Package ‘dce’

May 1, 2024

Type Package

Title Pathway Enrichment Based on Differential Causal Effects

Version 1.12.0

Description Compute differential causal effects (dce) on (biological) networks.

 Given observational samples from a control experiment and non-control (e.g., cancer) for two genes A and B, we can compute differential causal effects with a (generalized) linear regression.

 If the causal effect of gene A on gene B in the control samples is different from the causal effect in the non-control samples the dce will differ from zero.

 We regularize the dce computation by the inclusion of prior network information from pathway databases such as KEGG.

URL https://github.com/cbg-ethz/dce

BugReports https://github.com/cbg-ethz/dce/issues

biocViews Software, StatisticalMethod, GraphAndNetwork, Regression, GeneExpression, DifferentialExpression, NetworkEnrichment, Network, KEGG

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 4.1)

Suggests knitr, rmarkdown, testthat (>= 2.1.0), BiocStyle, formatR, cowplot, ggplotify, dagitty, lmtest, sandwich, devtools, curatedTCGADATA, TCGAutils, SummarizedExperiment, RcppParallel, docopt, CARNIVAL

VignetteBuilder knitr

RoxygenNote 7.1.2

Imports stats, methods, assertthat, graph, pcalg, purrr, tidyverse, Matrix, ggraph, tidygraph, ggplot2, rlang, expm, MASS, edgeR, epiNEM, igraph, metap, mnem, naturalsort, ppcor, glm2, graphite, reshape2, dplyr, magrittr, glue, Rgraphviz, harmonicmeanp, org.Hs.eg.db, logger, shadowtext
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>as.data.frame.dce</td>
<td>3</td>
</tr>
<tr>
<td>as_adjmat</td>
<td>3</td>
</tr>
<tr>
<td>create_random_DAG</td>
<td>4</td>
</tr>
<tr>
<td>dce</td>
<td>5</td>
</tr>
<tr>
<td>dce_nb</td>
<td>7</td>
</tr>
<tr>
<td>df_pathway_statistics</td>
<td>8</td>
</tr>
<tr>
<td>estimate_latent_count</td>
<td>9</td>
</tr>
<tr>
<td>g2dag</td>
<td>10</td>
</tr>
<tr>
<td>get_pathway_info</td>
<td>10</td>
</tr>
<tr>
<td>get_pathways</td>
<td>11</td>
</tr>
<tr>
<td>get_prediction_counts</td>
<td>12</td>
</tr>
<tr>
<td>graph_union</td>
<td>13</td>
</tr>
<tr>
<td>graph2df</td>
<td>13</td>
</tr>
<tr>
<td>pcor</td>
<td>14</td>
</tr>
<tr>
<td>permutation_test</td>
<td>14</td>
</tr>
<tr>
<td>plot.dce</td>
<td>15</td>
</tr>
<tr>
<td>plot_network</td>
<td>16</td>
</tr>
<tr>
<td>propagate_gene_edges</td>
<td>17</td>
</tr>
<tr>
<td>resample_edge_weights</td>
<td>18</td>
</tr>
<tr>
<td>rlm_dce</td>
<td>19</td>
</tr>
<tr>
<td>simulate_data</td>
<td>19</td>
</tr>
<tr>
<td>summary.rlm_dce</td>
<td>21</td>
</tr>
<tr>
<td>topologically_ordering</td>
<td>22</td>
</tr>
<tr>
<td>trueEffects</td>
<td>22</td>
</tr>
</tbody>
</table>

Index 24
as.data.frame.dce

Dce to data frame

Description

Turn dce object into data frame

Usage

S3 method for class 'dce'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x

dce object

row.names

optional character vector of rownames

optional

logical; allow optional arguments

...

additional arguments

Value

data frame containing the dce output

Examples

dag <- create_random_DAG(30, 0.2)
X_wt <- simulate_data(dag)
dag_mt <- resample_edge_weights(dag)
X_mt <- simulate_data(dag_mt)
dce_list <- dce(dag, X_wt, X_mt)

as_adjmat

graph to adjacency

Description

From graphNEL with 0 edge weights to proper adjacency matrix

Usage

as_adjmat(g)

Arguments

g

graphNEL object
create_random_DAG

Create random DAG (topologically ordered)

Description

Creates a DAG according to given parameters.

