Package ‘cummeRbund’

March 6, 2024

Title Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data.

Version 2.44.0

Date 2013-04-22

Author L. Goff, C. Trapnell, D. Kelley

Description Allows for persistent storage, access, exploration, and manipulation of Cufflinks high-throughput sequencing data. In addition, provides numerous plotting functions for commonly used visualizations.

Imports methods, plyr, BiocGenerics, S4Vectors (>= 0.9.25), Biobase

Depends R (>= 2.7.0), BiocGenerics (>= 0.3.2), RSQLite, ggplot2, reshape2, fastcluster, rtracklayer, Gviz

Suggests cluster, plyr, NMFN, stringr, GenomicFeatures, GenomicRanges, rjson

Maintainer Loyal A. Goff <lgoff@csail.mit.edu>

License Artistic-2.0

LazyLoad yes

biocViews HighThroughputSequencing, HighThroughputSequencingData, RNAseq, RNAseqData, GeneExpression, DifferentialExpression, Infrastructure, DataImport, DataRepresentation, Visualization, Bioinformatics, Clustering, MultipleComparisons, QualityControl

git_url https://git.bioconductor.org/packages/cummeRbund

git_branch RELEASE_3_18

git_last_commit e4179c6

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-06
R topics documented:

cummeRbund-package .. 3
addFeatures .. 5
count-methods .. 7
countMatrix ... 8
csBoxplot ... 9
csCluster ... 10
csClusterPlot ... 11
csDendro ... 12
csDensity ... 13
csDistHeat ... 14
csHeatmap ... 15
csScatter ... 17
csSpecificity ... 18
csVolcano ... 19
CuffData-class .. 20
CuffDist-class .. 21
CuffFeature-class .. 22
CuffFeatureSet-class ... 24
CuffGene-class .. 25
CuffGeneSet-class .. 27
CuffSet-class .. 28
diffData ... 30
Dimensionality Reduction .. 31
dispersionPlot .. 32
distValues .. 33
Exploratory Analysis ... 34
expressionBarplot ... 35
expressionPlot .. 37
featureNames .. 38
features ... 39
findGene ... 40
findSimilar ... 41
fpkm-methods .. 42
fpkmMatrix ... 43
getFeatures .. 44
gene ... 45
geneId ... 46
genes ... 47
genes ... 48
getRepLevels .. 49
getSig ... 50
getSigTable ... 51
JSdist ... 52
JSdistFromP .. 53
JSdistVec ... 54
makeprobs .. 55
cummeRbund-package

cummeRbund: The finishing touch on your Tuxedo workflow. Analysis, manipulation, and visualization of Cufflinks HTS data.

Description

Allows for persistent storage, access, and manipulation of Cufflinks high-throughput sequencing data. In addition, provides numerous plotting functions for commonly used visualizations.

Details

- **Package:** cummeRbund
- **Version:** 0.1.3
- **Suggests:** R (&= 2.7.0), RSQLite, reshape2, ggplot2, methods
- **Depends:** R
- **License:** MIT License
- **LazyLoad:** yes
- **biocViews:** HighThroughputSequencing, HighThroughputSequencingData, RNAseq, RNAseqData, GeneExpression, DifferentialExpression, DataImport, DataRepresentation, Visualization, Bioinformatics, Clustering, MultipleComparisons, QualityControl
- **Packaged:** 2011-08-05 18:03:50 UTC; lgoff
- **Built:** R 2.12.1; 2011-08-05 18:03:57 UTC; unix

Index:

- CuffData-class Class "CuffData"
- CuffDist-class Class "CuffDist"
- CuffFeature-class Class "CuffFeature"
- CuffFeatureSet-class Class "CuffFeatureSet"
CuffGene-class Class "CuffGene"
CuffGeneSet-class Class "CuffGeneSet"
CuffSet-class Class "CuffSet"
JSdist Jensen-Shannon distance on columns
addFeatures addFeatures
addFeatures-methods ~~ Methods for Function addFeatures in Package 'cummeRbund' ~~
createDB createDB
csBoxplot csBoxplot
csBoxplot-methods ~~ Methods for Function csBoxplot in Package 'cummeRbund' ~~
csDensity Density plot of CuffData
csDensity-methods ~~ Methods for Function csDensity in Package 'cummeRbund' ~~
csHeatmap csHeatmap
csHeatmap-methods ~~ Methods for Function csHeatmap in Package 'cummeRbund' ~~
csScatter Scatter Plot
csScatter-methods ~~ Methods for Function csScatter in Package 'cummeRbund' ~~
csVolcano Volcano Plot
csVolcano-methods ~~ Methods for Function csVolcano in Package 'cummeRbund' ~~
cummeRbund-package cummeRbund: The finishing touch on your Tuxedo workflow. Analysis, manipulation, and visualization of Cufflinks HTS data.
diffData Differential comparison data
diffData-methods ~~ Methods for Function diffData in Package 'cummeRbund' ~~
dim-methods ~~ Methods for Function dim in Package 'base' ~~
expressionBarplot Barplot
expressionBarplot-methods ~~ Methods for Function expressionBarplot in Package 'cummeRbund' ~~
expressionPlot Expression Plot
expressionPlot-methods ~~ Methods for Function expressionPlot in Package 'cummeRbund' ~~
featureNames Feature names
featureNames-methods ~~ Methods for Function featureNames in Package 'cummeRbund' ~~
features Features
features-methods ~~ Methods for Function features in Package 'cummeRbund' ~~
fpkm Retrieve FPKM values
fpkm-methods ~~ Methods for Function fpkm in Package 'cummeRbund' ~~
addFeatures

addFeatures

Description

Adds a data.frame of features to a the SQLite backend database.
addFeatures

Usage

```r
## S4 method for signature 'CuffSet'
addFeatures(object, features, level="genes", ...)
```

Arguments

- `object`: An object of class (`'CuffSet'` or `'CuffData'`)
- `features`: A data.frame of features to add. 1st column MUST contain ids (ie. gene_id for 'gene' features, isoform_id for 'isoform' features, etc)
- `level`: One of c(`'genes'`, `'isoforms'`, `'TSS'`, `'CDS'`) to indicate which type of features you are being added, and to what data-level.
- `...`: Additional arguments.

Details

None

Value

None

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```r
#None yet.
```
count-methods

Retrieve count values (raw and normalized)

Description

Returns a data.frame from @count slot

Details

Returns a data.frame of count values.

Value

A data.frame of count-level values for a set of features.

Methods

signature(object = "CuffData")
signature(object = "CuffFeature")
signature(object = "CuffFeatureSet")

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

data(sampleData)
count(PINK1)
Description

Retrieve count values as gene by condition matrix

Usage

```r
## S4 method for signature 'CuffData'
countMatrix(object, fullnames=FALSE, sampleIdList)
## S4 method for signature 'CuffData'
repCountMatrix(object, fullnames=FALSE, repIdList)
```

Arguments

- `object`: An object of class ('CuffData', 'CuffFeatureSet', 'CuffGeneSet', 'CuffGene', or 'CuffFeature')
- `fullnames`: A logical value whether or not to concatenate gene_short_name and tracking_id values (easier to read labels)
- `sampleIdList`: A vector of sample names to subset the resulting matrix.
- `repIdList`: A vector of replicate names to subset the resulting replicate matrix.

Details

None.

Value

A feature x condition matrix of count values.

Note

None

Author(s)

Loyal A. Goff

References

None.

Examples

```r
data(sampleData)
countMatrix(sampleGeneSet)
repCountMatrix(sampleGeneSet)
```
Description

Creates a ggplot2 plot object with a geom_box layer displaying summary statistics for FPKM values across samples (x).

Usage

```r
## S4 method for signature 'CuffData'
csBoxplot(object, logMode=TRUE, pseudocount=0.0001, replicates=FALSE,...)
```

Arguments

- `object`: An object of class CuffData.
- `logMode`: A logical argument to log10-transform FPKM values.
- `pseudocount`: Value added to FPKM to avoid log-transform issues.
- `replicates`: A logical value whether or not to plot individual replicates or aggregate condition values.
- `...`: Additional arguments to csBoxplot

Details

None

Value

A ggplot2 plot object with a geom_box layer.

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```r
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Read cufflinks data and create CuffSet object
genesis<-a@genes #CuffData object for all genes
csBoxplot(genesis)
```
Description

Returns a ggplot2 plot object with geom_line layer plotting FPKM values over conditions faceted by k-means clustering clusters. (Euclidean). This is very crude at this point. This does not return any of the clustering information directly, but if you want it, you can retrieve it from the ggplot object returned.

Usage

```r
## S4 method for signature 'CuffFeatureSet'
.csCluster(object,k,logMode=T,method = "none",pseudocount=1,...)
```

Arguments

- `object`: An object of class CuffFeatureSet.
- `k`: Number of pre-defined clusters to attempt to find.
- `logMode`: A logical value whether or not to log-transform the FPKM values prior to clustering.
- `method`: Distance function to use when computing cluster solution. Default "none" will use the Jensen-Shannon distance (JSdist). Provide a function that returns a dist object on rows.
- `pseudocount`: Value added to FPKM to avoid log-transform issues.
- `...`: Additional arguments to pam.

Details

Uses 'kmeans' function.

Author(s)

Loyal A. Goff

Source

None

References

None.

Examples

```r
data(sampleData)
.csCluster(sampleGeneSet,4)
```
csClusterPlot

Description

Replaces the default plotting behavior of the old csCluster. Takes as an argument the output of csCluster and plots expression profiles of features facet by cluster.

