Package ‘dce’

April 3, 2024

Type Package
Title Pathway Enrichment Based on Differential Causal Effects
Version 1.10.0
Description Compute differential causal effects (dce) on (biological) networks.

Given observational samples from a control experiment and non-control (e.g., cancer) for two genes A and B, we can compute differential causal effects with a (generalized) linear regression.

If the causal effect of gene A on gene B in the control samples is different from the causal effect in the non-control samples the dce will differ from zero.

We regularize the dce computation by the inclusion of prior network information from pathway databases such as KEGG.

URL https://github.com/cbg-ethz/dce

BugReports https://github.com/cbg-ethz/dce/issues

biocViews Software, StatisticalMethod, GraphAndNetwork, Regression, GeneExpression, DifferentialExpression, NetworkEnrichment, Network, KEGG

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 4.1)

Suggests knitr, rmarkdown, testthat (>= 2.1.0), BiocStyle, formatR, cowplot, ggplotify, dagitty, limtest, sandwich, devtools, curatedTCGAData, TCGAutils, SummarizedExperiment, RcppParallel, docopt, CARNIVAL

VignetteBuilder knitr

RoxygenNote 7.1.2

Imports stats, methods, assertthat, graph, pcalg, purrr, tidyverse, Matrix, ggplot, tidygraph, ggplot2, rlang, expm, MASS, edgeR, epiNEM, igraph, metap, mnem, naturalsort, ppcor, glm2, graphite, reshape2, dplyr, magrittr, glue, Rgraphviz, harmonicmeanp, org.Hs.eg.db, logger, shadowtext
R topics documented:

```r
as.data.frame.dce .............................................. 3
as_adjmat ...................................................... 3
create_random_DAG ............................................. 4
dce ............................................................ 5
dce_nb .......................................................... 7
df_pathway_statistics .......................................... 8
estimate_latent_count .......................................... 9
g2dag ........................................................... 10
get_pathways ..................................................... 10
get_pathway_info ............................................... 11
get_prediction_counts ......................................... 12
graph2df ......................................................... 13
graph_union ..................................................... 13
pcor ............................................................. 14
permutation_test ................................................ 14
plot.dce ........................................................ 15
plot_network ..................................................... 16
propagate_gene_edges ......................................... 17
resample_edge_weights ......................................... 18
rlm_dce ........................................................ 19
simulate_data .................................................... 19
summary.rlm_dce ................................................ 21
topologically_ordering ......................................... 22
trueEffects ..................................................... 22
Index ................................................................ 24
```
as.data.frame.dce

Dce to data frame

Description

Turn dce object into data frame

Usage

```r
## S3 method for class 'dce'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- **x**: dce object
- **row.names**: optional character vector of rownames
- **optional**: logical; allow optional arguments
- **...**: additional arguments

Value

data frame containing the dce output

Examples

```r
dag <- create_random_DAG(30, 0.2)
X_wt <- simulate_data(dag)
dag_mt <- resample_edge_weights(dag)
X_mt <- simulate_data(dag_mt)
dce_list <- dce(dag, X_wt, X_mt)
```

as_adjmat

graph to adjacency

Description

From graphNEL with 0 edge weights to proper adjacency matrix

Usage

