Type: Package

Title: Pathway Enrichment Based on Differential Causal Effects

Version: 1.10.0

Description: Compute differential causal effects (dce) on (biological) networks.
Given observational samples from a control experiment and non-control (e.g., can-
cer) for two genes A and B, we can compute differential causal effects with a (generalized) lin-
ear regression.
If the causal effect of gene A on gene B in the control samples is different from the causal ef-
fect in the non-control samples the dce will differ from zero.
We regularize the dce computation by the inclusion of prior network information from path-
way databases such as KEGG.

URL: https://github.com/cbg-ethz/dce

BugReports: https://github.com/cbg-ethz/dce/issues

biocViews: Software, StatisticalMethod, GraphAndNetwork, Regression,
GeneExpression, DifferentialExpression, NetworkEnrichment,
Network, KEGG

License: GPL-3

Encoding: UTF-8

LazyData: true

Depends: R (>= 4.1)

Suggests: knitr, rmarkdown, testthat (>= 2.1.0), BiocStyle, formatR,
cowplot, ggplotify, dagitty, lmttest, sandwich, devtools,
curatedTCGADatasets, TCGAutils, SummarizedExperiment, RcppParallel,
doctop, CARNIVAL

VignetteBuilder: knitr

RoxygenNote: 7.1.2

Imports: stats, methods, assertthat, graph, pcalg, purrr, tidyverse,
Matrix, ggplot, tidygraph, ggplot2, rlang, expm, MASS, edgeR,
epiNEM, igraph, metap, mnem, naturalsort, ppcor, glm2,
graphite, reshape2, dplyr, magrittr, glue, Rgraphviz,
harmonicmeanp, org.Hs.eg.db, logger, shadowtext
\textbf{git url} \url{https://git.bioconductor.org/packages/dce}

\textbf{git branch} RELEASE_3_18

\textbf{git last commit} fc013c6

\textbf{git last commit date} 2023-10-24

\textbf{Repository} Bioconductor 3.18

\textbf{Date/Publication} 2024-03-29

\textbf{Author} Kim Philipp Jablonski [aut, cre]
\hfill (<\url{https://orcid.org/0000-0002-4166-4343}>)
\hfill Martin Pirkl [aut]

\textbf{Maintainer} Kim Philipp Jablonski <kim.philipp.jablonski@gmail.com>

\textbf{R topics documented:}

as.data.frame.dce 3
as_adjmat ... 3
create_random_DAG 4
dce .. 5
dce_nb .. 7
df_pathway_statistics 8
estimate_latent_count 9
g2dag .. 10
get_pathways ... 10
get_pathway_info 11
get_prediction_counts 12
graph2df ... 13
graph_union .. 13
pcor .. 14
permutation_test 14
plot.dce ... 15
plot_network .. 16
propagate_gene_edges 17
resample_edge_weights 18
rlm_dce .. 19
simulate_data .. 19
summary.rlm_dce 21
topologically_ordering 22
trueEffects .. 22

Index 24
as.data.frame.dce

Description

Turn dce object into data frame

Usage

```r
## S3 method for class 'dce'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x` : dce object
- `row.names` : optional character vector of rownames
- `optional` : logical; allow optional arguments
- `...` : additional arguments

Value

data frame containing the dce output

Examples

```r
dag <- create_random_DAG(30, 0.2)
X_wt <- simulate_data(dag)
dag_mt <- resample_edge_weights(dag)
X_mt <- simulate_data(dag_mt)
dce_list <- dce(dag, X_wt, X_mt)
```

as_adjmat

Description

From graphNEL with 0 edge weights to proper adjacency matrix

Usage

```r
as_adjmat(g)
```

Arguments

- `g` : graphNEL object
Value

graph as adjacency matrix

Examples

dag <- create_random_DAG(30, 0.2)
adj <- as_adjmat(dag)

create_random_DAG Create random DAG (topologically ordered)

Description

Creates a DAG according to given parameters.

Usage

create_random_DAG(
 node_num,
 prob,
 eff_min = -1,
 eff_max = 1,
 node_labels = paste0("n", as.character(seq_len(node_num))),
 max_par = 3
)

Arguments

 node_num Number of nodes
 prob Probability of creating an edge
 eff_min Lower bound for edge weights
 eff_max Upper bound for edge weights
 node_labels Node labels
 max_par Maximal number of parents

Value

 graph

Author(s)

 Martin Pirkl

Examples

dag <- create_random_DAG(30, 0.2)
dce

Differential Causal Effects - main function

Description
Main function to compute differential causal effects and the pathway enrichment

Usage

