add_adjusted .. 3
add_sources .. 4
add_vsd ... 5
addContrastInput .. 5
bulkAnnot ... 6
bulkAnnotInput ... 6
bulkForm ... 6
bulkFormInput ... 6
bulkPage ... 7
bulkPageUI ... 7
bulkTable .. 7
bulkTableOutput ... 8
ch2_subset .. 8
clean_y ... 9
delContrastsInput .. 9
diff_expr ... 10
es_meta ... 11
exprs.MA .. 13
filter_genes .. 13
fit_ebayes .. 14
fit_lm .. 15
fix_illum_headers ... 15
format_dl_annot ... 16
format_up_annot ... 16
get_ch2_mod .. 16
get_group_levels .. 17
get_palette .. 17
get_raw ... 18
get_svaMods .. 18
get_top_table ... 19
add_adjusted

Add expression data adjusted for pairs/surrogate variables

Description
Add expression data adjusted for pairs/surrogate variables

Usage
add_adjusted(eset, svobj = list(sv = NULL), numsv = 0)

Arguments
- eset: ExpressionSet
- svobj: surrogate variable object
- numsv: Number of surrogate variables to adjust for
add_sources

Value

eset with adjusted element added

Description

User selects a tissue source for each contrast and indicates any sources that should be paired. This step is required if you would like to perform source-specific effect-size/pathway meta-analyses.

Usage

add_sources(diff_exprs, data_dir = getwd(), postfix = NULL)

Arguments

diff_exprs Previous result of diff_expr, which can be reloaded using load_diff.
data_dir String specifying directory of GSE folders.
postfix Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.

Details

The Sources tab is used to add a source for each contrast. To do so: click the relevant contrast rows, search for a source in the Sample source dropdown box, and then click the Add button.

The Pairs tab is used to indicate sources that should be paired (treated as the same source for subsequent effect-size and pathway meta-analyses). To do so: select at least two sources from the Paired sources dropdown box, and then click the Add button.

For each GSE, analysis results with added sources/pairs are saved in the corresponding GSE folder (in data_dir) that was created by get_raw.

Value

Same as diff_expr with added slots for each GSE in diff_exprs:

sources Named vector specifying selected sample source for each contrast. Vector names identify the contrast.
pairs List of character vectors indicating tissue sources that should be treated as the same source for subsequent effect-size and pathway meta-analyses.
Examples

```r
library(lydata)

# load result of previous call to diff_expr:
data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
anals <- load_diff(gse_names, data_dir)

# run shiny GUI to add tissue sources
# anals <- add_sources(anals, data_dir)
```

add_vsd

| add_vsd
| Add VST normalized assay data element to expression set

Description

For microarray datasets duplicates exprs slot into vsd slot.

Usage

```r
add_vsd(eset, rna_seq = TRUE)
```

Arguments

- **eset**: ExpressionSet with group column in pData(eset)
- **rna_seq**: Is this an RNA-seq eset? Default is TRUE.

Value

eset with 'vsd' assayDataElement added.

addContrastInput

| addContrastInput
| Add contrast input

Description

Add contrast input

Usage

```r
addContrastInput(id)
```
bulkAnnot

Logic for downloading and uploading bulk annotation

Description
Logic for downloading and uploading bulk annotation

Usage
```
bulkAnnot(input, output, session, dataset_name, pdata)
```

bulkAnnotInput

UI for Bulk Data annotation upload/download

Description
UI for Bulk Data annotation upload/download

Usage
```
bulkAnnotInput(id)
```

bulkForm

Logic for Bulk Data form

Description
Logic for Bulk Data form

Usage
```
bulkForm(input, output, session, pdata, prev)
```

bulkFormInput

Input form for Bulk Data page

Description
Input form for Bulk Data page

Usage
```
bulkFormInput(id)
```
bulkPage

Logic for Select Contrasts Interface

Description
Logic for Select Contrasts Interface

Usage
bulkPage(input, output, session, eset, gse_name, prev)

Arguments
input, output, session
 shiny module boilerplate
eset
 ExpressionSet
gse_name
 GEO accession for the series.
prev
 Previous result of diff_expr. Used to allow rechecking previous selections.

bulkPageUI

UI for Select Contrasts Interface

Description
UI for Select Contrasts Interface

Usage
bulkPageUI(id)

Arguments
id
 The id string to be namespaced.

bulkTable

Logic for pdata table

Description
Logic for pdata table

Usage
bulkTable(input, output, session, eset, prev, up_annot)
bulkTableOuput
Tables for datasets page

Description

Tables for datasets page

Usage

bulkTableOuput(id)

ch2_subset
Subset for Paired Two-Channel ExpressionSet

Description

Two-channel esets use intraspotCorrelation and lmscFit so can’t use duplicateCorrelation. If not using one channel in contrasts (e.g. because all reference RNA) and have paired design, better to treat as single channel so that can use duplicateCorrelation.