Usage

csClusterPlot(clustering, pseudocount=1.0, logMode=FALSE, drawSummary=TRUE, sumFun=mean_cl_boot)

Arguments

clustering The output of csCluster. (Must be the output of csCluster. Only this data format contains the necessary information for csClusterPlot.)
pseudocount Value added to FPKM to avoid log transformation issues.
logMode Logical argument whether to plot FPKM with log axis (Y-axis).
drawSummary Logical value whether or not to draw a summary line for each cluster (by default this is the cluster mean)
sumFun Summary function used to by drawSummary (default: mean_cl_boot)

Details

This replaces the default plotting behavior of the old csCluster() method. This was necessary so as to preserve the cluster information obtained by csCluster in a stable format. The output of csClusterPlot is a ggplot2 object of expressionProfiles faceted by cluster ID.

Value

A ggplot2 object of expressionProfiles faceted by cluster ID.

Note

None.

Author(s)

Loyal A. Goff

References

None.
Examples

```r
data(sampleData)
myClustering<-csCluster(sampleGeneSet,k=4)
csClusterPlot(myClustering)
```

Description

Creates a grid graphics plot of a dendrogram of Jensen-Shannon distances between conditions of a CuffFeatureSet or CuffGeneSet object.

Usage

```r
## S4 method for signature 'CuffFeatureSet'
csDendro(object,logMode=T,pseudocount=1,replicates=FALSE)
## S4 method for signature 'CuffData'
csDendro(object,logMode=T,pseudocount=1,replicates=FALSE,...)
```

Arguments

- `object`: An object of class 'CuffFeatureSet' or 'CuffGeneSet'
- `logMode`: A logical argument to log10-transform FPKM values prior to plotting.
- `pseudocount`: Value to be added to FPKM for appropriate log transformation and clustering. (Avoids zero-based errors)
- `replicates`: A logical value whether or not to plot individual replicates or aggregate condition values.
- `...`: Additional arguments to csHeatmap

Details

None

Value

Returns a dendrogram object and plots that object by default.

Note

None

Author(s)

Loyal A. Goff and Cole Trapnell
csDensity

References
None.

Examples

data(sampleData)
csDendro(sampleGeneSet)

csDensity
Density plot of CuffData

Description
Creates a smoothed density plot, by sample, for log10 FPKM values from a cuffdiff run.

Usage

```r
## S4 method for signature 'CuffData'
csDensity(object, logMode=TRUE, pseudocount=0, labels, features=FALSE, replicates=FALSE,...)
## S4 method for signature 'CuffFeatureSet'
csDensity(object, logMode=TRUE, pseudocount=0, labels, features=FALSE, replicates=FALSE,...)
```

Arguments

- `object`: An object of class CuffData.
- `logMode`: A logical value of whether or not to log10-transform FPKM values. By default this is TRUE.
- `pseudocount`: Pseudocount value added to FPKM to avoid errors in log-transformation of true zero values.
- `labels`: A list of tracking_id values or gene_short_name values used for 'callout' points on the density plot for reference. (Not implemented yet).
- `features`: Will include all fields from 'features' slot in returned ggplot object. Useful for further manipulations of plot object using feature-level attributes (e.g. gene_type, class_code, etc)
- `replicates`: A logical value whether or not to plot individual replicates or aggregate condition values.
- `...`: Additional arguments

Details
Creates a density plot, by sample, for log10-transformed FPKM values from a cuffdiff run.

Value
A ggplot2 plot object
Note
None

Author(s)
Loyal A. Goff

References
None

Examples
```
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object from sample data
genes<-a@genes #Create CuffData object for all 'genes'
d<-csDensity(genes) #Create csDensity plot
d #Render plot
```

Description

Creates a ggplot plot object with a geom_tile layer of JS Distance values between samples or genes.

Usage
```
## S4 method for signature 'CuffFeatureSet'
csDistHeat(object, replicates=F, samples.not.genes=T,
            logMode=T, pseudocount=1.0,
            heatscale=c(low='lightyellow',mid='orange',high='darkred'),
            heatMidpoint=NULL, ...)
```

Arguments

- **object**: An object of class 'CuffFeatureSet' or 'CuffGeneSet'
- **replicates**: A logical argument whether or not to use individual replicate FPKM values as opposed to condition FPKM estimates. (default: FALSE)
- **samples.not.genes**: Compute distances between samples rather than genes. If False, compute distances between genes.
- **logMode**: A logical argument to log10-transform FPKM values prior to plotting.
- **pseudocount**: Value to be added to FPKM for appropriate log transformation and clustering. (Avoids zero-based errors)
- **heatscale**: A list with min length=2, max length=3 that describe the the color scale.
- **heatMidpoint**: Value for midpoint of color scale.
- **...**: Additional arguments to csHeatmap
csHeatmap

Details
None

Value
A ggplot2 plot object with a geom_tile layer to display distance between samples or genes.

Note
None

Author(s)
Loyal A. Goff, Cole Trapnell, and David Kelley

References
None

Examples
data(sampleData)
csDistHeat(sampleGeneSet)

Description
Creates a ggplot plot object with a geom_tile layer of FPKM values per feature and sample.

Usage
```r
## S4 method for signature 'CuffFeatureSet'
csHeatmap(object, rescaling='none', clustering='none', labCol=T, labRow=T, logMode=T, pseudocount=1.0, border=FALSE, heatscale=c(low='lightyellow', mid='orange', high='darkred'), heatMidpoint=NULL, fullnames = T, replicates=FALSE, method='none', ...)
## S4 method for signature 'CuffGeneSet'
csFoldChangeHeatmap(object, control_condition, replicate_num=NULL, clustering='none', labCol=T, labRow=T, logMode=F, pseudocount=1.0, border=FALSE, heatscale=c(low='steelblue', mid='white', high='tomato'), heatMidpoint=0, fullnames=T, replicates=FALSE, method='none', heatRange=3, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class 'CuffFeatureSet' or 'CuffGeneSet'</td>
</tr>
<tr>
<td>control_condition</td>
<td>A character argument indicating which condition should be used as the denom-</td>
</tr>
<tr>
<td></td>
<td>inator for fold change. (e.g. "Day0", "Control", etc)</td>
</tr>
<tr>
<td>replicate_num</td>
<td>If replicates == TRUE, you must specify both a control condition and a replicate number to use as the denominator.</td>
</tr>
</tbody>
</table>
rescaling Rescaling can either be 'row' or 'column' OR you can pass rescale a function
that operates on a matrix to do your own rescaling. Default is 'none'.
clustering Clustering can either be 'row','column','none', or 'both', in which case the ap-
propriate indices are re-ordered based on the pairwise Jensen-Shannon distance
of FPKM values.
labCol A logical argument to display column labels.
labRow A logical argument to display row labels.
logMode A logical argument to log10-transform FPKM values prior to plotting.
pseudocount Value to be added to FPKM for appropriate log transformation and clustering.
(Avoids zero-based errors)
border A logical argument to draw border around plot.
heatscale A list with min length=2, max length=3 that detail the low,mid,and high colors
to build the color scale.
heatMidpoint Value for midpoint of color scale.
fullnames A logical value whether to use 'fullnames' (concatenated gene_short_name and
gene_id) for rows in heatmap. Default [TRUE].
replicates A logical value whether or not to plot individual replicates or aggregate condi-
tion values.
method Function to be used for clustering. Default is JS-distance. You can pass your
own function to this argument as long as the output is an instance of the 'dist'
class and is applied to the rows of the input matrix.
heatRange Numerical argument for upper bound on log fold change to be visualized.
... Additional arguments to csHeatmap

Details
None

Value
A ggplot2 plot object with a geom_tile layer to display FPKM values by sample (x) and feature (y)

Note
None

Author(s)
Loyal A. Goff and Cole Trapnell

References
None.

Examples
data(sampleData)
csHeatmap(sampleGeneSet)
csScatter

Scatter Plot

Description
A scatter plot comparing the FPKM values from two samples in a cuffdiff run.

Usage
S4 method for signature 'CuffData'
csScatter(object, x, y, logMode=TRUE, pseudocount=1.0, labels, smooth=FALSE, colorByStatus = FALSE, drawRug=TRUE, ...)
S4 method for signature 'CuffData'
csScatterMatrix(object,replicates=FALSE,logMode=TRUE,pseudocount=1.0, hexbin=FALSE, useCounts=FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class ('CuffData', 'CuffFeatureSet')</td>
</tr>
<tr>
<td>x</td>
<td>Sample name for x axis</td>
</tr>
<tr>
<td>y</td>
<td>Sample name for y axis</td>
</tr>
<tr>
<td>logMode</td>
<td>Logical argument to render axes on log10 scale (default: T)</td>
</tr>
<tr>
<td>replicates</td>
<td>Logical argument whether or not to draw individual replicate values instead of condition values. (default: T)</td>
</tr>
<tr>
<td>pseudocount</td>
<td>Value to add to zero FPKM values for log transformation (default: 0.0001)</td>
</tr>
<tr>
<td>smooth</td>
<td>Logical argument to add a smooth-fit regression line</td>
</tr>
<tr>
<td>labels</td>
<td>A list of tracking_ids or gene_short_names that will be 'callout' points in the plot for reference. Useful for finding genes of interest in the field. Not implemented yet.</td>
</tr>
<tr>
<td>colorByStatus</td>
<td>A logical argument whether or not to color the points by 'significant' Y or N. [Default = FALSE]</td>
</tr>
<tr>
<td>drawRug</td>
<td>A logical argument whether or not to draw the rug for x and y axes [Default = TRUE]</td>
</tr>
<tr>
<td>hexbin</td>
<td>Logical value whether or not to visualize overplotting with hexbin.</td>
</tr>
<tr>
<td>useCounts</td>
<td>Logical value whether or not to visualize overplotting with hexbin.</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments to csScatter</td>
</tr>
</tbody>
</table>

Details
None

Value

ggplot object with geom_point and geom_rug layers
csSpecificity

Note
None

Author(s)
Loyal A. Goff

References
None

Examples