Usage

```r
create_random_DAG(
  node_num,
  prob,
  eff_min = -1,
  eff_max = 1,
  node_labels = paste0("n", as.character(seq_len(node_num))),
  max_par = 3
)
```

Arguments

- `node_num` Number of nodes
- `prob` Probability of creating an edge
- `eff_min` Lower bound for edge weights
- `eff_max` Upper bound for edge weights
- `node_labels` Node labels
- `max_par` Maximal number of parents

Value

- `graph` as adjacency matrix

Examples

```r
dag <- create_random_DAG(30, 0.2)
adj <- as_adjmat(dag)
```
Description

Main function to compute differential causal effects and the pathway enrichment

Usage

dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
 solver_args = list(),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)

S4 method for signature 'igraph'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
 solver_args = list(),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)

S4 method for signature 'graphNEL'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
solver = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

S4 method for signature 'matrix'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

Arguments

graph valid object defining a directed acyclic graph
df_expr_wt data frame with wild type expression values
df_expr_mt data from with mutation type expression values
solver character with name of solver function
solver_args additional arguments for the solver function. please adress this argument, if you
 use your own solver function. the default argument works with glm functions in
 the packages MASS, stats and glm2
adjustment_type character string for the method to define the adjustment set Z for the regression
effect_type method of computing causal effects
p_method character string. "mean", "sum" for standard summary functions, "hmp" for
 harmonic mean or any method from package 'metap', e.g., "meunp" or "sump".
test either "wald" for testing significance with the wald test or "lr" for using a like-
 lihood ratio test. alternatively, "vcovHC" can improve results for zero-inflated
date, i.e., from single cell RNAseq experiments.
dce_nb

`lib_size` either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.

`deconfounding` indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.

`conservative` logical; if TRUE, does not use the indicator variable for the variables in the adjustment set

`log_level` Control verbosity (logger::INFO, logger::DEBUG, ...)

Value

list of matrices with dces and corresponding p-value

Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce(dag, X.wt, X.mt)
```

dce_nb

Differential Causal Effects for negative binomial data

Description

Shortcut for the main function to analyse negative binomial data

Usage

```r
dce_nb(
  graph,
  df_expr_wt,
  df_expr_mt,
  solver_args = list(method = "glm.dce.nb.fit", link = "identity"),
  adjustment_type = "parents",
  effect_type = "total",
  p_method = "hmp",
  test = "wald",
  lib_size = FALSE,
  deconfounding = FALSE,
  conservative = FALSE,
  log_level = logger::INFO
)
```
Arguments

- **graph**: valid object defining a directed acyclic graph
- **df_expr_wt**: data frame with wild type expression values
- **df_expr_mt**: data frame with mutation type expression values
- **solver_args**: additional arguments for the solver function
- **adjustment_type**: character string for the method to define the adjustment set \(Z \) for the regression
- **effect_type**: method of computing causal effects
- **p_method**: character string. "mean", "sum" for standard summary functions, "hmp" for harmonic mean or any method from package 'metap', e.g., "meanp" or "sump".
- **test**: either "wald" for testing significance with the wald test or "lr" for using a likelihood ratio test
- **lib_size**: either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.
- **deconfounding**: indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.
- **conservative**: logical; if TRUE, does not use the indicator variable for the variables in the adjustment set
- **log_level**: Control verbosity (logger::INFO, logger::DEBUG, ...)

Value

List of matrices with dces and corresponding p-value

Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce_nb(dag, X.wt, X.mt)
```

df_pathway_statistics
Biological pathway information.

Description

A dataset containing pathway statistics.
estimate_latent_count

Usage

```r
df_pathway_statistics
```

Format

A data frame with pathway statistics

- **database**: Pathway database
- **pathway_id**: Internal ID of pathway
- **pathway_name**: Canonical name of pathway
- **node_num**: Number of nodes in pathway
- **edge_num**: Number of edges in pathway

Description

This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see pcalg::causalEffect for pairwise computation.