Usage

ch2_subset(eset, prev_anal)

Arguments

- **eset**
 Annotated ExpressionSet. Created by `load.raw`.

- **prev_anal**
 One item (for eset) from previous result of `diff_expr`.

Value

ExpressionSet. If two-channel, paired and one channel not used will subset to used channel.
clean_y

Adjusts expression data for surrogate variables.

Description

Factors out effect of surrogate variables discovered during surrogate variable analysis.

Usage

clean_y(y, mod, mod.clean)

Arguments

y
Expression data of eset.

mod
Full model matrix supplied to sva.

mod.clean
Model matrix with factors to clean.

Value

Expression data with effects of svgs removed.

delContrastsInput

Delete contrasts input

Description

Delete contrasts input

Usage

delContrastsInput(id)
Differential expression analysis of esets.

Description

After selecting control and test samples for each contrast, surrogate variable analysis (sva) and differential expression analysis is performed.

Usage

```r
diff_expr(
  esets,
  data_dir = getwd(),
  annot = "SYMBOL",
  prev_anals = list(NULL),
  svanal = TRUE,
  recheck = FALSE,
  postfix = NULL,
  port = 3838
)
```

Arguments

- `esets` List of annotated esets. Created by `load_raw`.
- `data_dir` String specifying directory of GSE folders.
- `annot` String, column name in fData common to all esets. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. If meta-analysis will follow, appropriate values are "SYMBOL" (default - for gene level analysis) or, if all esets are from the same platform, "PROBE" (for probe level analysis).
- `prev_anals` Previous result of `diff_expr`, which can be reloaded using `load_diff`. If present, previous selections, names, and pairs will be reused.
- `svanal` Use surrogate variable analysis? Default is `TRUE`.
- `recheck` Would you like to recheck previous group/contrast annotations? Requires `prev_anals`. Default is `FALSE`.
- `postfix` Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.
- `port` See `runApp()`.

Details

Click the Download icon and fill in the Group name column and optionally the Pairs column. Then save and upload the filled in metadata csv. After doing so, select a test and control group to compare and click the + icon to add the contrast. Repeat previous step to add additional contrasts.
After control and test samples have been added for all contrasts that you wish to include, click the
\textit{Done} button. Repeat for all GSEs.

Paired samples (e.g. the same subject before and after treatment) can be specified by filling out the
\textit{Pairs column} before uploading the metadata.

For each GSE, analysis results are saved in the corresponding GSE folder in \texttt{data_dir} that was cre-
ated by \texttt{get_raw}. If analyses needs to be repeated, previous results can be reloaded with \texttt{load_diff}
and supplied to the \texttt{prev_anals} parameter. In this case, previous selections, names, and pairs will
be reused.

\textbf{Value}

List of named lists, one for each GSE. Each named list contains:

- \texttt{pdata} \hspace{1cm} \texttt{data.frame} with phenotype data for selected samples. Columns \texttt{treatment} ('ctrl' or 'test'), \texttt{group}, and \texttt{pair} are added based on user selections.
- \texttt{top_tables} \hspace{1cm} List with results of \texttt{topTable} call (one per contrast). These results account for

the effects of nuissance variables discovered by surrogate variable analysis.
- \texttt{ebayes_sv} \hspace{1cm} Results of call to \texttt{eBayes} with surrogate variables included in the model matrix.
- \texttt{annot} \hspace{1cm} Value of \texttt{annot} variable.

\textbf{Examples}

```r
library(lydata)

# location of raw data
data_dir <- system.file("extdata", package = "lydata")

# gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

# load first eset
esets <- load_raw(gse_names[1], data_dir)

# run analysis (opens GUI)
# anals_old <- diff_expr(esets, data_dir)

# re-run analysis on first eset
prev <- load_diff(gse_names[1], data_dir)
anals <- diff_expr(esets[1], data_dir, prev_anals = prev)
```

\textbf{es_meta} \hspace{1cm} \textit{Effect size combination meta analysis.}

\textbf{Description}

Performs effect-size meta-analyses across all studies and seperately for each tissue source.
Usage

\texttt{es_meta(diff_exprs, cutoff = 0.3, by_source = FALSE)}

Arguments

\begin{itemize}
\item \texttt{diff_exprs} \hspace{1cm} Previous result of \texttt{diff_expr}, which can be reloaded using \texttt{load_diff}.
\item \texttt{cutoff} \hspace{1cm} Minimum fraction of contrasts that must have measured each gene. Between 0 and 1.
\item \texttt{by_source} \hspace{1cm} Should separate meta-analyses be performed for each tissue source added with \texttt{add_sources}?
\end{itemize}

Details

Builds on \texttt{zScores} function from GeneMeta by allowing for genes that were not measured in all studies. This implementation also uses moderated unbiased effect sizes calculated by \texttt{effectsize} from metaMA and determines false discovery rates using \texttt{fdrtool}.