```r
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object from sample data
genes<-a@genes #Create CuffData object for all genes
s<-csScatter(genes,'hESC','Fibroblasts',smooth=TRUE) #Create plot object
s #render plot object
```

Description

Returns a matrix of 'Specificity scores' \(S\) defined as \(1-JSD(p_g,q_i)\) where \(p_g\) is the Log10+1 expression profile of a gene \(g\) across all conditions \(j\), collapsed into a probability distribution, and \(q_i\) is the unit vector of 'perfect expression' in a given condition \(i\).

Usage

```r
## S4 method for signature 'CuffFeatureSet'
csSpecificity(object,logMode=T,pseudocount=1,relative=FALSE,...)
## S4 method for signature 'CuffData'
csSpecificity(object,logMode=T,pseudocount=1,relative=FALSE,...)
```

Arguments

- `object`: An object of class CuffFeatureSet, CuffGeneSet, or CuffData.
- `logMode`: A logical argument to log10-transform FPKM values prior to plotting.
- `pseudocount`: Value to be added to FPKM for appropriate log transformation and clustering. (Avoids zero-based errors)
- `relative`: A logical argument that when TRUE, will scale the \(S\) values from 0-1 by dividing by max(\(S\))
- `...`: Additional arguments to fpkmMatrix.

Details
None
Author(s)
Loyal A. Goff

Source
None

References
None.

Examples

data(sampleData)
csSpecificity(sampleGeneSet)

Description

Creates a volcano plot of log fold change in expression vs -log(pval) for a pair of samples (x,y)

Usage

```r
## S4 method for signature 'CuffData'
csVolcano(object, x, y, alpha=0.05, showSignificant=TRUE, features=FALSE, xlimits = c(-20, 20), ...)
## S4 method for signature 'CuffData'
csVolcanoMatrix(object, alpha=0.05, xlimits=c(-20,20), mapping=aes(), ...)
```

Arguments

- `object`: An object of class CuffData, CuffFeatureSet, or CuffGeneSet
- `x`: Sample name from 'samples' table for comparison
- `y`: Sample name from 'samples' table for comparison
- `alpha`: Provide an alpha cutoff for visualizing significant genes
- `showSignificant`: A logical value whether or not to distinguish between significant features or not (by color).
- `features`: Will include all fields from 'features' slot in returned ggplot object. Useful for further manipulations of plot object using feature-level attributes (e.g. gene_type, class_code, etc)
- `xlimits`: Set boundaries for x limits to avoid infinity plotting errors. [Default c(-20,20)]
- `mapping`: Passthrough argument for ggplot aesthetics. Can be ignored completely.
- `...`: Additional arguments
Details
This creates a 'volcano' plot of fold change vs. significance for a pairwise comparison of genes or features across two different samples.

Value
A ggplot2 plot object

Note
None

Author(s)
Loyal A. Goff

References
None.

Examples
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object
genes<-a@genes #Create cuffData object for all genes
v<-csVolcano(genes,"hESC","Fibroblasts") # Volcano plot of all genes for conditions x='hESC' and y='Fibroblast'
v #print plot

CuffData-class Class "CuffData"

Description
A 'pointer' class for all information (FPKM, annotation, differential expression) for a given feature type (genes, isoforms, TSS, CDS). The methods for this function communicate directly with the SQL backend to present data to the user.

Objects from the Class
Objects can be created by calls of the form new("CuffData", DB, tables, filters, type, idField, ...).

Slots
DB: Object of class "SQLiteConnection" ~~
tables: Object of class "list" ~~
filters: Object of class "list" ~~
type: Object of class "character" ~~
idField: Object of class "character" ~~
CuffDist-class

Description

A 'pointer' class to information relative to the distribution-level tests (promoters, splicing, and relative CDS usage)

Objects from the Class

Objects can be created by calls of the form new("CuffDist", DB, table, type, idField, ...).
Slots
- **DB**: Object of class "SQLiteConnection"
- **table**: Object of class "character"
- **type**: Object of class "character"
- **idField**: Object of class "character"

Methods
- **dim** signature(x = "CuffDist"): ...
- **samples** signature(x = "CuffDist"): ...
- **DB** signature(object = "CuffDist"): Accessor for @DB slot

Note
None

Author(s)
Loyal A. Goff

References
None

See Also
None

Examples
```
showClass("CuffDist")
```

Description
A 'data' container class for all FPKM, annotation, and differential expression data for a single feature (gene, isoform, TSS, or CDS).

Objects from the Class
Objects can be created by calls of the form `new("CuffFeature", annotation, fpkm, diff, ...)`.
Slots

- annotation: Object of class "data.frame"
- fpkm: Object of class "data.frame"
- diff: Object of class "data.frame"
- repFpkm: Object of class "data.frame"
- count: Object of class "data.frame"
- genome: Object of class "character"

Methods

- fpkmMatrix signature(object="CuffFeature"): ...
- repFpkmMatrix signature(object = "CuffFeature"): ...
- length signature(x = "CuffFeature"): ...

Accessors

- annotation signature(object="CuffFeature"): Access @annotation slot
- diffData signature(object="CuffFeature"): Access @diff slot
- samples signature(object="CuffFeature"): Get vector of samples

Note

'CuffGene' is a superclass of 'CuffFeature' that links gene information for a given gene with all isoform-, TSS-, and CDS-level data for the given gene.

Author(s)

Loyal A. Goff

References

None

See Also

CuffGene

Examples

showClass("CuffFeature")
Description

A 'data' container class for all FPKM, annotation, and differential expression data for a set of features (genes, isoforms, TSS, CDS).

Objects from the Class

Objects can be created by calls of the form \texttt{new("CuffFeatureSet", \texttt{annotation, fpkm, diff, \ldots})}.

Slots

\begin{itemize}
 \item \texttt{annotation}: Object of class \texttt{"data.frame"}~~
 \item \texttt{fpkm}: Object of class \texttt{"data.frame"}~~
 \item \texttt{diff}: Object of class \texttt{"data.frame"}~~
 \item \texttt{repFpkm}: Object of class \texttt{"data.frame"}~~
 \item \texttt{count}: Object of class \texttt{"data.frame"}~~
 \item \texttt{genome}: Object of class \texttt{"character"}~~
\end{itemize}

Methods

\begin{itemize}
 \item \texttt{diffData} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{featureNames} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{features} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{fpkmMatrix} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{repFpkmMatrix} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{countMatrix} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{samples} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
 \item \texttt{length} \texttt{signature\{object = "CuffFeatureSet"\}: ...}
\end{itemize}

Accessors

\begin{itemize}
 \item \texttt{annotation} \texttt{signature\{object="CuffFeatureSet"\}: Access \texttt{@\texttt{annotation}} slot}
\end{itemize}

Note

None.

Author(s)

Loyal A. Goff
CuffGene-class

References
None.

See Also
CuffGeneSet

Examples
showClass("CuffFeatureSet")

CuffGene-class Class "CuffGene"

Description
A 'data' container class for all FPKM, annotation, and differential expression Data (as well as for all linked features) for a given gene.

Objects from the Class
Objects can be created by calls of the form new("CuffGene", id, isoforms, TSS, CDS, promoters, splicing, relCDS, annotation, fpkm, diff,...).

Slots
id: Object of class "character" ~~
isoforms: Object of class "CuffFeature" ~~
TSS: Object of class "CuffFeature" ~~
CDS: Object of class "CuffFeature" ~~
promoters: Object of class "CuffFeature" ~~
relCDS: Object of class "CuffFeature" ~~
splicing: Object of class "CuffFeature" ~~
annotation: Object of class "data.frame" ~~
genome: Object of class "character" ~~
fpkm: Object of class "data.frame" ~~
diff: Object of class "data.frame" ~~
features: Object of class "data.frame" ~~

Extends
Class "CuffFeature", directly.
Methods

- **length** signature(object="CuffFeature"): Part of length validation (internal use only)
- **makeGeneRegionTrack** signature(object="CuffFeature"): Creates a GeneRegionTrack object (see package Gviz) from a CuffGene object.
- **genePlot** signature(object="CuffFeature"): Internal use only.
- **csPie** signature(object="CuffGene"): Allows for visualization of relative isoform proportion as a pie chart by condition (or optionally as stacked bar charts by adding + coord_cartesian())

Accessors

- **genes** signature(object = "CuffGene"): Access @genes slot
- **isoforms** signature(object = "CuffGene"): Access @isoforms slot
- **TSS** signature(object = "CuffGene"): Access @TSS slot
- **CDS** signature(object = "CuffGene"): Access @CDS slot
- **promoters** signature(object = "CuffGene"): Access @CDS slot
- **relCDS** signature(object = "CuffGene"): Access @CDS slot
- **splicing** signature(object = "CuffGene"): Access @CDS slot
- **features** signature(object = "CuffGene"): Access @features slot

Note

None.

Author(s)

Loyal A. Goff

References

None.

See Also

- **CuffFeature**

Examples

- `showClass("CuffGene")`
CuffGeneSet-class

Class "CuffGeneSet"

Description

A 'data' container class for all FPKM, annotation, and differential expression data (an associated features) for a given set of genes.

Objects from the Class

Objects can be created by calls of the form `new("CuffGeneSet", annotation, fpkm, diff, ...).`

Slots

- `ids`: Object of class "character"
- `isoforms`: Object of class "CuffFeatureSet"
- `TSS`: Object of class "CuffFeatureSet"
- `CDS`: Object of class "CuffFeatureSet"
- `promoters`: Object of class "CuffFeatureSet"
- `relCDS`: Object of class "CuffFeatureSet"
- `splicing`: Object of class "CuffFeatureSet"
- `annotation`: Object of class "data.frame"
- `fpkm`: Object of class "data.frame"
- `diff`: Object of class "data.frame"

Extends

Class "CuffFeatureSet", directly.

Methods

No methods defined with class "CuffGeneSet" in the signature.

Accessors

- `genes` signature(object = "CuffGeneSet"): Access @genes slot
- `isoforms` signature(object = "CuffGeneSet"): Access @isoforms slot
- `TSS` signature(object = "CuffGeneSet"): Access @TSS slot
- `CDS` signature(object = "CuffGeneSet"): Access @CDS slot
- `promoters` signature(object = "CuffGeneSet"): Access @promoters slot
- `relCDS` signature(object = "CuffGeneSet"): Access @relCDS slot
- `splicing` signature(object = "CuffGeneSet"): Access @splicing slot
Note
None.

Author(s)
Loyal A. Goff

References
None.

See Also
CuffFeatureSet

Examples
showClass("CuffGeneSet")

CuffSet-class Class "CuffSet"

Description
A 'pointer' class to connect to, and retrieve data from the SQLite backend database.

Objects from the Class
Objects can be created by calls of the form new("CuffSet", DB, conditions, genes, isoforms, TSS, CDS, promoters, splicing, relCDS, ...). Available methods are primary accessors to retrieve CuffGeneSet or CuffGene objects for manipulation.

Slots
DB: Object of class "SQLiteConnection" ~~
conditions: Object of class "data.frame" ~~
genes: Object of class "CuffData" ~~
isoforms: Object of class "CuffData" ~~
phenoData: Object of class "data.frame" ~~
TSS: Object of class "CuffData" ~~
CDS: Object of class "CuffData" ~~
promoters: Object of class "CuffDist" ~~
splicing: Object of class "CuffDist" ~~
relCDS: Object of class "CuffDist" ~~
conditions: Object of class "data.frame" ~~
Methods

[signature(x = "CuffSet"):: ...

Accessors

DB signature(object="CuffSet"): Access @DB slot
genes signature(object = "CuffSet"): Access @genes slot
isoforms signature(object = "CuffSet"): Access @isoforms slot
TSS signature(object = "CuffSet"): Access @TSS slot
CDS signature(object = "CuffSet"): Access @CDS slot
promoters signature(object = "CuffSet"): Access @promoters slot
splicing signature(object = "CuffSet"): Access @splicing slot
relCDS signature(object = "CuffSet"): Access @relCDS slot
varModel signature(object = "CuffSet"): Access varModel info

Note

None.

Author(s)

Loyal A. Goff

References

None.

See Also

None.

Examples

showClass("CuffSet")
diffData

Description
An accessor method to retrieve differential expression data from a 'CuffData', 'CuffFeatureSet', or 'CuffFeature' object

Usage
S4 method for signature 'CuffData'
diffData(object, x, y, features=FALSE)
S4 method for signature 'CuffData'
diffTable(object, logCutoffValue=99999)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>An object of class ('CuffData' or 'CuffFeatureSet')</td>
</tr>
<tr>
<td><code>x</code></td>
<td>Optional, if <code>x</code> and <code>y</code> are both missing, data for all pairwise differential comparisons are returned, otherwise if <code>x</code> and <code>y</code> are sample names from the 'samples' table, than only differential data pertaining to those two samples are returned.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>See 'x'</td>
</tr>
<tr>
<td><code>features</code></td>
<td>A logical value that returns all feature-level data as part of data.frame when true. object must be of class 'CuffData'.</td>
</tr>
<tr>
<td><code>logCutoffValue</code></td>
<td>Cutoff value for FC estimates to convert to [-]Inf values. Should never really be needed...</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments.</td>
</tr>
</tbody>
</table>

Details
None

Value
A data.frame object

Note
None

Author(s)
Loyal A. Goff

References
None
Examples