Usage

```r
estimate_latent_count(X1, X2, method = "auto")
```

Arguments

- **X1**: data matrix corresponding to the first condition
- **X2**: data matrix corresponding to the second condition
- **method**: a string indicating the method used for estimating the number of latent variables

Value

- estimated number of latent variables

Author(s)

Domagoj Ćević

Examples

```r
graph1 <- create_random_DAG(node_num = 100, prob = .1)
graph2 <- resample_edge_weights(graph1, tp=0.15)
X1 <- simulate_data(graph1, n=200, latent = 3)
X2 <- simulate_data(graph2, n=200, latent = 3)
estimate_latent_count(X1, X2)
```
g2dag

Graph to DAG

Description

Converts a general graph to a dag with minimum distance to the original graph. The general idea is to transitively close the graph to detect cycles and remove them based on the rule "the more outgoing edges a node has, the more likely it is that incoming edges from a cycle will be deleted, and vice versa. However, this is too rigorous and deletes too many edges, which do not lead to a cycle. These edges are added back in the final step.

Usage

```r
g2dag(g, tc = FALSE)
```

Arguments

- `g` graph as adjacency matrix
- `tc` if TRUE computes the transitive closure

Value

dag as adjacency matrix

Author(s)

Ken Adams

Examples

```r
g <- matrix(c(1,0,1,0, 1,1,0,0, 0,1,1,0, 1,1,0,1), 4, 4)
rownames(g) <- colnames(g) <- LETTERS[seq_len(4)]
dag <- g2dag(g)
```

get_pathway_info

Dataframe containing meta-information of pathways in database

Description

Dataframe containing meta-information of pathways in database

Usage

```r
get_pathway_info(
    query_species = "hsapiens",
    database_list = NULL,
    include_network_statistics = FALSE
)
```
get_pathways

Arguments

query_species For which species
database_list Which databases to query. Query all if ‘NULL’.
include_network_statistics Compute some useful statistics per pathway. Takes longer!

Value
data frame with pathway meta information

Examples

head(get_pathway_info(database_list = c("kegg")))

description

Easy pathway network access

Usage

g got_pathways(
 query_species = "hsapiens",
 database_list = NULL,
 remove_empty_pathways = TRUE,
 pathway_list = NULL
)

Arguments

query_species For which species
database_list Which databases to query. Query all if ‘NULL’.
remove_empty_pathways Discard pathways without nodes
pathway_list List mapping database name to vector of pathway names to download

Value

list of pathways
get_prediction_counts

Examples

```r
pathways <- get_pathways(
  pathway_list = list(kegg = c(
    "Protein processing in endoplasmic reticulum"
  ))
)
plot_network(as(pathways[[1]]$graph, "matrix"))
```

get_prediction_counts Compute true positive/... counts

Description

Useful for performance evaluations

Usage

```r
get_prediction_counts(truth, inferred, cutoff = 0.5)
```

Arguments

- `truth`: Ground truth
- `inferred`: Computed results
- `cutoff`: Threshold for classification

Value

data.frame

Author(s)

Hans Wurst

Examples

```r
get_prediction_counts(c(1,0), c(1,1))
```
graph_union

Description
Create union of multiple graphs

Usage
graph_union(graph_list)

Arguments
graph_list List of graphs

Value
graph union

Examples
dag <- create_random_DAG(30, 0.2)
dag2 <- create_random_DAG(30, 0.2)
graph_union(list(g1=dag,g2=dag2))

graph2df

Description
Convert graph object to dataframe with source and target columns

Usage
graph2df(graph)

Arguments
graph Network

Value
data frame

Examples
dag <- create_random_DAG(30, 0.2)
graph2df(dag)
pcor

Partial correlation

Description

Robust partial correlation of column variables of a numeric matrix

Usage

```r
pcor(x, g = NULL, adjustment_type = "parents", ...)
```

Arguments

- `x`: matrix
- `g`: related graph as adjacency matrix (optional)
- `adjustment_type`: character string for the method to define the adjustment set Z for the regression
- `...`: additional arguments for function 'cor'