Value

A list of named lists, one for each tissue source. Each list contains two named data.frames. The first, filter, has all the columns below for genes present in cutoff or more fraction of contrasts. The second, raw, has only dprime and vardprime columns, but for all genes (NAs for genes not measured by a given contrast).

\begin{itemize}
\item \texttt{dprime} \hspace{1cm} Unbiased effect sizes (one column per contrast).
\item \texttt{vardprime} \hspace{1cm} Variances of unbiased effect sizes (one column per contrast).
\item \texttt{mu} \hspace{1cm} Overall mean effect sizes.
\item \texttt{var} \hspace{1cm} Variances of overall mean effect sizes.
\item \texttt{z} \hspace{1cm} Overall z score = \texttt{mu} / \sqrt{\texttt{var}}.
\item \texttt{fdr} \hspace{1cm} False discovery rates calculated from column \texttt{z} using \texttt{fdrtool}.
\item \texttt{pval} \hspace{1cm} p-values calculated from column \texttt{z} using \texttt{fdrtool}.
\end{itemize}

Examples

\begin{verbatim}
library(lydata)

location of data
data_dir <- system.file("extdata", package = "lydata")

gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

load previous analysis
anals <- load_diff(gse_names, data_dir)

add tissue sources to perform separate meta-analyses for each source (optional)
anals <- add_sources(anals, data_dir)
\end{verbatim}
perform meta-analysis
es <- es_meta(anals, by_source = TRUE)

exprs.MA

Extract Log-Expression Matrix from MAList

Description
Converts M and A-values to log-expression values. The output matrix will have two columns for each array, in the order all red then all green. Adapted from `plotDensities.MAList` instead of `exprs.MA` so that order is same as `phenoData.ch2`.

Usage

`exprs.MA(MA)`

Arguments

`MA` an `MAList` object.

Value
A numeric matrix with twice the columns of the input.

filter_genes

Filter genes in RNA-seq ExpressionSet

Description
Uses `filterByExpr` to filter based on 'counts' assay or 'exprs' assay if 'counts' isn't available (for ARCHS4 data).

Usage

`filter_genes(eset)`

Arguments

`eset` ExpressionSet with 'counts' assayDataElement and group column in pData

Value
`filtered eset`
See Also

filterByExpr

Examples

example ExpressionSet
eset <- makeExampleCountsEset()
eset <- filter_genes(eset)

fit_ebayes Fit ebayes model

Description

Fit ebayes model

Usage

fit_ebayes(
 lm_fit,
 contrasts,
 robust = TRUE,
 trend = FALSE,
 allow.no.resid = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lm_fit</td>
<td>Result of call to run_limma</td>
</tr>
<tr>
<td>contrasts</td>
<td>Character vector of contrasts to fit.</td>
</tr>
<tr>
<td>robust</td>
<td>logical, should the estimation of df.prior and var.prior be robustified</td>
</tr>
<tr>
<td></td>
<td>against outlier sample variances?</td>
</tr>
<tr>
<td>trend</td>
<td>logical, should an intensity-dependent trend be allowed for the prior</td>
</tr>
<tr>
<td></td>
<td>variance? If FALSE then the prior variance is constant. Alternatively, trend</td>
</tr>
<tr>
<td></td>
<td>can be a row-wise numeric vector, which will be used as the covariate for</td>
</tr>
<tr>
<td></td>
<td>the prior variance.</td>
</tr>
<tr>
<td>allow.no.resid</td>
<td>Allow no residual degrees of freedom? if TRUE and the fit contrast matrix</td>
</tr>
<tr>
<td></td>
<td>has no residual degrees of freedom, eBayes fit is skipped and the result of</td>
</tr>
<tr>
<td></td>
<td>contrasts.fit is returned.</td>
</tr>
</tbody>
</table>

Value

result of eBayes
Description

Runs limma differential expression analysis on all contrasts selected by `add_contrast`. Analysis performed with and without surrogate variables discovered by `diff_setup`. Also prints MDS plot and saves results.