```r
dce(
  graph,
  df_expr_wt,
  df_expr_mt,
  solver = "lm",
  solver_args = list(),
  adjustment_type = "parents",
  effect_type = "total",
  p_method = "hmp",
  test = "wald",
  lib_size = FALSE,
  deconfounding = FALSE,
  conservative = FALSE,
  log_level = logger::INFO
)
```

S4 method for signature 'igraph'

```r
dce(
  graph,
  df_expr_wt,
  df_expr_mt,
  solver = "lm",
  solver_args = list(),
  adjustment_type = "parents",
  effect_type = "total",
  p_method = "hmp",
  test = "wald",
  lib_size = FALSE,
  deconfounding = FALSE,
  conservative = FALSE,
  log_level = logger::INFO
)
```

S4 method for signature 'graphNEL'

```r
dce(
  graph,
  df_expr_wt,
  df_expr_mt,
```
solve = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

S4 method for signature 'matrix'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

Arguments

graph valid object defining a directed acyclic graph
df_expr_wt data frame with wild type expression values
df_expr_mt data from with mutation type expression values
solver character with name of solver function
solver_args additional arguments for the solver function. please adress this argument, if you use your own solver function. the default argument works with glm functions in the packages MASS, stats and glm2
adjustment_type character string for the method to define the adjustment set Z for the regression
effect_type method of computing causal effects
p_method character string. "mean", "sum" for standard summary functions, "hmp" for harmonic mean or any method from package 'metap', e.g., "meamp" or "sump".
test either "wald" for testing significance with the wald test or "lr" for using a likelihood ratio test. Alternatively, "vcovHC" can improve results for zero-inflated date, i.e., from single cell RNAseq experiments.
lib_size

either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.

deconfounding

indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.

conservative

logical; if TRUE, does not use the indicator variable for the variables in the adjustment set

log_level

Control verbosity (logger::INFO, logger::DEBUG, ...)

Value

list of matrices with dces and corresponding p-value

Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce(dag,X.wt,X.mt)
```

dce_nb

Differential Causal Effects for negative binomial data

Description

Shortcut for the main function to analyse negative binomial data

Usage

dce_nb(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver_args = list(method = "glm.dce.nb.fit", link = "identity"),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)
df_pathway_statistics

Arguments

- **graph**: valid object defining a directed acyclic graph
- **df_expr_wt**: data frame with wild type expression values
- **df_expr_mt**: data from with mutation type expression values
- **solver_args**: additional arguments for the solver function
- **adjustment_type**: character string for the method to define the adjustment set Z for the regression
- **effect_type**: method of computing causal effects
- **p_method**: character string. "mean", "sum" for standard summary functions, "hmp" for harmonic mean or any method from package 'metap', e.g., "meanp" or "sump".
- **test**: either "wald" for testing significance with the wald test or "lr" for using a likelihood ratio test
- **lib_size**: either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.
- **deconfounding**: indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.
- **conservative**: logical; if TRUE, does not use the indicator variable for the variables in the adjustment set
- **log_level**: Control verbosity (logger::INFO, logger::DEBUG, ...)

Value

list of matrices with dces and corresponding p-value

Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce_nb(dag,X.wt,X.mt)
```

df_pathway_statistics
Biological pathway information.

Description

A dataset containing pathway statistics.
Usage

df_pathway_statistics

Format

A data frame with pathway statistics

database Pathway database
pathway_id Internal ID of pathway
pathway_name Canonical name of pathway
node_num Number of nodes in pathway
edge_num Number of edges in pathway

estimate_latent_count Estimate number of latent confounders Compute the true casual effects of a simulated dag

Description

This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see pcalg::causalEffect for pairwise computation.

Usage

estimate_latent_count(X1, X2, method = "auto")

Arguments

X1 data matrix corresponding to the first condition
X2 data matrix corresponding to the second condition
method a string indicating the method used for estimating the number of latent variables

Value

estimated number of latent variables

Author(s)

Domagoj Ćevid

Examples