Value

matrix of partial correlations

Examples

```r
x <- matrix(rnorm(100),10,10)
pkor(x)
```

permutation_test

Permutation test for (partial) correlation on non-Gaussian data

Description

Computes the significance of (partial) correlation based on permutations of the observations

Usage

```r
permutation_test(x, y, iter = 1000, fun = pcor, mode = 1, ...)
```
plot.dce

Arguments

- `x` wild type data set
- `y` mutant data set
- `iter` number of iterations (permutations)
- `fun` function to compute the statistic, e.g., cor or pcor
- `mode` either 1 for a function that takes a single data set and produces an output of class matrix, and 2, if the function takes two data sets
- `...` additional arguments for function `fun`

Value

matrix of p-values

Examples

```r
x <- matrix(rnorm(100),10,10)
y <- matrix(rnorm(100),10,10)
permutation_test(x,y,iter=10)
```

plot.dce
Plot dce object

Description

This function takes a differential causal effects object and plots the dag with the dces

Usage

```r
## S3 method for class 'dce'
plot(x, ...)
```

Arguments

- `x` dce object
- `...` Parameters passed to dce::plot_network

Value

plot of dag and dces

Author(s)

Martin Pirkl, Kim Philipp Jablonski
Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce.list <- dce(dag,X.wt,X.mt)
plot(dce.list)
```

plot_network

Plot network adjacency matrix

Description

Generic function which plots any adjacency matrix (assumes DAG)

Usage

```r
plot_network(
  adja_matrix,
  nodename_map = NULL,
  edgescale_limits = NULL,
  nodesize = 17,
  labelsize = 3,
  node_color = "white",
  node_border_size = 0.5,
  arrow_size = 0.05,
  scale_edge_width_max = 1,
  show_edge_labels = FALSE,
  visualize_edge_weights = TRUE,
  use_symlog = FALSE,
  highlighted_nodes = c(),
  legend_title = "edge weight",
  value_matrix = NULL,
  shadowtext = FALSE,
  ...
)
```

Arguments

- `adja_matrix`: Adjacency matrix of network
- `nodename_map`: Node names
- `edgescale_limits`: Limits for scale_edge_color_gradient2 (should contain 0). Useful to make plot comparable to others
- `nodesize`: Node sizes
- `labelsize`: Node label sizes
propagate_gene_edges

- **node_color**: Which color to plot nodes in
- **node_border_size**: Thickness of node’s border stroke
- **arrow_size**: Size of edge arrows
- **scale_edge_width_max**: Max range for ‘scale_edge_width’
- **show_edge_labels**: Whether to show edge labels (DCEs)
- **visualize_edge_weights**: Whether to change edge color/width/alpha relative to edge weight
- **use_symlog**: Scale edge colors using dce::symlog
- **highlighted_nodes**: List of nodes to highlight
- **legend_title**: Title of edge weight legend
- **value_matrix**: Optional matrix of edge weights if different from adjacency matrix
- **shadowtext**: Draw white outline around node labels
- ... additional parameters

Value

- plot of dag and dces

Author(s)

- Martin Pirkl, Kim Philipp Jablonski

Examples

```r
adj <- matrix(c(0,0,0,1,0,0,0,1,0),3,3)
plot_network(adj)
```

Description

Remove non-gene nodes from pathway and reconnect nodes

Usage

```r
propagate_gene_edges(graph)
```

Arguments

- **graph**: Biological pathway
resample_edge_weights

Value

graph with only genes as nodes

Examples

dag <- create_random_DAG(30, 0.2)
propagate_gene_edges(dag)

resample_edge_weights Resample network edge weights

Description

Takes a graph and modifies edge weights.

Usage

resample_edge_weights(g, tp = 0.5, mineff = 1, maxeff = 2, method = "unif")

Arguments

g original graph

 tp fraction of edge weights which will be modified

 mineff minimal differential effect size

 maxeff maximum effect effect size or standard deviation, if method is "gauss"

 method method for drawing the differential for the causal effects. Can be "unif", "exp" or "gauss".

Value

graph with new edge weights

Author(s)

Martin Pirkl

Examples

graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
graph.mt <- resample_edge_weights(graph.wt)
rlm_dce

Description

costum rlm function

Usage