```r
data(sampleData)
diff<-diffData(sampleGeneSet) #returns a dataframe of differential expression data from sample CuffGeneSet object.
```

Description

Dimensionality reduction plots for feature selection and extraction for cummeRbund

Usage

```r
## S4 method for signature 'CuffData'
MDSplot(object,replicates=FALSE,logMode=TRUE,pseudocount=1.0)
## S4 method for signature 'CuffData'
PCAplot(object,x="PC1", y="PC2",replicates=FALSE,pseudocount=1.0,scale=TRUE,showPoints = TRUE,...)
```

Arguments

- `object`: The output of class CuffData from which to draw expression estimates. (e.g. genes(cuff))
- `x`: For PCAplot, indicates which principal component is to be presented on the x-axis (e.g. "PC1","PC2","PC3", etc)
- `y`: See x.
- `pseudocount`: Value added to FPKM to avoid log transformation issues.
- `logMode`: Logical value whether or not to use log-transformed expression estimates (default: TRUE)
- `replicates`: A logical value to indicate whether or not individual replicate expression estimates will be used.
- `scale`: For PCAplot, a logical value passed directly to prcomp.
- `showPoints`: For PCAplot, a logical value whether or not to display individual gene values on final PCA plot.
- `...`: Additional passthrough arguments (may not be fully implemented yet).

Details

These methods attempt to project a matrix of expression estimates across conditions and/or replicates onto a smaller number of dimensions for feature selection, feature extraction, and can also be useful for outlier detection.

Value

A ggplot2 object.
dispersionPlot

Note
None.

Author(s)
Loyal A. Goff

References
None.

Examples
```r
cuff<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object from sample data
p<-PCAplot(genes(cuff),x="PC2",y="PC3",replicates=TRUE)
m<-MDSplot(genes(cuff),replicates=TRUE)
p #Render PCA plot
m #Render MDS plot
```

dispersionPlot Mean count vs dispersion plot

Description
A scatter plot comparing the mean counts against the estimated dispersion for a given level of features from a cuffdiff run.

Usage
```r
## S4 method for signature 'CuffData'
dispersionPlot(object)
## S4 method for signature 'CuffSet'
dispersionPlot(object)
```

Arguments
- `object` An object of class ('CuffData')

Details
None

Value
ggplot object with geom_point layer
distValues

Note
None

Author(s)
Loyal A. Goff

References
None

Examples

a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object from sample data
genes<-genes(a) #Create CuffData object for all genes
d<-dispersionPlot(genes) #Create plot object
d #render plot object

Description

Returns a data.frame of distribution-level test values from a CuffDist object (@promoters, @splicing, @relCDS)

Usage

S4 method for signature 'CuffDist'
distValues(object)

Arguments

object An object of class 'CuffDist'
... Additional arguments to distValues

Details

None

Value

Returns a data.frame of distribution-level test values.

Note
None
Exploratory Analysis

Methods for Exploratory Analysis in cummeRbund

Description

Exploratory analysis methods for cummeRbund RNA-Seq data.

Usage