```r
as_adjmat(g)
```

Arguments

- **g**: graphNEL object
create_random_DAG

Value

graph as adjacency matrix

Examples

dag <- create_random_DAG(30, 0.2)
adj <- as_adjmat(dag)

dag <- create_random_DAG(30, 0.2)

create_random_DAG Create random DAG (topologically ordered)

Description

Creates a DAG according to given parameters.

Usage

create_random_DAG(
 node_num,
 prob,
 eff_min = -1,
 eff_max = 1,
 node_labels = paste0("n", as.character(seq_len(node_num))),
 max_par = 3
)

Arguments

node_num Number of nodes
prob Probability of creating an edge
eff_min Lower bound for edge weights
eff_max Upper bound for edge weights
node_labels Node labels
max_par Maximal number of parents

Value

graph

Author(s)

Martin Pirkl

Examples

dag <- create_random_DAG(30, 0.2)
Differential Causal Effects - main function

Description

Main function to compute differential causal effects and the pathway enrichment

Usage

dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
 solver_args = list(),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)

S4 method for signature 'igraph'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
 solver_args = list(),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)

S4 method for signature 'graphNEL'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
solver = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

S4 method for signature 'matrix'
dce(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver = "lm",
solver_args = list(),
adjustment_type = "parents",
effect_type = "total",
p_method = "hmp",
test = "wald",
lib_size = FALSE,
deconfounding = FALSE,
conservative = FALSE,
log_level = logger::INFO
)

Arguments

- **graph**: valid object defining a directed acyclic graph
- **df_expr_wt**: data frame with wild type expression values
- **df_expr_mt**: data frame with mutation type expression values
- **solver**: character with name of solver function
- **solver_args**: additional arguments for the solver function. Please address this argument if you use your own solver function. The default argument works with glm functions in the packages MASS, stats, and glm2
- **adjustment_type**: character string for the method to define the adjustment set Z for the regression
- **effect_type**: method of computing causal effects
- **p_method**: character string. "mean", "sum" for standard summary functions, "hmp" for harmonic mean or any method from package 'metap', e.g., "meand" or "sump"
- **test**: either "wald" for testing significance with the wald test or "lr" for using a likelihood ratio test. Alternatively, "vcovHC" can improve results for zero-inflated data, i.e., from single cell RNAseq experiments.
lib_size either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.

decofounding indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.

conservative logical; if TRUE, does not use the indicator variable for the variables in the adjustment set

log_level Control verbosity (logger::INFO, logger::DEBUG, ...)

Value

list of matrices with dces and corresponding p-value

Examples

dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce(dag,X.wt,X.mt)

dce_nb

Differential Causal Effects for negative binomial data

Description

Shortcut for the main function to analyse negative binomial data

Usage

dce_nb(
 graph,
 df_expr_wt,
 df_expr_mt,
 solver_args = list(method = "glm.dce.nb.fit", link = "identity"),
 adjustment_type = "parents",
 effect_type = "total",
 p_method = "hmp",
 test = "wald",
 lib_size = FALSE,
 deconfounding = FALSE,
 conservative = FALSE,
 log_level = logger::INFO
)
df_pathway_statistics

A dataset containing pathway statistics.

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph</td>
<td>valid object defining a directed acyclic graph</td>
</tr>
<tr>
<td>df_expr_wt</td>
<td>data frame with wild type expression values</td>
</tr>
<tr>
<td>df_expr_mt</td>
<td>data frame with mutation type expression values</td>
</tr>
<tr>
<td>solver_args</td>
<td>additional arguments for the solver function</td>
</tr>
<tr>
<td>adjustment_type</td>
<td>character string for the method to define the adjustment set Z for the regression</td>
</tr>
<tr>
<td>effect_type</td>
<td>method of computing causal effects</td>
</tr>
<tr>
<td>p_method</td>
<td>character string. "mean", "sum" for standard summary functions, "hmp" for harmonic mean or any method from package 'metap', e.g., "meanp" or "sump".</td>
</tr>
<tr>
<td>test</td>
<td>either "wald" for testing significance with the wald test or "lr" for using a likelihood ratio test</td>
</tr>
<tr>
<td>lib_size</td>
<td>either a numeric vector of the same length as the sum of wild type and mutant samples or a logical. If TRUE, it is recommended that both data sets include not only the genes included in the graph but all genes available in the original data set.</td>
</tr>
<tr>
<td>deconfounding</td>
<td>indicates whether adjustment against latent confounding is used. If FALSE, no adjustment is used, if TRUE it adjusts for confounding by automatically estimating the number of latent confounders. The estimated number of latent confounders can be chosen manually by setting this variable to some number.</td>
</tr>
<tr>
<td>conservative</td>
<td>logical; if TRUE, does not use the indicator variable for the variables in the adjustment set</td>
</tr>
<tr>
<td>log_level</td>
<td>Control verbosity (logger::INFO, logger::DEBUG, ...)</td>
</tr>
</tbody>
</table>

Value

list of matrices with dces and corresponding p-value

Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce_nb(dag,X.wt,X.mt)
```