```r
graph1 <- create_random_DAG(node_num = 100, prob = .1)
graph2 <- resample_edge_weights(graph1, tp=0.15)
X1 <- simulate_data(graph1, n=200, latent = 3)
X2 <- simulate_data(graph2, n=200, latent = 3)
estimate_latent_count(X1, X2)
```
g2dag
Graph to DAG

Description

Converts a general graph to a dag with minimum distance to the original graph. The general idea is to transitively close the graph to detect cycles and remove them based on the rule "the more outgoing edges a node has, the more likely it is that incoming edges from a cycle will be deleted, and vice versa. However, this is too rigorous and deletes too many edges, which do not lead to a cycle. These edges are added back in the final step.

Usage

```r
g2dag(g, tc = FALSE)
```

Arguments

- `g` graph as adjacency matrix
- `tc` if TRUE computes the transitive closure

Value

dag as adjacency matrix

Author(s)

Ken Adams

Examples

```r
g <- matrix(c(1,0,1,0, 1,1,0,0, 0,1,1,0, 1,1,0,1), 4, 4)  
rownames(g) <- colnames(g) <- LETTERS[seq_len(4)]  
dag <- g2dag(g)
```

get_pathways
Easy pathway network access

Description

Easy pathway network access
get_pathway_info

Usage

get_pathways(
 query_species = "hsapiens",
 database_list = NULL,
 remove_empty_pathways = TRUE,
 pathway_list = NULL
)

Arguments

query_species For which species
database_list Which databases to query. Query all if ‘NULL’.
remove_empty_pathways Discard pathways without nodes
pathway_list List mapping database name to vector of pathway names to download

Value

list of pathways

Examples

pathways <- get_pathways(
 pathway_list = list(kegg = c(
 "Protein processing in endoplasmic reticulum"
))
)
plot_network(as(pathways[[1]]$graph, "matrix"))

get_pathway_info

Dataframe containing meta-information of pathways in database

Description

Dataframe containing meta-information of pathways in database

Usage

get_pathway_info(
 query_species = "hsapiens",
 database_list = NULL,
 include_network_statistics = FALSE
)
get_prediction_counts

Arguments
- query_species: For which species
- database_list: Which databases to query. Query all if ‘NULL’.
- include_network_statistics: Compute some useful statistics per pathway. Takes longer!

Value
- data frame with pathway meta information

Examples
- head(get_pathway_info(database_list = c("kegg")))

get_prediction_counts

Description
- Computes true positive, true negative, true discovery, and true validation counts

Usage
- get_prediction_counts(truth, inferred, cutoff = 0.5)

Arguments
- truth: Ground truth
- inferred: Computed results
- cutoff: Threshold for classification

Value
- data.frame

Author(s)
- Hans Wurst

Examples
- get_prediction_counts(c(1,0), c(1,1))
graph2df
Graph to data frame

Description
Convert graph object to dataframe with source and target columns

Usage
graph2df(graph)

Arguments
- **graph**
 Network

Value
- data frame

Examples
```r
dag <- create_random_DAG(30, 0.2)
graph2df(dag)
```

graph_union
Graph union

Description
Create union of multiple graphs

Usage
graph_union(graph_list)

Arguments
- **graph_list**
 List of graphs

Value
- graph union

Examples
```r
dag <- create_random_DAG(30, 0.2)
dag2 <- create_random_DAG(30, 0.2)
graph_union(list(g1=dag, g2=dag2))
```
pcor Partial correlation

Description

Robust partial correlation of column variables of a numeric matrix

Usage

pcor(x, g = NULL, adjustment_type = "parents", ...)

Arguments

x matrix
g related graph as adjacency matrix (optional)
adjustment_type character string for the method to define the adjustment set Z for the regression
... additional arguments for function 'cor'

Value

matrix of partial correlations

Examples

x <- matrix(rnorm(100),10,10)
pcor(x)

permutation_test Permutation test for (partial) correlation on non-Gaussian data

Description

Computes the significance of (partial) correlation based on permutations of the observations

Usage

permutation_test(x, y, iter = 1000, fun = pcor, mode = 1, ...)

permutation_test(x, y, iter = 1000, fun = pcor, mode = 1, ...)
Arguments

- **x** wild type data set
- **y** mutant data set
- **iter** number of iterations (permutations)
- **fun** function to compute the statistic, e.g., cor or pcor
- **mode** either 1 for a function that takes a single data set and produces an output of class matrix, and 2, if the function takes two data sets
- **...** additional arguments for function `fun`

Value

matrix of p-values

Examples