Usage

```r
fit_lm(eset, svobj = list(sv = NULL), numsv = 0, rna_seq = TRUE)
```

Arguments

- `eset`: Annotated eset created by `load_raw`. Replicate features and non-selected samples removed by `iqr_replicates`.
- `svobj`: Surrogate variable analysis results. Returned from `run_sva`.
- `numsv`: Number of surrogate variables to model.
- `rna_seq`: Is this an RNA-seq eset? Default is `TRUE`.

Value

`list` with slots: *

- `fit`: Result of `lmFit`.
- `mod`: Model matrix used for fit.

Description

Reads raw data files and tries to fix them up so that they can be loaded by `read.ilmm`.

Usage

```r
fix_illum_headers(elist_paths, eset = NULL)
```

Arguments

- `elist_paths`: Path to Illumina raw data files. Usually contain patterns: `non_normalized.txt`, `raw.txt`, or `_supplementary_.txt`
- `eset`: ExpressionSet from `getGEO`.

Value

Character vector for annotation argument to `read.ilmm`. Fixed raw data files are saved with filename ending in `_fixed.txt`
format_dl_annot Format downloaded annotation

Description
Format downloaded annotation

Usage
format_dl_annot(annot)

format_up_annot Format uploaded annotation

Description
Format uploaded annotation

Usage
format_up_annot(up, ref)

get_ch2_mod Get design matrix for two-channel array

Description
Get design matrix for two-channel array

Usage
gech2_mod(eset)

Arguments
eset ExpressionSet with colnames that end in '_red' and '_green' indicating channel and eset$group indicating group membership.

Value
model matrix for use by intraspotCorrelation and lmscFit
get_group_levels
Get group levels for bulk data plots

Description

Get group levels for bulk data plots

Usage

```r
group_levels(pdata)
```

Arguments

- **pdata**
 Data.frame of phenotype data

get_palette
Get a Palette to Distinguish Groups

Description

Get a Pallete to Distinguish Groups

Usage

```r
get_palette(levs, dark = FALSE, with_all = FALSE)
```

Arguments

- **levs**
 Character vector of levels to get colour pallete for.

Value

Character vector with colour codes of length(levs).
get_raw

Download and unpack microarray supplementary files from GEO.

Description

Downloads and unpacks microarray supplementary files from GEO. Files are stored in the supplied data directory under the GSE name.

Usage

get_raw(gse_names, data_dir = getwd())

Arguments

- gse_names: Character vector of GSE names to download.
- data_dir: String specifying directory for GSE folders.

Value

NULL (for download/unpack only).

See Also

load_raw.

Examples

get_raw("GSE41845")

get_sva_mods

Get model matrices for surrogate variable analysis

Description

Used by add_adjusted to create model matrix with surrogate variables.

Usage

get_sva_mods(pdata)

Arguments

- pdata: data.frame of phenotype data with column 'group' and 'pair' (optional).

Value

List with model matrix(mod) and null model matrix (mod0) used for sva.
Description

Get top table

Usage

```r
get_top_table(
  lm_fit,
  groups = c("test", "ctrl"),
  with.es = TRUE,
  robust = FALSE,
  trend = FALSE,
  allow.no.resid = FALSE
)
```

Arguments

- **lm_fit**: Result of `run_limma`
- **groups**: Test and Control group as strings.
- **with.es**: Add 'dprime' and 'vardprime' from `effectsize`? Default is TRUE.
- **robust**: logical, should the estimation of df.prior and var.prior be robustified against outlier sample variances?
- **trend**: logical, should an intensity-dependent trend be allowed for the prior variance? If FALSE then the prior variance is constant. Alternatively, trend can be a row-wise numeric vector, which will be used as the covariate for the prior variance.
- **allow.no.resid**: Allow no residual degrees of freedom? if TRUE and the fit contrast matrix has no residual degrees of freedom, eBayes fit is skipped and the result of `contrasts.fit` is returned.

Value

result of `toptable`
get_vsd

Get variance stabilized data for exploratory data analysis

Description

Get variance stabilized data for exploratory data analysis

Usage

get_vsd(eset)

Arguments

eset ExpressionSet loaded with load_raw.

Value

matrix with variance stabilized expression data.

gs.names

Map between KEGG pathway numbers and names.

Description

Used to map human KEGG pathway numbers to names. Updated Feb 2017.

Usage

data(gs.names)

Format

An object of class character of length 310.

Value

A named character vector of human KEGG pathway names. Names of vector are KEGG pathway numbers.
gslist

Description

Usage

data(gslist)

Format

An object of class list of length 310.