df_pathway_statistics
Biological pathway information.
Usage

df_pathway_statistics

Format

A data frame with pathway statistics

<table>
<thead>
<tr>
<th>database</th>
<th>Pathway database</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathway_id</td>
<td>Internal ID of pathway</td>
</tr>
<tr>
<td>pathway_name</td>
<td>Canonical name of pathway</td>
</tr>
<tr>
<td>node_num</td>
<td>Number of nodes in pathway</td>
</tr>
<tr>
<td>edge_num</td>
<td>Number of edges in pathway</td>
</tr>
</tbody>
</table>

estimate_latent_count
Estimate number of latent confounders
Compute the true causal effects of a simulated dag

Description

This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see pcalg::causalEffect for pairwise computation.

Usage

```r
estimate_latent_count(X1, X2, method = "auto")
```

Arguments

- **X1**: data matrix corresponding to the first condition
- **X2**: data matrix corresponding to the second condition
- **method**: a string indicating the method used for estimating the number of latent variables

Value

estimated number of latent variables

Author(s)

Domagoj Ćević

Examples

```r
graph1 <- create_random_DAG(node_num = 100, prob = .1)  
graph2 <- resample_edge_weights(graph1, tp=0.15)  
X1 <- simulate_data(graph1, n=200, latent = 3)  
X2 <- simulate_data(graph2, n=200, latent = 3)  
estimate_latent_count(X1, X2)
```
g2dag
Graph to DAG

Description

Converts a general graph to a dag with minimum distance to the original graph. The general idea is to transitively close the graph to detect cycles and remove them based on the rule "the more outgoing edges a node has, the more likely it is that incoming edges from a cycle will be deleted, and vice versa. However, this is too rigorous and deletes too many edges, which do not lead to a cycle. These edges are added back in the final step.

Usage

\[
g2dag(g, tc = \text{FALSE})
\]

Arguments

- `g`: graph as adjacency matrix
- `tc`: if TRUE computes the transitive closure

Value

dag as adjacency matrix

Author(s)

Ken Adams

Examples

\[
g <- \text{matrix(c(1,0,1,0, 0,1,1,0, 0,1,1,0, 1,1,0,1), 4, 4)}
grownames(g) <- colnames(g) \leftarrow \text{LETTERS[seq_len(4)]}
dag \leftarrow g2dag(g)
\]

get_pathways
Easy pathway network access

Description

Easy pathway network access
Usage

get_pathways(
 query_species = "hsapiens",
 database_list = NULL,
 remove_empty_pathways = TRUE,
 pathway_list = NULL
)

Arguments

query_species For which species
database_list Which databases to query. Query all if ‘NULL’.
remove_empty_pathways Discard pathways without nodes
pathway_list List mapping database name to vector of pathway names to download

Value

list of pathways

Examples

pathways <- get_pathways(
 pathway_list = list(kegg = c("Protein processing in endoplasmic reticulum")
))
plot_network(as(pathways[[1]]$graph, "matrix"))

get_pathway_info

Dataframe containing meta-information of pathways in database

Description

Dataframe containing meta-information of pathways in database

Usage

get_pathway_info(
 query_species = "hsapiens",
 database_list = NULL,
 include_network_statistics = FALSE
)
get_prediction_counts

Arguments

query_species For which species
database_list Which databases to query. Query all if ‘NULL’.
include_network_statistics Compute some useful statistics per pathway. Takes longer!

Value
data frame with pathway meta information

Examples

head(get_pathway_info(database_list = c("kegg")))

get_prediction_counts

Description
Useful for performance evaluations

Usage
get_prediction_counts(truth, inferred, cutoff = 0.5)

Arguments

truth Ground truth
inferred Computed results
cutoff Threshold for classification

Value
data.frame

Author(s)