```r
x <- matrix(rnorm(100),10,10)
y <- matrix(rnorm(100),10,10)
permutation_test(x,y,iter=10)
```

Description

This function takes a differential causal effects object and plots the dag with the dces

Usage

```r
## S3 method for class 'dce'
plot(x, ...)
```

Arguments

- **x** dce object
- **...** Parameters passed to dce::plot_network

Value

plot of dag and dces

Author(s)

Martin Pirkl, Kim Philipp Jablonski
Examples

dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce.list <- dce(dag,X.wt,X.mt)
plot(dce.list)

plot_network

Plot network adjacency matrix

Description

Generic function which plots any adjacency matrix (assumes DAG)

Usage

plot_network(
 adja_matrix,
 nodename_map = NULL,
 edgescale_limits = NULL,
 nodesize = 17,
 labelsize = 3,
 node_color = "white",
 node_border_size = 0.5,
 arrow_size = 0.05,
 scale_edge_width_max = 1,
 show_edge_labels = FALSE,
 visualize_edge_weights = TRUE,
 use_symlog = FALSE,
 highlighted_nodes = c(),
 legend_title = "edge weight",
 value_matrix = NULL,
 shadowtext = FALSE,
 ...
)

Arguments

adja_matrix Adjacency matrix of network
nodename_map node names
edgescale_limits Limits for scale_edge_color_gradient2 (should contain 0). Useful to make plot comparable to others
nodesize Node sizes
labelsize Node label sizes
propagate_gene_edges

node_color Which color to plot nodes in
node_border_size Thickness of node’s border stroke
arrow_size Size of edge arrows
scale_edge_width_max Max range for ‘scale_edge_width’
show_edge_labels Whether to show edge labels (DCEs)
visualize_edge_weights Whether to change edge color/width/alpha relative to edge weight
use_symlog Scale edge colors using dce::symlog
highlighted_nodes List of nodes to highlight
legend_title Title of edge weight legend
value_matrix Optional matrix of edge weights if different from adjacency matrix
shadowtext Draw white outline around node labels
... additional parameters

Value

plot of dag and dces

Author(s)

Martin Pirkl, Kim Philipp Jablonski

Examples

adj <- matrix(c(0,0,0,1,0,0,0,1,0),3,3)
plot_network(adj)

propagate_gene_edges Remove non-gene nodes from pathway and reconnect nodes

Description

Remove non-gene nodes from pathway and reconnect nodes

Usage

propagate_gene_edges(graph)

Arguments

graph Biological pathway
Value

graph with only genes as nodes

Examples

dag <- create_random_DAG(30, 0.2)
propagate_gene_edges(dag)

resample_edge_weights Resample network edge weights

Description

Takes a graph and modifies edge weights.

Usage

resample_edge_weights(g, tp = 0.5, mineff = 1, maxeff = 2, method = "unif")

Arguments

g original graph
tp fraction of edge weights which will be modified
minf minimal differential effect size
maxf maximum effect effect size or standard deviation, if method is "gauss"
method method for drawing the differential for the causal effects. Can be "unif", "exp" or "gauss".

Value

graph with new edge weights

Author(s)

Martin Pirkl

Examples

graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
graph.mt <- resample_edge_weights(graph.wt)
rlm_dce

 costum rlm function

Usage

```
rlm_dce(...)```

#### Arguments

... see ?MASS::rlm

---

### simulate_data

Simulate data

#### Usage

```
simulate_data(
 graph,
 n = 100,
 dist_fun = rnbinom,
 dist_args = list(mu = 1000, size = 100),
 child_fun = rpois,
 child_args = list(),
 child_dep = "lambda",
 link_fun = negative.binomial.special()$linkfun,
 link_args = list(offset = 1),
 pop_size = 0,
 latent = 0,
 latent_fun = "unif"
)
```