Value

A named list with entrez ids of genes for human KEGG pathways. List names are KEGG pathway numbers.

ilmn.nnum

Count numeric columns in raw Illumina data files

Description

Excludes probe ID cols

Usage

ilmn.nnum(elist_paths)

Arguments

elist_paths Paths to raw illumina data files

Value

Number of numeric columns in elist_paths excluding probe ID columns.
iqr_replicates

Removes features with replicated annotation.

Description

For rows with duplicated annot, highested IQR retained.

Usage

iqr_replicates(eset, annot = "SYMBOL", rm.dup = FALSE)

Arguments

- eset: Annotated eset created by load_raw.
- annot: feature to use to remove replicates.
- rm.dup: remove duplicates (same measure, multiple ids)? Used for Pathway analysis so that doesn’t treat probes that map to multiple genes as distinct measures.

Value

Expression set with unique features at probe or gene level.

is_invertible

Check uploaded bulk pdata to make sure the study design is invertible

Description

Check uploaded bulk pdata to make sure the study design is invertible

Usage

is_invertible(pdata)
load_agil_plat

Load Agilent raw data

Description

Load Agilent raw data

Usage

load_agil_plat(eset, gse_name, gse_dir, ensql)

Arguments

eset
ExpressionSet from getGEO.

gse_name
Accession name for eset.

gse_dir
Direction with Agilent raw data.

ensql
For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Value

ExpressionSet

load_diff

Load previous differential expression analyses.

Description

Loads previous differential expression analyses.

Usage

load_diff(gse_names, data_dir = getwd(), annot = "SYMBOL", postfix = NULL)

Arguments

gse_names
Character vector specifying GSE names to be loaded.

data_dir
String specifying directory of GSE folders.

annot
Level of previous analysis (e.g. "SYMBOL" or "PROBE").

postfix
Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.

Value

Result of previous call to diff_expr.
Examples

```r
library(lydata)

data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
prev <- load_diff(gse_names, data_dir)
```

load_illum_plat

Illumina loader utility for load_plat.

Description

Used by load_plat to load an eset.

Usage

```r
load_illum_plat(eset, gse_name, gse_dir, ensql)
```

Arguments

- `eset` Expression set obtained by `getGEO`.
- `gse_name` String specifying GSE name.
- `gse_dir` String specifying path to GSE folder.

Value

Annotated eset.

See Also

- `load_plat`.

load_plat

Load and pre-process raw Affymetrix, Illumina, and Agilent microarrays.

Description

Load raw files previously downloaded with `get_raw`. Used by `load_raw`.

Usage

```r
load_plat(gse_name, data_dir, gpl_dir, ensql)
```
load_raw

Arguments

gse_names	GSE names.
data_dir	String specifying directory with GSE folder.
gpl_dir	String specifying parent directory to search for previously downloaded GPL.soft files.
ensql	For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Details

Data is normalized, SYMBOL and PROBE annotation are added to fData slot.

Value

List of annotated esets, one for each platform in gse_name.

See Also

get_raw to obtain raw data.

Description

Loads and annotates raw data previously downloaded with get_raw. Supported platforms include Affymetrix, Agilent, and Illumina.

Usage

```r
load_raw(
  gse_names,
  data_dir = getwd(),
  gpl_dir = "..",
  overwrite = FALSE,
  ensql = NULL
)
```

Arguments

gse_names	Character vector of GSE names.
data_dir	String specifying directory with GSE folders.
gpl_dir	String specifying parent directory to search for previously downloaded GPL.soft files.
overwrite	Do you want to overwrite saved esets from previous load_raw?
ensql	For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.
Value

List of annotated esets.

Examples

```r
library(lydata)

data_dir <- system.file("extdata", package = "lydata")
eset <- load_raw("GSE9601", data_dir = data_dir)
```

makeExampleCountsEset Make example ExpressionSet

Description

adapted from DESeq2::makeExampleDESeqDataSet

Usage

```r
makeExampleCountsEset(
  n = 1000,
  m = 12,
  betaSD = 0,
  interceptMean = 4,
  interceptSD = 2,
  dispMeanRel = function(x) 4/x + 0.1,
  sizeFactors = rep(1, m)
)
```

Arguments

- `n` number of rows
- `m` number of columns
- `betaSD` the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)
- `interceptMean` the mean of the intercept betas (log2 scale)
- `interceptSD` the standard deviation of the intercept betas (log2 scale)
- `dispMeanRel` a function specifying the relationship of the dispersions on 2^trueIntercept
- `sizeFactors` multiplicative factors for each sample

Examples

```r
eset <- makeExampleCountsEset()
```
match_prev_eset

Reuse contrast selections from previous analysis.