Hans Wurst

Examples

get_prediction_counts(c(1,0), c(1,1))
graph2df

Convert graph object to dataframe with source and target columns

Usage

```r
graph2df(graph)
```

Arguments

- `graph`: Network

Value

- data frame

Examples

```r
dag <- create_random_DAG(30, 0.2)
graph2df(dag)
```

graph_union

Create union of multiple graphs

Usage

```r
graph_union(graph_list)
```

Arguments

- `graph_list`: List of graphs

Value

- graph union

Examples

```r
dag <- create_random_DAG(30, 0.2)
dag2 <- create_random_DAG(30, 0.2)
graph_union(list(g1=dag, g2=dag2))```
**pcor**  
*Partial correlation*

**Description**
Robust partial correlation of column variables of a numeric matrix

**Usage**
```r
pcor(x, g = NULL, adjustment_type = "parents", ...)
```

**Arguments**
- `x`: matrix
- `g`: related graph as adjacency matrix (optional)
- `adjustment_type`: character string for the method to define the adjustment set Z for the regression
- `...`: additional arguments for function 'cor'

**Value**
matrix of partial correlations

**Examples**
```r
x <- matrix(rnorm(100),10,10)
pcor(x)
```

---

**permutation_test**  
*Permutation test for (partial) correlation on non-Gaussian data*

**Description**
Computes the significance of (partial) correlation based on permutations of the observations

**Usage**
```r
permutation_test(x, y, iter = 1000, fun = pcor, mode = 1, ...)
```
plot.dce

Arguments

- `x`: wild type data set
- `y`: mutant data set
- `iter`: number of iterations (permutations)
- `fun`: function to compute the statistic, e.g., cor or pcor
- `mode`: either 1 for a function that takes a single data set and produces an output of class matrix, and 2, if the function takes two data sets
- `...`: additional arguments for function `fun`

Value

matrix of p-values

Examples

```r
x <- matrix(rnorm(100),10,10)
y <- matrix(rnorm(100),10,10)
permutation_test(x,y,iter=10)
```

plot.dce

Plot dce object

Description

This function takes a differential causal effects object and plots the dag with the dces

Usage

```r
S3 method for class 'dce'
plot(x, ...)
```

Arguments

- `x`: dce object
- `...`: Parameters passed to dce::plot_network

Value

plot of dag and dces

Author(s)

Martin Pirkl, Kim Philipp Jablonski
Examples

```r
dag <- create_random_DAG(30, 0.2)
X.wt <- simulate_data(dag)
dag.mt <- resample_edge_weights(dag)
X.mt <- simulate_data(dag)
dce.list <- dce(dag,X.wt,X.mt)
plot(dce.list)
```

---

### plot_network

**Plot network adjacency matrix**

**Description**

Generic function which plots any adjacency matrix (assumes DAG)

**Usage**

```r
plot_network(
 adja_matrix,
 nodename_map = NULL,
 edgescale_limits = NULL,
 nodesize = 17,
 labelsize = 3,
 node_color = "white",
 node_border_size = 0.5,
 arrow_size = 0.05,
 scale_edge_width_max = 1,
 show_edge_labels = FALSE,
 visualize_edge_weights = TRUE,
 use_symlog = FALSE,
 highlighted_nodes = c(),
 legend_title = "edge weight",
 value_matrix = NULL,
 shadowtext = FALSE,
 ...
)
```

**Arguments**

- `adja_matrix`: Adjacency matrix of network
- `nodename_map`: Node names
- `edgescale_limits`: Limits for scale_edge_color_gradient2 (should contain 0). Useful to make plot comparable to others
- `nodesize`: Node sizes
- `labelsize`: Node label sizes
propagate_gene_edges

node_color       Which color to plot nodes in
node_border_size Thickness of node’s border stroke
arrow_size      Size of edge arrows
scale_edge_width_max Max range for ‘scale_edge_width’
show_edge_labels Whether to show edge labels (DCEs)
visualize_edge_weights Whether to change edge color/width/alpha relative to edge weight
use_symlog      Scale edge colors using dce::symlog
highlighted_nodes List of nodes to highlight
legend_title    Title of edge weight legend
value_matrix    Optional matrix of edge weights if different from adjacency matrix
shadowtext      Draw white outline around node labels
...             additional parameters

Value

plot of dag and dces

Author(s)

Martin Pirkl, Kim Philipp Jablonski

Examples

adj <- matrix(c(0,0,0,1,0,0,1,0,0,1,0),3,3)
plot_network(adj)

propagate_gene_edges remove non-gene nodes from pathway and reconnect nodes

Description

Remove non-gene nodes from pathway and reconnect nodes

Usage

propagate_gene_edges(graph)

Arguments

graph         Biological pathway
resample_edge_weights

Value

graph with only genes as nodes

Examples

dag <- create_random_DAG(30, 0.2)
propagate_gene_edges(dag)

graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
graph.mt <- resample_edge_weights(graph.wt)

Description

Takes a graph and modifies edge weights.

Usage

resample_edge_weights(g, tp = 0.5, mineff = 1, maxeff = 2, method = "unif")

Arguments

g original graph
tp fraction of edge weights which will be modified
mineff minimal differential effect size
maxeff maximum effect size or standard deviation, if method is "gauss"
method method for drawing the differential for the causal effects. Can be "unif", "exp" or "gauss".

Value

graph with new edge weights

Author(s)

Martin Pirkl

Examples

graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
graph.mt <- resample_edge_weights(graph.wt)
**package**  
rlm_dce  

**Description**  
custom rlm function

**Usage**