```
rlm_dce(...)
```

Arguments

...
see ?MASS::rlm

simulate_data

Simulate data

Description

Generate data for given DAG. The flexible framework allows for different distributions for source and child nodes. Default distributions are negative binomial (with mean = 100 and 1/dispersion = 100), and poisson, respectively.

Usage

```
simulate_data(
  graph,
  n = 100,
  dist_fun = rbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)
```

S4 method for signature 'igraph'

```
simulate_data(
  graph,
  n = 100,
```


```r
simulate_data =

dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
child_fun = rpois,
  child_args = list(),
child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

## S4 method for signature 'graphNEL'
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
child_fun = rpois,
  child_args = list(),
child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

## S4 method for signature 'matrix'
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
child_fun = rpois,
  child_args = list(),
child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

## Arguments

graph     Graph to simulate on

n          Number of samples
```
summary.rlm_dce

dist_fun
distribution function for nodes without parents

dist_args
list of arguments for dist_fun

child_fun
distribution function for nodes with parents

child_args
list of arguments for child_fun

child_dep
link_fun computes an output for the expression of nodes without parents. this output is than used as input for child_fun. child_dep defines the parameter (a a string) of child_fun, which is used for the input. E.g., the link_fun is the identity and the child_fun is rnorm, we usually set child_dep = "mean".

link_fun
special link function for the negative binomial distribution

link_args
list of arguments for link_fun

pop_size
numeric for the population size, e.g., pop_size=1000 adds 1000-n random genes not in the graph

latent
number of latent variables

latent_fun
uniform "unif" or exponential "exp" distribution of latent coefficients

Value

graph

Examples

dag <- create_random_DAG(30, 0.2)
X <- simulate_data(dag)

summary.rlm_dce
summary for rlm_dce

Description

summary for rlm_dce

Usage

```r
## S3 method for class 'rlm_dce'
summary(object, ...)
```

Arguments

- **object**: object of class 'rlm_dce'
- **...**: see MASS::summary.rlm
topologically_ordering

Topological ordering

Description

Order rows/columns of a adjacency matrix topologically

Usage

topologically_ordering(adja_mat, alt = FALSE)

Arguments

- **adja_mat**: Adjacency matrix of network
- **alt**: Use igraph implementation

Value

topologically ordered matrix

Examples

```r
adj <- matrix(c(0,1,0,0,0,1,0,0,0),3,3)
topologically_ordering(adj)
```

trueEffects

Compute the true casual effects of a simulated dag

Description

This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see pcalg::causalEffect for pairwise computation.

Usage

ttrueEffects(g, partial = FALSE)

Arguments

- **g**: graphNEL object
- **partial**: if FALSE computes the total causal effects and not just the partial edge effects
trueEffects

Value

matrix of causal effects

Author(s)

Martin Pirkl

Examples

```r
graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
trueEffects(graph.wt)
```
Index

* **datasets**
 - df_pathway_statistics, 8
 - as.data.frame.dce, 3
 - as_adjmat, 3
 - create_random_DAG, 4
 - dce, 5
 - dce,igraph-method (dce), 5
 - dce,matrix-method (dce), 5
 - dce_nb, 7
 - df_pathway_statistics, 8
 - estimate_latent_count, 9
 - g2dag, 10
 - get_pathway_info, 10
 - get_pathways, 11
 - get_prediction_counts, 12
 - graph2df, 13
 - graph_union, 13
 - pcor, 14
 - permutation_test, 14
 - plot.dce, 15
 - plot_network, 16
 - propagate_gene_edges, 17
 - resample_edge_weights, 18
 - rlm_dce, 19
 - simulate_data, 19
 - simulate_data,igraph-method (simulate_data), 19
 - simulate_data,matrix-method (simulate_data), 19

 - *topologically_ordering, 22
 - trueEffects, 22

Number 24