Description

Transfers user-supplied selections from previous call of diff_expr.

Usage

match_prev_eset(eset, prev_anal)

Arguments

eset Annotated eset. Created by load_raw.
prev_anal One item (for eset) from previous result of diff_expr. If present, previous selections and names will be reused.

Value

Expression set with samples and pData as in prev_anal.

See Also
diff_expr

open_raw_illum

Open raw Illumina microarray files.

Description

Helper function to open raw Illumina microarray files in order to check that they are formatted correctly. For details on correct format, please see 'Checking Raw Illumina Data' in vignette.

Usage

open_raw_illum(gse_names, data_dir = getwd())

Arguments

gse_names Character vector of Illumina GSE names to open.
data_dir String specifying directory with GSE folders.

Value

Character vector of successfully formated Illumina GSE names.
Examples

library(lydata)

Illumina GSE names
illum_names <- c("GSE50841", "GSE34817", "GSE29689")

location of raw data
data_dir <- system.file("extdata", package = "lydata")

open raw data files with default text editor
open_raw_illum(illum_names)

phenoData.ch2

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Description

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Usage

phenoData.ch2(eset)

Arguments

eset ExpressionSet with pData for two-channel Agilent array.

Value

AnnotatedDataFrame with twice as many rows as eset, one for each channel of each array in order all red then all green.

prefix_illum_headers

Run prefix on Illumina raw data files

Description

Run prefix on Illumina raw data files

Usage

prefix_illum_headers(elist_paths)

Arguments

elist_paths Paths to raw Illumina data files
Value

Paths to fixed versions of `elist_paths`

query_ref

Get correlation between query and reference signatures.

Description

Determines the pearson correlation between the query and each reference signature.

Usage

`query_ref(query, ref, sorted = TRUE, ngenes = 200)`

Arguments

- **query**: Named numeric vector of differential expression values for query genes. Usually 'meta' slot of `get_dprimes` result.
- **ref**: A matrix of differential expression to query against (rows are genes, columns are samples).
- **sorted**: Would you like the results sorted by decreasing similarity? Default is `TRUE`.
- **ngenes**: The number of top differentially-regulated (up and down) query genes to use.

Value

Vector of pearson correlations between query and reference signatures.

remove_autonamed

Remove columns that are autonamed by data.table

Description

Auto-named columns start with 'V' followed by the column number.

Usage

`remove_autonamed(ex)`

Arguments

- **ex**: data.frame loaded with `fread`

Value

`ex` with auto-named columns removed.
run_limma

Linear model fitting of eset with limma.

Description

After selecting control and test samples for a contrast, surrogate variable analysis (sva) and linear model fitting with lmFit is performed.

Usage

```r
run_limma(
  eset,
  annot = "SYMBOL",
  svobj = list(sv = NULL),
  numsv = 0,
  filter = TRUE
)
```

Arguments

- `eset` Annotated eset created by load_raw.
- `annot` String, column name in fData. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. Appropriate values are "SYMBOL" (default - for gene level analysis) or "ENTREZID_HS" (for probe level analysis).
- `svobj` Surrogate variable analysis results. Returned from run_sva.
- `numsv` Number of surrogate variables to model.
- `filter` For RNA-seq. Should genes with low counts be filtered? dseqr shiny app performs this step separately. Should be TRUE (default) if used outside of dseqr shiny app.

Details

If analyses need to be repeated, previous results can be reloaded with readRDS and supplied to the prev_anal parameter. In this case, previous selections will be reused.

Value

List with:

- `fit` result of lmFit.
- `mod` model.matrix used for fit
run_limma_setup

Setup ExpressionSet for running limma analysis

Description

Setup ExpressionSet for running limma analysis

Usage

```r
run_limma_setup(eset, prev)
```

Arguments

- `eset` : ExpressionSet
- `prev` : previous result of call to `diff_expr`

Value

`eset` ready for `run_limma`

run_lmfit

Perform lmFit analysis from limma.

Description

If paired samples, runs `duplicateCorrelation` to estimate intra-patient variance.

Usage

```r
run_lmfit(eset, mod, rna_seq = TRUE)
```

Arguments

- `eset` : Annotated eset created by `load_raw`. Non-selected samples and duplicate features removed by `add_contrasts` and `iqr_replicates`.
- `mod` : Model matrix generated by `diff_setup`. With or without surrogate variables.
- `rna_seq` : Is this an RNA-seq eset? Default is `TRUE`.