```r
## S4 method for signature 'CuffData'
csNMF(object, k, logMode = T, pseudocount = 1, maxiter = 1000, replicates = FALSE, fullnames = FALSE)
## S4 method for signature 'CuffFeatureSet'
csNMF(object, k, logMode = T, pseudocount = 1, maxiter = 1000, replicates = FALSE, fullnames = FALSE)
```

Arguments

- `object`: The output of class CuffData or CuffFeatureSet from which to draw expression estimates. (e.g. genes(cuff) or custom feature set via getGenes() or getFeatures()
- `k`: rank value for factorization
- `logMode`: Logical value whether or not to use log-transformed FPKM values. [Default: TRUE]
- `pseudocount`: Value added to FPKM to avoid log transformation issues.
- `maxiter`: Maximum number of iterations for factorization [Default: 1000]
- `replicates`: A logical value to indicate whether or not individual replicate expression estimates will be used.
- `fullnames`: Logical passthrough value to fpkmMatrix whether or not to concatenate gene_short_name with tracking_id. [Default: FALSE]
Details

csNMF is a convenience method to invoke the nnmf() method from package:NMFN. This performs non-negative matrix factorization on the provided data and can be useful for many downstream applications.

Value

csNMF returns W, H - decomposed matrices of input FPKM values. (See package:NMFN for details)

Note

None.

Author(s)

Loyal A. Goff

References

None.

Examples

data(sampleData)
csNMF(sampleGeneSet,4)

expressionBarplot Barplot

Description

A barplot of FPKM values with confidence intervals for a given gene, set of genes, or features of a gene (e.g. isoforms, TSS, CDS, etc).

Usage

S4 method for signature 'CuffFeatureSet'
expressionBarplot(object, logMode=TRUE, pseudocount=1.0, showErrorbars=TRUE, showStatus=TRUE, replicates=FALSE, ...)

expressionBarplot

Arguments

object An object of class ('CuffFeatureSet', 'CuffGeneSet', 'CuffFeature', 'CuffGene')
logMode A logical value whether or not to draw y-axis on log10 scale. Default = FALSE.
pseudocount Numerical value added to each FPKM during log-transformation to avoid errors.
showErrorbars A logical value whether or not to draw error bars. Default = TRUE
showStatus A logical value whether or not to draw visual queues for quantification status of a given gene:condition. Default = TRUE
replicates A logical value whether or not to plot individual replicates or aggregate condition values.
... Additional arguments.

Details

None

Value

A ggplot2 plot object

Note

Need to implement logMode and features for this plotting method.

Author(s)

Loyal A. Goff

References

None

Examples

data(sampleData)
PINK1 # sample Cufffeature object
eexpressionBarplot(PINK1) # Barplot of PINK1 FPKM values
eexpressionBarplot(PINK1@isoforms) # Barplot of PINK1 FPKM values faceted by isoforms
expressionPlot

Expression Plot

Description
A line plot (optionally with confidence intervals) detailing FPKM expression levels across conditions for a given gene(s) or feature(s).

Usage
```r
## S4 method for signature 'CuffFeature'
expressionPlot(object, logMode=FALSE, pseudocount=1.0, drawSummary=FALSE, sumFun=mean_cl_boot, showErrorbars=TRUE, showStatus=TRUE, replicates=FALSE, facet = TRUE,...)
```

Arguments
- `object`: An object of class ('CuffFeature' or 'CuffGene')
- `logMode`: A logical value to draw y-axis (FPKM) on log-10 scale. Default = FALSE.
- `pseudocount`: A numeric value added to FPKM to avoid errors on log-10 transformation.
- `drawSummary`: A logical value. Draws a 'summary' line with mean FPKM values for each condition.
- `sumFun`: Function used to determine values for summary line. Default = mean_cl_boot
- `showErrorbars`: A logical value whether or not to draw error bars.
- `showStatus`: A logical value whether or not to draw visual queues for quantification status of a given gene:condition. Default = TRUE
- `replicates`: A logical value whether or not to plot individual replicates or aggregate condition values.
- `facet`: A logical value whether or not to facet the plot by feature id (default=TRUE).
- `...`: Additional arguments

Details
None

Value
A ggplot2 plot object

Note
None

Author(s)
Loyal A. Goff
References

None

Examples

data(sampleData)
PINK1 # sample CuffFeature object
eexpressionPlot(PINK1) # Line plot of PINK1 FPKM values
expressionPlot(PINK1@isoforms) # Line plot of PINK1 FPKM values faceted by isoforms

<table>
<thead>
<tr>
<th>featureNames</th>
<th>Feature names</th>
</tr>
</thead>
</table>

Description

Retrive a vector of feature names from a 'CuffData' or 'CuffFeatureSet' object

Usage

S4 method for signature 'CuffData'
featureNames(object)

Arguments

object An object of class ('CuffData' or 'CuffFeatureSet')

Details

None

Value

A list of feature names

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

data(sampleData)
featureNames(sampleGeneSet)
Description

Returns a data frame of features from a CuffGene object

Usage

```r
## S4 method for signature 'CuffGene'
features(object)
```

Arguments

- `object` An object of class ('CuffGene')

Details

None

Value

A data.frame of feature-level information

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```r
data(sampleData)
features(PINK1)
```
findGene

Description
A helper function to retrieve the gene_ids given a 'lookup' value (e.g. gene_short_name, isoform_id, etc). Utility to search for gene_id and gene_short_name given a single 'query' string (e.g. query='pink1' will return all genes with 'pink1' (case-insensitive) in the gene_short_name field.

Usage
S4 method for signature 'CuffSet'
findGene(object, query)

Arguments
- object: An object of class 'CuffSet' (Primary 'pointer' object for Cufflinks data).
- query: A character string for which you would like to retrieve corresponding gene_id values.

Details
None.

Value
Returns a data.frame of gene_id and gene_short_name values corresponding to genes from which 'query' matches

Note
Right now, this does not return an error if it cannot find a gene. (this is probably a bad thing...)

Author(s)
Loyal A. Goff

References
None.

Examples
cuff<-readCufflinks(system.file("extdata", package="cummeRbund")) #Read cufflinks data and create master CuffSet object
myQuery<-'pink1'
findGene(cuff,myQuery) # Retrieve gene_id values for any genes matching 'pink1'
findSimilar

Description

Returns a CuffGeneSet containing n genes with the most similar expression profiles to gene/profile x.

Usage

```r
## S4 method for signature 'CuffSet'  
findSimilar(object, x, n, distThresh, returnGeneSet=TRUE,...)
```

Arguments

- `object` A object of class 'CuffSet'
- `x` A 'gene_id' or 'gene_short_name' from which to look up an expression profile OR a vector of expression values to compare all genes (vector must have same length and order of 'samples')
- `n` Number of similar genes to return
- `distThresh` A thresholding value on which to filter results based on JS-distance (e.g. A distThresh of 1.0 will return all genes, 0.0 will return those genes with 'perfect identity' to the gene of interest.)
- `returnGeneSet` A logical value whether to return a CuffGeneSet object [default] or a distance-ranked data frame of similar genes. The latter is useful if you want to explore the returned list based on distances.
- `...` Additional arguments to fpkmMatrix call within findSimilar (e.g. fullnames=T)

Details

By default, returns a CuffGeneSet object with n similar genes. This may change in the future.

Value

A CuffGeneSet object of n most similar genes to x.

Note

None

Author(s)

Loyal A. Goff

References

None
fpkm-methods

Examples

```
a <- readCufflinks(system.file("extdata", package="cummeRbund"))
mySimilarGenes <- findSimilar(a,"PINK1",10)
```

Description

Returns a data.frame from @FPKM slot.

Details

Returns a data.frame of FPKM values.

Value

A data.frame of FPKM-level values for a set of features.

Methods

- `signature(object = "CuffData")`
- `signature(object = "CuffFeature")`
- `signature(object = "CuffFeatureSet")`

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```
data(sampleData)
fpkm(PINK1)
```
fpkmMatrix

Description

Retrieve FPKM values as gene by condition (fpkmMatrix) or gene by replicate (repFpkmMatrix) matrix.

Usage

S4 method for signature 'CuffData'
fpkmMatrix(object, fullnames = FALSE, sampleIdList)
S4 method for signature 'CuffData'
repFpkmMatrix(object, fullnames = FALSE, repIdList)

Arguments

object An object of class ('CuffData', 'CuffFeatureSet', 'CuffGeneSet', 'CuffGene', or 'CuffFeature')
fullnames A logical value whether or not to concatenate gene_short_name and tracking_id values (easier to read labels)
sampleIdList A vector of sample names to subset the resulting matrix.
repIdList A vector of sample names to subset the resulting matrix.

Details

None.

Value

A feature x condition matrix of FPKM values.

Note

None.

Author(s)

Loyal A. Goff

References

None.
getFeatures

Examples

data(sampleData)
fpmMatrix(sampleGeneSet)
repFpmMatrix(sampleGeneSet)

Description

Primary accessor from a CuffSet object to retrieve all related information for >1 (MANY) given FEATURES, indexed by tracking id.

Usage

S4 method for signature 'CuffSet'
getFeatures(object, featureIdList, sampleIdList=NULL, level='isoforms')

Arguments

object An object of class 'CuffSet' (Primary 'pointer' object for Cufflinks data).
featureIdList A vector of 'isoform_id', 'TSS_group_id', or 'CDS_id' to identify which features for which you would like to retrieve all information.
sampleIdList A vector of sample names used to subset or re-order samples in returned object
level Feature level to be queried for significance (must be one of c('isoforms','TSS','CDS'))

Details

None.

Value

Returns a CuffFeatureSet object containing all related information for a given set of tracking_id values

Note

Right now, this does not return an error if it cannot find a gene. (this is probably a bad thing...)

Author(s)

Loyal A. Goff

References

None.
getGene

Examples

```r
cuff<-readCufflinks(system.file("extdata", package="cummeRbund")) #Read cufflinks data and create master CuffSet object
dsample.isoform.ids<-sample(featureNames(isoforms(cuff)),10)
myGene<-getFeatures(cuff,sample.isoform.ids) # Retrieve all information for a set of 10 sampled features.
```

Description

Primary accessor from a CuffSet object to retrieve all related information for 1 (one) given gene, indexed by gene_id or gene_short_name.

Usage

```r
## S4 method for signature 'CuffSet'
getGene(object, geneId, sampleIdList=NULL)
```

Arguments

- `object`: An object of class 'CuffSet' (Primary 'pointer' object for Cufflinks data).
- `geneId`: A character string to identify which gene for which you would like to retrieve all information.
- `sampleIdList`: A vector of sample names used to subset or re-order samples in returned object.

Details

None.

Value

Returns a CuffGene object containing all related information for a given gene_id or gene_short_name.

Note

Right now, this does not return an error if it cannot find a gene. (this is probably a bad thing...)

Author(s)

Loyal A. Goff

References

None.

Examples