## S4 method for signature 'igraph'
```
simulate_data(
 graph,
 n = 100,
)```
dist_fun = rnbinom,
dist_args = list(mu = 1000, size = 100),
child_fun = rpois,
child_args = list(),
child_dep = "lambda",
link_fun = negative.binomial.special()$linkfun,
link_args = list(offset = 1),
pop_size = 0,
latent = 0,
latent_fun = "unif"
)

S4 method for signature 'graphNEL'
simulate_data(
 graph,
 n = 100,
 dist_fun = rnbinom,
 dist_args = list(mu = 1000, size = 100),
 child_fun = rpois,
 child_args = list(),
 child_dep = "lambda",
 link_fun = negative.binomial.special()$linkfun,
 link_args = list(offset = 1),
 pop_size = 0,
 latent = 0,
 latent_fun = "unif"
)

S4 method for signature 'matrix'
simulate_data(
 graph,
 n = 100,
 dist_fun = rnbinom,
 dist_args = list(mu = 1000, size = 100),
 child_fun = rpois,
 child_args = list(),
 child_dep = "lambda",
 link_fun = negative.binomial.special()$linkfun,
 link_args = list(offset = 1),
 pop_size = 0,
 latent = 0,
 latent_fun = "unif"
)

Arguments

graph Graph to simulate on
n Number of samples
dist_fun distribution function for nodes without parents
dist_args list of arguments for dist_fun
child_fun distribution function for nodes with parents
child_args list of arguments for child_fun
child_dep link_fun computes an output for the expression of nodes without parents. this output is than used as input for child_fun. child_dep defines the parameter (a a string) of child_fun, which is used for the input. E.g., the link_fun is the identity and the child_fun is rnorm, we usually set child_dep = "mean".
link_fun special link function for the negative binomial distribution
link_args list of arguments for link_fun
pop_size numeric for the population size, e.g., pop_size=1000 adds 1000-n random genes not in the graph
latent number of latent variables
latent_fun uniform "unif" or exponential "exp" distribution of latent coefficients

Value

graph

Examples

dag <- create_random_DAG(30, 0.2)
X <- simulate_data(dag)

summary.rlm_dce summary for rlm_dce

Description

summary for rlm_dce

Usage

S3 method for class 'rlm_dce'
summary(object, ...)

Arguments

object object of class 'rlm_dce'
... see ?MASS::summary.rlm
topologically_ordering

Topological ordering

Description
Order rows/columns of a adjacency matrix topologically

Usage
topologically_ordering(adja_mat, alt = FALSE)

Arguments
- adja_mat: Adjacency matrix of network
- alt: Use igraph implementation

Value
topologically ordered matrix

Examples
adj <- matrix(c(0,1,0,0,0,1,0,0,0),3,3)
topologically_ordering(adj)

trueEffects

Compute the true casual effects of a simulated dag

Description
This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see pcalg::causalEffect for pairwise computation.

Usage
trueEffects(g, partial = FALSE)

Arguments
- g: graphNEL object
- partial: if FALSE computes the total causal effects and not just the partial edge effects
trueEffects

Value

matrix of causal effects

Author(s)

Martin Pirkl

Examples

graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
trueEffects(graph.wt)
Index

* datasets
 - df_pathway_statistics, 8
 - as.data.frame.dce, 3
 - as_adjmat, 3

create_random_DAG, 4

dce, 5
dce,graphNEL-method (dce), 5
dce,igraph-method (dce), 5
dce,matrix-method (dce), 5
dce_nb, 7
df_pathway_statistics, 8

estimate_latent_count, 9

g2dag, 10
get_pathway_info, 11
get_pathways, 10
get_prediction_counts, 12
graph2df, 13
graph_union, 13

pcor, 14
permutation_test, 14
plot.dce, 15
plot_network, 16
propagate_gene_edges, 17

resample_edge_weights, 18
rlm_dce, 19

simulate_data, 19
simulate_data,graphNEL-method
 (simulate_data), 19
simulate_data,igraph-method
 (simulate_data), 19
simulate_data,matrix-method
 (simulate_data), 19
summary.rlm_dce, 21

topologically_ordering, 22
trueEffects, 22