Value

result from call to limma `lmFit`.
run_select_contrasts Shiny gadget to upload groups and select contrasts

Description

Shiny gadget to upload groups and select contrasts

Usage

run_select_contrasts(
 eset,
 gse_name,
 prev = NULL,
 app_dir = system.file("select_contrasts", package = "crossmeta", mustWork = TRUE),
 port = 3838
)

Arguments

eset ExpressionSet
gse_name GEO accession for the series.
prev Previous result of diff_expr. Used to allow rechecking previous selections.
app_dir Directory to shiny app. For local development use 'inst/select_contrasts'. Default is in 'select_contrasts' sub directory of crossmeta package.
port See runApp().

Value

result of setup_prev. Used to specify sample groups and contrasts for differential expression analysis.

run_sva Run surrogate variable analysis

Description

Run surrogate variable analysis

Usage

run_sva(mods, eset, svanal = TRUE)
Arguments

- **mods**: result of `get_sva_mods`
- **eset**: ExpressionSet
- **svanal**: Should surrogate variable analysis be run? If FALSE, returns dummy result.

Description

Function is useful when number of samples makes manual selection with `diff_expr` error prone and time-consuming. This is often true for large clinical data sets.

Usage

```r
setup_prev(eset, contrasts)
```

Arguments

- **eset**: List containing one expression set with pData 'group' and 'pair' (optional) columns. Name of eset should be the GSE name.
- **contrasts**: Character vector specifying contrasts to analyse. Each contrast must take the form "B-A" where both "B" and "A" are present in eset pData 'group' column. "B" is the treatment group and "A" is the control group.

Value

List containing necessary information for prev_anal parameter of `diff_expr`.

Examples

```r
library(lydata)
library(Biobase)

data_dir <- system.file("extdata", package = "lydata")

gse_name <- c("GSE34817")
eset <- load_raw(gse_name, data_dir)

group <- pData(eset$GSE34817)$characteristics_ch1.1
```
make group names concise and valid
group <- gsub("treatment: ", ",", group)
group <- make.names(group)

add group to eset pData
pData(eset$GSE34817)$group <- group

setup selections
sel <- setup_prev(eset, contrasts = "LY-DMSO")

run differential expression analysis
anal <- diff_expr(eset, data_dir, prev_anal = sel)

symbol_annot

Add hgnc symbol to expression set.

Description

Function first maps entrez gene ids to homologous human entrez gene ids and then to hgnc symbols.

Usage

symbol_annot(eset, gse_name = "", ensql = NULL)

Arguments

eset Expression set to annotate.
gse_name GSE name for eset.
ensql For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Details

Initial entrez gene ids are obtained from bioconductor annotation data packages or from feature data of supplied expression set. Homologous human entrez ids are obtained from homologene and then mapped to hgnc symbols using org.Hs.eg.db. Expression set is expanded if 1:many mappings occur.

Value

Expression set with hgnc symbols ("SYMBOL") and row names ("PROBE") added to fData slot.

See Also

load_raw.
Examples

```r
library(lydata)

# location of raw data
data_dir <- system.file("extdata", package = "lydata")

# load eset
eset <- load_raw("GSE9601", data_dir)[[1]]

# annotate eset (need if load_raw failed to annotate)
eset <- symbol_annot(eset)
```

to_eset
Convert limma object to ExpressionSet

Description

Convert limma object to ExpressionSet

Usage

```r
to_eset(object, eset)
```

Arguments

- `object` an EList of MAList object containing expression data.
- `eset` ExpressionSet from getGEO. Used for annotation.

Value

ExpressionSet using expression data from object and annotation from eset.

to_ma
Convert expression values to MAList

Description

Convert expression values to MAList

Usage

```r
to_ma(y)
```

Arguments

- `y` Expression values from two-channel agilent array in order all red then all green.
which_max_iqr

Value

MAList

Examples

```r
A <- matrix(rnorm(100), ncol = 5)
M <- matrix(rnorm(100), ncol = 5)
MA <- new('MAList', list(M=M, A=A))
colnames(MA) <- letters[1:5]

y <- exprs.MA(MA)
MA2 <- crossmeta:::to_ma(y)
all.equal(MA, MA2)
```

validate_up_annot

Validate uploaded bulk annotation

Description

Validate uploaded bulk annotation

Usage

```r
validate_up_annot(up, ref)
```

which_max_iqr

Get row indices of maximum IQR within annotation groups

Description

Groups by group_by and determines row with maximum IQR.