```r
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Read cufflinks data and create master CuffSet object
myGene<-getGene(a,"PINK1") # Retrieve all information for gene "PINK1"
```
getGeneId

Description
A helper function to retrieve the gene_ids for a given list of feature ids (e.g. isoform_ids, tss_group_ids, or CDS_ids). This should not be called directly by the user.

Usage
S4 method for signature 'CuffSet'
getGeneId(object, idList)

Arguments
- **object**: An object of class 'CuffSet' (Primary 'pointer' object for Cufflinks data).
- **idList**: A character string to identify the identifiers for which you would like to retrieve corresponding gene_id values.

Details
None.

Value
Returns a vector of gene_id values corresponding to genes from which idList are sub-features.

Note
Right now, this does not return an error if it cannot find a gene. (this is probably a bad thing...)

Author(s)
Loyal A. Goff

References
None.

Examples
cuff<-readCufflinks(system.file("extdata", package="cummeRbund")) #Read cufflinks data and create master CuffSet
cuff
sampleFeatureIds<-sample(featureNames(isoforms(cuff)),10)
correspondingGeneIds<-getGeneId(cuff,sampleFeatureIds) # Retrieve gene_id values for parent genes of sampleFeatureIds.
getGenes

Description

Primary accessor from a CuffSet object to retrieve all related information for >1 (MANY) given genes, indexed by gene_id or gene_short_name.

Usage

S4 method for signature 'CuffSet'
getGenes(object, geneIdList, sampleIdList=NULL)

Arguments

- object: An object of class 'CuffSet' (Primary 'pointer' object for Cufflinks data).
- geneIdList: A vector of gene_ids or gene_short_name to identify which genes for which you would like to retrieve all information.
- sampleIdList: A vector of sample names used to subset or re-order samples in returned object.

Details

None.

Value

Returns a CuffGeneSet object containing all related information for a given set of gene_id or gene_short_name values.

Note

Right now, this does not return an error if it cannot find a gene. (this is probably a bad thing...)

Author(s)

Loyal A. Goff

References

None.

Examples

a<-readCufflinks(system.file("extdata", package="cummerbund")) # Read cufflinks data and create master CuffSet object
data(sampleData)
sampleIDs
myGene<-getGenes(a,sampleIDs) # Retrieve all information for a set of 20 'sample' genes.
Description

Returns a list of samples as levels. This should not be called directly by user.

Usage

```
## S4 method for signature 'CuffData'
getLevels(object)
```

Arguments

object An object of class 'CuffData' or 'CuffFeatureSet' or 'CuffFeature'

Details

For internal usage only.

Value

A vector of sample names as factors.

Note

None.

Author(s)

Loyal A. Goff

References

None.
getRepLevels

Description

Returns a list of replicate samples as levels. This should not be called directly by user.

Usage

S4 method for signature 'CuffData'
getRepLevels(object)

Arguments

object An object of class 'CuffSet' or 'CuffData'

Details

For internal usage only.

Value

A vector of replicate names as factors.

Note

None.

Author(s)

Loyal A. Goff

References

None.
getSig

Description

Returns the identifiers of significant genes in a vector format.

Usage

```r
## S4 method for signature 'CuffSet'
getSig(object, x, y, alpha = 0.05, level = 'genes', method = "BH", useCuffMTC = FALSE)
```

Arguments

- `object`: A CuffSet object (e.g. cuff)
- `x`: Optional argument to restrict significance results to one pairwise comparison. Must be used with a `y` argument to specify the other half of the pair.
- `y`: See `x`.
- `alpha`: An alpha value by which to filter multiple-testing corrected q-values to determine significance
- `level`: Feature level to be queried for significance (must be one of c('genes','isoforms','TSS','CDS'))
- `method`: Multiple testing method to be used for correction. (default: "BH")
- `useCuffMTC`: Logical vector whether or not to use the multiple-testing corrected q-values from the cuffdiff analysis directly, or calculate new q-values from a subset of tests.

Details

This is a convenience function to quickly retrieve vectors of identifiers for genes or features that were determined to be significantly regulated between conditions by cuffdiff. This function only returns tracking IDs that correspond to tests with an ‘OK’ status from cuffdiff, NOTEST values are ignored. By default getSig returns a vector of IDs for all pairwise comparisons together. If you specify an `x` AND `y` values as sample names, then only the features that are significant in that particular pairwise comparison are reported, after appropriate multiple testing correction of output p-values.

Value

A vector of feature IDs.

Note

None.

Author(s)

Loyal A. Goff
getSigTable

References

None.

Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund")) # Read cufflinks data in sample directory and create cuff
mySig <- getSig(a, x="hESC", y="Fibroblasts", alpha=0.05, level="genes")
head(mySig)
```

Description

Returns the identifiers of significant genes in a test table - like format.

Usage

```r
## S4 method for signature 'CuffSet'
getSigTable(object, alpha=0.05, level='genes')
```

Arguments

- `object`: A CuffSet object (e.g. cuff)
- `alpha`: An alpha value by which to filter multiple-testing corrected q-values to determine significance
- `level`: Feature level to be queried for significance (must be one of c('genes','isoforms','TSS','CDS'))

Details

This is a convenience function to quickly retrieve lists of identifiers for genes or features that were determined to be significantly regulated between conditions by cuffdiff. This function only returns tracking IDs that correspond to tests with an 'OK' status from cuffdiff, NOTEST values are ignored or reported as NA. By default getSig returns a table of genes x conditions, where the column names represent the pairwise comparisons from the cuffdiff analysis. The values in the table are 1 for features that are significant for this comparison and 0 for genes that are not, any failed tests are reported as <NA>. Only includes the features that are significant in at least one comparison.

Value

A data.frame of pairwise test results.

Note

None.
Author(s)
Loyal A. Goff

References
None.

Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund")) # Read cufflinks data in sample directory and create CuffSet object
mySigTable <- getSigTable(a, alpha = 0.05, level = 'genes')
head(mySigTable)
```

| JSdist | Jensen-Shannon distance on columns |

Description
JSdist takes a matrix of expression probabilities (calculated directly or output from makeprobs()) and returns a dist object of the pairwise Jensen-Shannon distances between columns.

Usage
```r
JSdist(mat, ...)
```

Arguments
- `mat`: A matrix of expression probabilities (e.g. from makeprobs())
- `...`: Passthrough argument to as.dist()

Details
Returns pairwise Jensen-Shannon distance (in the form of a dist object) for a matrix of probabilities (by column).

Value
A dist object of pairwise J-S distances between columns.

Note
None.

Author(s)
Loyal A. Goff
JSdistFromP

References

None

Examples

```r
mat <- matrix(sample(1:50, 50), 10)
probs <- makeprobs(mat)
js.distance <- JSdist(probs)
```

JSdistFromP

Jensen-Shannon distance on rows from a pre-defined vector of probabilities

Description

JSdist takes a matrix of expression probabilities (calculated directly or output from makeprobs()) and returns a matrix of Jensen-Shannon distances between individual rows and a specific vector of probabilities (q)

Usage

`JSdistFromP(mat, q)`

Arguments

- `mat` A matrix of expression probabilities (e.g. from makeprobs())
- `q` A vector of expression probabilities.

Details

Returns Jensen-Shannon distance for each row of a matrix of probabilities against a provided probability distribution (q)

Value

A vector of JS distances

Note

None

Author(s)

Loyal A. Goff

References

None
Examples

```
mat <- matrix(sample(1:50, 50), 10)
q <- c(100, 4, 72, 8, 19)
q <- q/sum(q)
js.distance <- JSdistFromP(mat, q)
```

Description

Returns the Jensen-Shannon Distance (square root of JS divergence) between two probability vectors.

Usage

```
JSdistVec(p, q)
```

Arguments

- `p` | A vector of probabilities
- `q` | A vector of probabilities

Details

Should not be called directly by user.

Value

Returns the JS distance as a numeric

Note

None

Author(s)

Loyal A. Goff

References

None
makeprobs

Transform a matrix into probabilities by columns

Description

This function takes a matrix of expression values (must be greater than 0) and returns a matrix of probabilities by column. This is a required transformation for the Jensen-Shannon distance which is a metric that operates on probabilities.

Usage

```r
makeprobs(a)
```

Arguments

- `a` A matrix of expression values (values must be greater than 0).

Details

To make a matrix of probabilities by row, use `t()` to transpose prior to calling `makeprobs`.

Value

A matrix of expression probabilities by column.

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```r
myMat<-matrix(sample(1:50,50),10)
probs<-makeprobs(myMat)
```
Description

Sums a vector of numerics and divides by the sum

Usage

makeprobsvec(p)

Arguments

p A vector of numerics

Details

None

Value

A vector of probabilities

Note

Should not be called directly by user.

Author(s)

Loyal A. Goff

References

None

Examples

p <- sample(1:5000, 20)
makeprobsvec(p)
MAplot

Description

Creates an M vs A plot (Avg intensity vs log ratio) for a given pair of conditions across all fpkms

Usage

```r
## S4 method for signature 'CuffData'
MAplot(object, x, y, logMode=T, pseudocount=1, smooth=FALSE, useCount=FALSE)
```

Arguments

- `object`: An object of class `CuffData`.
- `x`: Sample name from `samples` table for comparison
- `y`: Sample name from `samples` table for comparison
- `logMode`: A logical argument to log10-transform FPKM values prior to plotting.
- `pseudocount`: Value to be added to FPKM for appropriate log transformation and clustering. (Avoids zero-based errors)
- `smooth`: Logical argument whether or not to draw a smoothed line fit through data.
- `useCount`: Logical argument whether or not to use mean counts instead of FPKM values.

Details

None

Value

Returns a ggplot MvsA plot object.

Note

None

Author(s)

Loyal A. Goff and Cole Trapnell

References

None.
Examples

a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object from sample data
genes<-a@genes #Create CuffData object for all 'genes'
d<-MAplot(genes,'hESC','Fibroblasts') #Create csDensity plot
d #Render plot

PINK1

Description

A sample 'CuffGene' dataset

Usage

data(sampleData)

Format

PINK1 is a CuffGene object (extends CuffFeature) with all sample gene-, isoform-, TSS-, and CDS-level data for the gene 'PINK1'.

Details

Sample CuffGene data for gene 'PINK1'

Source

None

References

None

Examples

data(sampleData)
PINK1
QCplots

Quality Control visualizations

Description

A collection of ggplot2 visualizations for quality control assessment of cuffdiff output.

