Package ‘csdR’

January 5, 2024

Title Differential gene co-expression
Version 1.8.0
Date 04-02-2021
Description This package contains functionality to run differential gene co-expression across two different conditions.
 The algorithm is inspired by Voigt et al. 2017 and finds Conserved, Specific and Differentiated genes (hence the name CSD).
 This package include efficient and variance calculation by bootstrapping and Welford's algorithm.
Depends R (>= 4.1.0)
Imports WGCNA, glue, RhpcBLASctl, matrixStats, Rcpp
License GPL-3
Encoding UTF-8
NeedsCompilation yes
BugReports https://github.com/AlmaasLab/csdR/issues
URL https://almaaslab.github.io/csdR,
 https://github.com/AlmaasLab/csdR
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
LinkingTo Rcpp
biocViews DifferentialExpression, GraphAndNetwork, GeneExpression, Network
Suggests rmarkdown, knitr, testthat (>= 3.0.0), BiocStyle, magrittr, igraph, dplyr
Config/testthat/edition 3
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/csdR
git_branch RELEASE_3_18
git_last_commit 799118b
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18

Date/Publication 2024-01-05

Author Jakob Peder Pettersen [aut, cre]
 (<https://orcid.org/0000-0002-3485-1634>)

Maintainer Jakob Peder Pettersen <jakobpeder.pettersen@gmail.com>

R topics documented:

- csdR ... 2
- data-expression .. 3
- partial_argsort .. 4
- run_cor_bootstrap 4
- run_csd .. 5

Index 8

csdR

Perform differential co-expression analysis

Description

This package provides functionality to perform differential co-expression analysis by the CSD algorithm presented by Voigt et al. 2017. The main function of the package is `run_csd` which compares gene expression for two conditions and returns values for C, S and D for each gene pair. Also, the underlying function `run_cor_bootstrap` is provided for doing correlation analysis within a condition, but is mostly for experimental and expect use only.

The function `partial_argsort` is aimed specifically at the task of selecting the highest values of C, S and D of the results with minimal computational overhead, but is written also to be useable for other problems of the same type.

For more details on how to approach, please read the vignette for the package or the individual manpages for the functions.

Author(s)

Maintainer: Jakob Peder Pettersen <jakobpeder.pettersen@gmail.com> (ORCID)

References

Voigt A, Nowick K and Almaas E 'A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma' In: *PLOS Computational Biology* 13(9): e1005739. (doi: https://doi.org/10.1371/journal.pcbi.1005739)
Sample expression matrices of thyroid gland tissue for thyroid cancer patients and healthy individuals. These datasets were pre-processed by Gulla et al. (2019). Due to size requirements, only 1000 randomly selected genes are provided in the dataset. Number of samples are 399 and 504 in the healthy controls and the sick samples, respectively.

Usage

```
data(normal_expression)
data(sick_expression)
```

Format

Numeric matrices of normalized gene expression. Genes are in columns, whereas samples are in rows.

Source

For the expression matrix for healthy individuals, GenotypeTissue Expression (GTEx) V7. For the thyroid cancer patients, the data are obtained for the Thyroid Cancer project (THCA) from The Cancer Genome Atlas (TCGA).

References

Gulla, Almaas, Eivind, & Voigt, André (2019). An integrated systems biology approach to investigate transcriptomic data of thyroid carcinoma. NTNU. http://hdl.handle.net/11250/2621725
partial_argsort Extract indecies corresponding to the largest elements

Description
Extractions the indecies of the n largest elements of the input. This procedure is equivalent to `order(x, decreasing = TRUE)[1:n_elements]`, but is much faster and avoids the overhead of sorting discarded elements. This function is useful for extracting the rows in a data frame having the largest values in one of the columns.

Usage
```
partial_argsort(x, n_elements)
```

Arguments
- `x` Numeric vector, the vector containing the numbers to sort.
- `n_elements` Integer scalar, the number of indecies to return.

Value
Numeric vector, the indecies of the largest elements (in sorted order) in x.