Usage

```r
which_max_iqr(eset, group_by, x = exprs(eset))
```

Arguments

- `eset` ExpressionSet
- `group_by` Column in fData(eset) to group by
- `x` matrix of expression values to use for IQR

Value

Integer vector of row numbers representing rows with the maximum IQR after grouping by group_by
xls_to_txt

Convert .xls files to .txt

Description

For converting Illumina _Supplementary_.*.xls files to .txt for load_illum_plat.

Usage

```r
xls_to_txt(xls_paths)
```

Arguments

- `xls_paths` Paths to .xls files
Index

* <- run_select_contrasts, 32
* = run_select_contrasts, 32
* GSE run_select_contrasts, 32
* # run_select_contrasts, 32
* analysis run_select_contrasts, 32
* data_dir run_select_contrasts, 32
* data_dir run_select_contrasts, 32
* datasets gs.names, 20
gslist, 21
data run_select_contrasts, 32
* eset run_select_contrasts, 32
* gather run_select_contrasts, 32
* gse_name run_select_contrasts, 32
* gse_name run_select_contrasts, 32
* internal addContrastInput, 5
bulkAnnot, 6
bulkAnnotInput, 6
bulkForm, 6
bulkFormInput, 6
bulkTable, 7
bulkTableOutput, 8
ch2_subset, 8
clean_y, 9
delContrastInput, 9
fit_lm, 15
format_dl_annot, 16
format_up_annot, 16
get_ch2_mod, 16
get_group_levels, 17
get_palette, 17
is_invertible, 22
load_illum_plat, 24
load_plat, 24
match_prev_eset, 27
query_ref, 29
run_lmfit, 31
run_select_contrasts, 32
to_eset, 35
to_ma, 35
validate_up_annot, 36
which_max_iqr, 36
xls_to_txt, 37
* library(lydata) run_select_contrasts, 32
* load_raw(gse_name, run_select_contrasts, 32
* load run_select_contrasts, 32
* location run_select_contrasts, 32
* lydata) run_select_contrasts, 32
* names run_select_contrasts, 32
* of run_select_contrasts, 32
* package run_select_contrasts, 32
* previous run_select_contrasts, 32
* run_select_contrasts(eset, run_select_contrasts, 32
* system.file(extdata, run_select_contrasts, 32
* system.file(system.file, run_select_contrasts, 32
* to_eset run_select_contrasts, 32
* to_ma run_select_contrasts, 32
* validate_up_annot run_select_contrasts, 32
* which_max_iqr run_select_contrasts, 32
* xls_to_txt run_select_contrasts, 32
* z
 run_select_contrasts, 32

add_adjusted, 3
add_sources, 4, 12
add_vsd, 5
addContrastInput, 5

bulkAnnot, 6
bulkAnnotInput, 6
bulkForm, 6
bulkFormInput, 6
bulkPage, 7
bulkPageUI, 7
bulkTable, 7
bulkTableOutput, 8

ch2_subset, 8
clean_y, 9
contrasts.fit, 14, 19
delContrastsInput, 9
diff_expr, 4, 10, 10, 12, 23, 27, 33
duplicateCorrelation, 31
eBayes, 11, 14, 19
effectsize, 12, 19
es_meta, 11
exprs.MA, 13, 13

fdrtool, 12
filter_genes, 13
filterByExpr, 13, 14
fit_ebayes, 14
fit_lm, 15
fix_illum_headers, 15
format_dl_annot, 15
format_up_annot, 16
fread, 29

get_ch2_mod, 16
group_levels, 17
gs_names, 20
gslist, 21

ilmn.nnum, 21
intraspotCorrelation, 16
iqr_replicates, 22
is_invertible, 22

lmFit, 15, 30
lmscFit, 16
load_agil_plat, 23
load_diff, 4, 10–12, 23
load_illum_plat, 24
load_plat, 24
load_raw, 10, 18, 20, 25, 34

makeExampleCountsEset, 26
match_prev_eset, 27

open_raw_illum, 27
phenoData.ch2, 13, 28
plotDensities.MAList, 13
prefix_illum_headers, 28

query_ref, 29
read.ilmn, 15
readRDS, 30
remove_autonamed, 29
run_limma, 14, 19, 30
run_limma_setup, 31
run_lmfit, 31
run_select_contrasts, 32
run_sva, 15, 30, 32
runApp(), 10, 32

setup_prev, 32, 33
sva, 10, 30
symbol_annot, 34

to_eset, 35
to_ma, 35
toptable, 19

validate_up_annot, 36
which_max_iqr, 36
xls_to_txt, 37
zScores, 12