- `fpkmSCVPlot`: A measure of cross-replicate variability, the squared coefficient of variation is a normalized measure of variance between empirical replicate FPKM values per condition, across the range of FPKM estimates.

Usage

```r
## S4 method for signature 'CuffData'
fpkmSCVPlot(object, FPKMLowerBound = 1, showPool = FALSE)
```

Arguments

- **object**: An object of class CuffData.
- **FPKMLowerBound**: A lower limit cutoff for FPKM values from which a fit of squared Coefficient of variation (default: 1)
- **showPool**: Logical argument whether to display variability across all replicates independent of condition (TRUE) or the cross-replicate variability for each condition (FALSE)

Details

None

Value

A ggplot2 plot object with a geom_box layer.

Note

None

Author(s)

Loyal A. Goff

References

None
Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund")) # Read cufflinks data and create CuffSet object
genes <- a@genes # CuffData object for all genes
csBoxplot(genes)
```

Description

This initializes the backend SQLite table and provides a DB connection for all downstream data analysis.

Usage

```r
readCufflinks(dir = getwd(), dbFile = "cuffData.db", gtfFile = NULL,
runInfoFile = "run.info", repTableFile = "read_groups.info",
geneFPKM = "genes.fpkm_tracking", geneDiff = "gene_exp.diff", geneCount = "genes.countTracking", geneRep = "genes.read_group_tracking",
isoformFPKM = "isoforms.fpkm_tracking", isoformDiff = "isoform_exp.diff", isoformCount = "isoforms.count_tracking", isoformRep = "isoforms.read_group_tracking",
TSSFPKM = "tss_groups.fpkm_tracking", TSSDiff = "tss_group_exp.diff", TSSCount = "tss_groups.count_tracking", TSSRep = "tss_groups.read_group_tracking",
CDSFPKM = "cds.fpkm_tracking", CDSExpDiff = "cds_exp.diff", CDSCount = "cds.count_tracking", CDSRep = "cds.read_group_tracking",
CDSDiff = "cds.diff",
promoterFile = "promoters.diff",
splicingFile = "splicing.diff",
varModelFile = "var_model.info",
driver = "SQLite",
genome = NULL,
rebuild = FALSE, verbose = FALSE, ...)
```

Arguments

- **dir**: Directory in which all CuffDiff output files can be located. Defaults to current working directory.
- **dbFile**: Name of backend database. Default is 'cuffData.db'
- **gtfFile**: Path to .gtf file used in cuffdiff analysis. This file will be parsed to retrieve transcript model information.
- **runInfoFile**: Run.info file
- **repTableFile**: Read_groups.info file
- **geneFPKM**: genes.fpkm_tracking file
- **geneDiff**: gene_exp.diff file
- **geneCount**: genes.count_tracking file
- **geneRep**: genes.read_group_tracking file
- **isoformFPKM**: isoforms.fpkm_tracking file
- **isoformDiff**: isoform_exp.diff file
- **isoformCount**: isoforms.count_tracking file
- **isoformRep**: isoforms.read_group_tracking file
readCufflinks

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoformCount</td>
<td>isoforms.count_tracking file</td>
</tr>
<tr>
<td>isoformRep</td>
<td>isoform.read_group_tracking file</td>
</tr>
<tr>
<td>TSSFPKM</td>
<td>tss_groups.fpkm_tracking file</td>
</tr>
<tr>
<td>TSSDiff</td>
<td>tss_group_exp.diff file</td>
</tr>
<tr>
<td>TSSCount</td>
<td>tss_groups.count_tracking file</td>
</tr>
<tr>
<td>TSSRep</td>
<td>tss_groups.read_group_tracking file</td>
</tr>
<tr>
<td>CDSFPKM</td>
<td>cds.fpkm_tracking file</td>
</tr>
<tr>
<td>CDSExpDiff</td>
<td>cds_exp.diff file</td>
</tr>
<tr>
<td>CDSCount</td>
<td>cds.count_tracking file</td>
</tr>
<tr>
<td>CDSRep</td>
<td>cds.read_group_tracking file</td>
</tr>
<tr>
<td>CDSDiff</td>
<td>cds.diff file (distribution tests on CDS)</td>
</tr>
<tr>
<td>promoterFile</td>
<td>promoters.diff file (distribution tests on promoters)</td>
</tr>
<tr>
<td>splicingFile</td>
<td>splicing.diff (distribution tests on isoforms)</td>
</tr>
<tr>
<td>varModelFile</td>
<td>varModel.info (emitted in cuffdiff >= v2.1)</td>
</tr>
<tr>
<td>driver</td>
<td>Driver for backend database. (Currently only "SQLite" is supported).</td>
</tr>
<tr>
<td>genome</td>
<td>A character string indicating to which genome build the .gtf annotations belong (e.g. 'hg19' or 'mm9')</td>
</tr>
<tr>
<td>rebuild</td>
<td>A logical argument to rebuild database backend.</td>
</tr>
<tr>
<td>verbose</td>
<td>A logical argument for super verbose reporting (As if it wasn’t enough already!)</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments to readCufflinks</td>
</tr>
</tbody>
</table>

Details

This is the initialization function for the cummeRbund package. It creates the SQLite backend database, populates the data, and provides a connection object for all future interactions with the dataset. Once the initial build is complete, this function will default to using the database for all future sessions. **IMPORTANT:** - Each R session should begin with a call to readCufflinks to re-open the connection to the database. - Should any connectivity issues to the database arise, another call to readCufflinks should create a new connection object and repair any issue. - The database can always be rebuild (using rebuild=TRUE) from the original CuffDiff output files.

Value

A CuffSet object. A ’pointer’ class that allows interaction with cufflinks/cuffdiff data via a SQLite database backend.

Note

None.

Author(s)

Loyal A. Goff
repFkm-methods

References

None.

Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund")) # Read cufflinks data in sample directory and creates CuffSet object
repFkm(a)
```

Description

Returns a data.frame from @repFkm slot

Details

Returns a data.frame of replicate FPKM values and associated statistics.

Value

A data.frame of replicate-level FPKM values and associated statistics for a set of features.

Methods

- `signature(object = "CuffData")`
- `signature(object = "CuffFeature")`
- `signature(object = "CuffFeatureSet")`

Note

None

Author(s)

Loyal A. Goff

References

None

Examples

```r
data(sampleData)
repFkm(PINK1)
```
Description

Returns a list of replicate names from a CuffData or CuffFeatureSet object

Usage

```r
## S4 method for signature 'CuffData'
replicates(object)
```

Arguments

- `object` An object of class (`CuffSet`, `CuffData`)

Details

None

Value

A list of replicate sample names

Note

None

Author(s)

Loyal A. Goff

References

None

See Also

None

Examples

```r
a<-readCufflinks(system.file("extdata", package="cummeRbund")) #Create CuffSet object
replicates(a@genes)
```
runInfo
Retrieves run parameters and information from a CuffSet object

Description

Returns a data.frame of cuffdiff run parameters and information

Usage

```r
# S4 method for signature 'CuffSet'
runInfo(object)
```

Arguments

- `object` An object of class ('CuffSet')

Details

None

Value

A data.frame of run parameters

Note

None

Author(s)

Loyal A. Goff

References

None

See Also

None

Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund"))  # Create CuffSet object
r.runInfo(a)
```
sampleGeneSet

Description

A sample CuffGeneSet data set for 20 genes.

Usage

```r
data(sampleData)
```

Format

sampleGeneSet is a CuffGeneSet (extends CuffFeatureSet) object containing all sample gene-, isoform-, TSS-, and CDS-level data for 20 different genes. These data were derived from a toy set of hESC-vs-iPSC-vs-Fibroblast RNA-Seq expression data.

Details

None

Source

None

References

None

Examples

```r
data(sampleData)
```

sampleIDs

Description

A vector of gene_ids used to create 'sampleGeneSet' example

Usage

```r
data(sampleData)
```
Format
 The format is: chr "sampleIDs"

Details
 None

Source
 None

References
 None

Examples
 data(sampleData)

<table>
<thead>
<tr>
<th>samples</th>
<th>Get sample list from CuffData object</th>
</tr>
</thead>
</table>

Description
 Returns a list of sample names from a CuffData or CuffFeatureSet object

Usage
 ## S4 method for signature 'CuffData'
samples(object)

Arguments
 object An object of class ('CuffData','CuffFeatureSet','CuffFeature')

Details
 None

Value
 A list of sample names

Note
 None
Author(s)

Loyal A. Goff

References

None

See Also

None

Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund")) # Create CuffSet object
samples(a@genes)
```

Description

Calculates the Shannon entropy for a probability distribution

Usage

```r
shannon.entropy(p)
```

Arguments

- `p`: A vector of probabilities (must sum to ~1)

Details

None

Value

Returns a numeric value for the Shannon entropy of the supplied probability distribution

Note

None

Author(s)

Loyal A. Goff
References
None

Examples
```r
x<-sample(1:500,50)
p<-x/sum(x)
shannon.entropy(p)
```

Description

Returns a ggplot2 plot object representing a matrix of significant features. This is a useful synopsis of all significant pairwise comparisons within the dataset.

Usage
```r
## S4 method for signature 'CuffSet'
sigMatrix(object,alpha=0.05,level='genes',orderByDist=FALSE)
```

Arguments
- `object`: An object of class CuffSet.
- `alpha`: An alpha value by which to filter multiple-testing corrected q-values to determine significance.
- `level`: Feature level to be queried for significance (must be one of `c('genes','isoforms','TSS','CDS')`).
- `orderByDist`: Logical. If TRUE then samples are re-ordered based on JS-distance from one another (fairly useless unless you have a specific need for this).