Examples
```
x <- c(10L, 5L, -2L, 12L, 15L)
max_indecies <- partial_argsort(x, 3L)
max_indecies
x[max_indecies]
order(x)[1:3]
mtcars[partial_argsort(mtcars$hp, 5L),]
```

run_cor_bootstrap Run bootstrapping of Spearman correlations within a dataset

Description
This function provides the more low-level functionality of bootstrapping the Spearman correlations of the columns within a dataset. Only use this function if you want a low-level interface, else `run_csd` provides a more streamlined approach if you want to do a CSD analysis.
Usage

run_cor_bootstrap(
 x,
 n_it = 20L,
 nThreads = 1L,
 verbose = TRUE,
 iterations_gap = 1L
)

Arguments

x Numeric matrix, the gene expression matrix to analyse. Genes are in columns, samples are in rows.
n_it Integer, number of bootstrap iterations
nThreads Integer, number of threads to use for computations
verbose Logical, should progress be printed?
iterations_gap If output is verbose - number of iterations after issue a status message (Default=1 - displayed only if verbose=TRUE)

Value

A list with two fields

rho Numeric matrix containing the bootstrapped mean of the Spearman correlation between each column
var Numeric matrix containing the bootstrapped variance of the Spearman correlation between each column

Examples

data("normal_expression")
cor_res <- run_cor_bootstrap(
 x = normal_expression,
 n_it = 100, nThreads = 2L
)

Description

This function implements the CSD based on the one presented by Voigt et al. 2017. All pairs of genes are first compared within each condition by the Spearman correlation and the correlation and its variance are estimated by bootstrapping. Finally, the results for the two conditions are compared and C-, S- and D-values are computed and returned.
Usage

run_csd(
 x_1,
 x_2,
 n_it = 20L,
 nThreads = 1L,
 verbose = TRUE,
 iterations_gap = 1L
)

Arguments

x_1 Numeric matrix, the gene expression matrix for the first condition. Genes are in columns, samples are in rows. The columns must be named with the name of the genes. Missing values are not allowed.
x_2 Numeric matrix, the gene expression matrix for the second condition.
n_it Integer, number of bootstrap iterations
nThreads Integer, number of threads to use for computations
verbose Logical, should progress be printed?
iterations_gap If output is verbose - number of iterations after issue a status message (Default=1 - displayed only if verbose=TRUE)

Details

The gene names in x_1 and x_2 do not need to be in the same order, but must be in the same namespace. Only genes present in both datasets will be considered for the analysis.

Value

A data.frame with the additional class attribute csd_res with the results of the CSD analysis. This frame has a row for each pair of genes and has the following columns:

Gene1 Character, the name of the first gene
Gene2 Character, the name of the second gene
rho1 Mean correlation of the two genes in the first condition
rho2 Mean correlation of the two genes in the second condition
var1 The estimated variance of rho1 determined by bootstrapping
var2 The estimated variance of rho2 determined by bootstrapping
cVal Numeric, the conserved score. A high value indicates that the co-expression of the two genes have the same sign in both conditions
sVal Numeric, the specific score. A high value indicates that the co-expression of the two genes have a high degree of co-expression in one condition, but not the other.
dVal Numeric, the differentiated score. A high value indicates that the co-expression of the two genes have a high degree of co-expression in both condition, but the sign of co-expression is different.
run_csd

References

Voigt A, Nowick K and Almaas E ‘A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma’ In: *PLOS Computational Biology* 13(9): e1005739. (doi: https://doi.org/10.1371/journal.pcbi.1005739)

Examples

data("sick_expression")
data("normal_expression")
cor_res <- run_csd(
 x_1 = sick_expression, x_2 = normal_expression,
 n_it = 100, nThreads = 2L
)
c_max <- max(cor_res$cVal)
Index

* datasets
 - data-expression, 3
* internal
 - csdR, 2

csdR, 2
csdR-package (csdR), 2
data-expression, 3
normal_expression (data-expression), 3
partial_argsort, 2, 4
run_cor_bootstrap, 2, 4
run_csd, 2, 4, 5
sick_expression (data-expression), 3