Details

Creates a matrix plot to illustrate the number of significant features of type `level` at a given alpha from a cuffdiff run.

Value

A ggplot2 plot object

Note
None

Author(s)
Loyal A. Goff
Examples

```r
a <- readCufflinks(system.file("extdata", package="cummeRbund"))  # Create CuffSet object from sample data
d <- sigMatrix(a)  # Create csDensity plot
d  # Render plot
```
Index

* JS
 JSdist, 52
 JSdistFromP, 53

* Jensen-Shannon
 csDistHeat, 14
 JSdist, 52
 JSdistFromP, 53

* classes
 CuffData-class, 20
 CuffDist-class, 21
 CuffFeature-class, 22
 CuffGene-class, 25
 CuffGeneSet-class, 27
 CuffSet-class, 28

* datasets
 csCluster, 10
 csSpecificity, 18
 PINK1, 58
 sampleGeneSet, 65
 sampleIDs, 65

* distance
 csDistHeat, 14
 JSdist, 52
 JSdistFromP, 53

* heatmap
 csDendro, 12
 csDistHeat, 14
 csHeatmap, 15
 MAplot, 57

* metric
 JSdist, 52
 JSdistFromP, 53

* package
 cummeRbund-package, 3
 [,CuffSet-method (CuffSet-class), 28

addFeatures, 5
addFeatures, CuffData-method
(addFeatures), 5

addFeatures, CuffSet-method
(addFeatures), 5

annotation (CuffFeatureSet-class), 24
annotation, CuffData-method
(CuffData-class), 20
annotation, CuffFeature-method
(CuffFeature-class), 22
annotation, CuffFeatureSet-method
(CuffFeatureSet-class), 24

CDS (CuffSet-class), 28
CDS, CuffGene-method (CuffGene-class), 25
CDS, CuffGeneSet-method
(CuffGeneSet-class), 27
CDS, CuffSet-method (CuffSet-class), 28
conditions (CuffSet-class), 28
conditions, CuffSet-method
(CuffSet-class), 28
count (count-methods), 7
count, CuffData-method (count-methods), 7
count, CuffFeature-method
(count-methods), 7
count, CuffFeatureSet-method
(count-methods), 7
count-methods, 7
countMatrix, 8
countMatrix, CuffData-method
(countMatrix), 8
countMatrix, CuffFeatureSet-method
(countMatrix), 8

csBoxplot, 9
csBoxplot, CuffData-method (csBoxplot), 9
csCluster, 10
csCluster, CuffFeatureSet-method
(csCluster), 10
csClusterPlot, 11
csDendro, 12
csDendro, CuffData-method (csDendro), 12
csDendro, CuffFeatureSet-method
(csDendro), 12
INDEX

featureNames, 38
featureNames, CuffData-method (featureNames), 38
featureNames, CuffFeatureSet-method (CuffFeatureSet-class), 24
features, 39
features, CuffFeatureSet-method (CuffFeatureSet-class), 24
findGene, 40
findGene, CuffSet-method (findGene), 40
findSimilar, 41
findSimilar, CuffSet-method (findSimilar), 41
fpkm (fpkm-methods), 42
fpkm, CuffData-method (fpkm-methods), 42
fpkm, CuffFeature-method (fpkm-methods), 42
fpkm, CuffFeatureSet-method (fpkm-methods), 42
fpkm-methods, 42
fpkmMatrix, 43
fpkmMatrix, CuffData-method (fpkmMatrix), 43
fpkmMatrix, CuffFeature-method (CuffFeature-class), 22
fpkmMatrix, CuffFeatureSet-method (fpkmMatrix), 43
fpkmSCVPlot (QCplots), 59
fpkmSCVPlot, CuffData-method (QCplots), 59
genePlot (CuffGene-class), 25
genePlot, CuffGene-method (CuffGene-class), 25
genes (CuffSet-class), 28
genes, CuffGene-method (CuffGene-class), 25
genes, CuffGeneSet-method (CuffGeneSet-class), 27
genes, CuffSet-method (CuffSet-class), 28
getFeatures, 44
getFeatures, CuffData-method (CuffData-class), 44
getFeatures, CuffSet-method (getFeatures), 44
getGene, 45
getGene, CuffSet-method (getGene), 45
getGeneId, 46
getGeneId, CuffSet-method (getGeneId), 46
getGenes, 47
getGenes, CuffSet-method (getGenes), 47
getLevels, 48
getLevels, CuffData-method (getLevels), 48
getLevels, CuffSet-method (getLevels), 48
getRepLevels, 49
getRepLevels, CuffData-method (getRepLevels), 49
getRepLevels, CuffSet-method (getRepLevels), 49
getSig, 50
getSig, CuffSet-method (getSig), 50
getSigTable, 51
getSigTable, CuffSet-method (getSigTable), 51
isoforms (CuffSet-class), 28
isoforms, CuffGene-method (CuffGene-class), 25
isoforms, CuffGeneSet-method (CuffGeneSet-class), 27
isoforms, CuffSet-method (CuffSet-class), 28
JSdist, 52
JSdistFromP, 53
JSdistVec, 54
length, CuffFeature-method (CuffFeature-class), 22
length, CuffFeatureSet-method (CuffFeatureSet-class), 24
length, CuffGene-method (CuffGene-class), 25
makeGeneRegionTrack (CuffGene-class), 25
makeGeneRegionTrack, CuffGene-method (CuffGene-class), 25
makeprobs, 55
makeprobsvec, 56
makeRnk (CuffData-class), 20
makeRnk, CuffData-method (CuffData-class), 20
MAplot, 57
MAplot, CuffData-method (MAplot), 57
MDSplot (Dimensionality Reduction), 31
MDSplot, CuffData-method (Dimensionality Reduction), 31
INDEX 73

MDSplot, CuffFeatureSet-method (Dimensionality Reduction), 31
PCAplot (Dimensionality Reduction), 31
PCAplot, CuffData-method (Dimensionality Reduction), 31
PCAplot, CuffFeatureSet-method (Dimensionality Reduction), 31
PINK1, 58
promoters (CuffSet-class), 28
promoters, CuffGene-method (CuffGene-class), 25
promoters, CuffGeneSet-method (CuffGeneSet-class), 27
promoters, CuffSet-method (CuffSet-class), 28
QCplots, 59
readCufflinks, 60
relCDS (CuffSet-class), 28
relCDS, CuffGene-method (CuffGene-class), 25
relCDS, CuffGeneSet-method (CuffGeneSet-class), 27
relCDS, CuffSet-method (CuffSet-class), 28
repCountMatrix (countMatrix), 8
repCountMatrix, CuffData-method (countMatrix), 8
repCountMatrix, CuffFeatureSet-method (countMatrix), 8
repFpkm (repFpkm-methods), 62
repFpkm, CuffData-method (repFpkm-methods), 62
repFpkm, CuffFeature-method (repFpkm-methods), 62
repFpkm, CuffFeatureSet-method (repFpkm-methods), 62
repFpkm-methods, 62
repFpkmMatrix (fpkmMatrix), 43
repFpkmMatrix, CuffData-method (fpkmMatrix), 43
repFpkmMatrix, CuffFeature-method (fpkmMatrix), 43
repFpkmMatrix, CuffFeatureSet-method (fpkmMatrix), 43
replicates, 63
replicates, CuffData-method (replicates), 63
replicates, CuffFeature-method (replicates), 63
replicates, CuffFeatureSet-method (replicates), 63
replicates, CuffSet-method (replicates), 63
runInfo, 64
runInfo, CuffSet-method (runInfo), 64
sampleGeneSet, 65
sampleIDs, 65
samples, 66
samples, CuffData-method (samples), 66
samples, CuffDist-method (CuffDist-class), 21
samples, CuffFeature-method (CuffFeature-class), 22
samples, CuffFeatureSet-method (CuffFeatureSet-class), 24
samples, CuffSet-method (samples), 28
splicing (CuffSet-class), 28
splicing, CuffGene-method (CuffGene-class), 25
splicing, CuffGeneSet-method (CuffGeneSet-class), 27
splicing, CuffSet-method (CuffSet-class), 28
TSS (CuffSet-class), 28
TSS, CuffGene-method (CuffGene-class), 25
TSS, CuffGeneSet-method (CuffGeneSet-class), 27
TSS, CuffSet-method (CuffSet-class), 28
varModel (CuffSet-class), 28
varModel, CuffSet-method (CuffSet-class), 28

replicates, CuffData-method
(replicates), 63
replicates, CuffFeature-method
(replicates), 63
replicates, CuffFeatureSet-method
(replicates), 63
replicates, CuffSet-method (replicates), 63
runInfo, 64
runInfo, CuffSet-method (runInfo), 64
sampleGeneSet, 65
sampleIDs, 65
samples, 66
samples, CuffData-method (samples), 66
samples, CuffDist-method (CuffDist-class), 21
samples, CuffFeature-method (CuffFeature-class), 22
samples, CuffFeatureSet-method (CuffFeatureSet-class), 24
samples, CuffSet-method (samples), 28
splicing (CuffSet-class), 28
splicing, CuffGene-method (CuffGene-class), 25
splicing, CuffGeneSet-method (CuffGeneSet-class), 27
splicing, CuffSet-method (CuffSet-class), 28
TSS (CuffSet-class), 28
TSS, CuffGene-method (CuffGene-class), 25
TSS, CuffGeneSet-method (CuffGeneSet-class), 27
TSS, CuffSet-method (CuffSet-class), 28
varModel (CuffSet-class), 28
varModel, CuffSet-method (CuffSet-class), 28