```
rlm_dce(...)
```

**Arguments**

...  

see ?MASS::rlm

---

**simulate_data**  
Simulate data

**Description**

Generate data for given DAG. The flexible framework allows for different distributions for source and child nodes. Default distributions are negative binomial (with mean = 100 and 1/dispersion = 100), and poisson, respectively.

**Usage**

```
simulate_data(
 graph,
 n = 100,
 dist_fun = rnbinom,
 dist_args = list(mu = 1000, size = 100),
 child_fun = rpois,
 child_args = list(),
 child_dep = "lambda",
 link_fun = negative.binomial.special()$linkfun,
 link_args = list(offset = 1),
 pop_size = 0,
 latent = 0,
 latent_fun = "unif"
)
```

## S4 method for signature 'igraph'

```
simulate_data(
 graph,
 n = 100,
)
```
dist_fun = rnbinom,
dist_args = list(mu = 1000, size = 100),
child_fun = rpois,
child_args = list(),
child_dep = "lambda",
link_fun = negative.binomial.special()$linkfun,
link_args = list(offset = 1),
pop_size = 0,
latent = 0,
latent_fun = "unif"
)

## S4 method for signature 'graphNEL'
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

## S4 method for signature 'matrix'
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

Arguments

graph       Graph to simulate on
n           Number of samples
summary.rlm_dce

dist_fun  distribution function for nodes without parents
dist_args list of arguments for dist_fun
child_fun distribution function for nodes with parents
child_args list of arguments for child_fun
child_dep link_fun computes an output for the expression of nodes without parents. This
            output is then used as input for child_fun. child_dep defines the parameter (a string) of
            child_fun, which is used for the input. E.g., the link_fun is the identity and the child_fun
            is rnorm, we usually set child_dep = "mean".
link_fun  special link function for the negative binomial distribution
link_args list of arguments for link_fun
pop_size numeric for the population size, e.g., pop_size=1000 adds 1000-n random genes
         not in the graph
latent number of latent variables
latent_fun uniform "unif" or exponential "exp" distribution of latent coefficients

Value

graph

Examples

    dag <- create_random_DAG(30, 0.2)
    X <- simulate_data(dag)

summary.rlm_dce summary for rlm_dce

Description

summary for rlm_dce

Usage

    ## S3 method for class 'rlm_dce'
    summary(object, ...)

Arguments

    object object of class 'rlm_dce'
    ... see ?MASS::summary.rlm
topologically_ordering

*Topological ordering*

**Description**

Order rows/columns of an adjacency matrix topologically.

**Usage**

```
topologically_ordering(adja_mat, alt = FALSE)
```

**Arguments**

- `adja_mat` : Adjacency matrix of network
- `alt` : Use igraph implementation

**Value**

topologically ordered matrix

**Examples**

```
adj <- matrix(c(0,1,0,0,0,1,0,0,0),3,3)
topologically_ordering(adj)
```

trueEffects

*Compute the true casual effects of a simulated dag*

**Description**

This function takes a DAG with edgeweights as input and computes the causal effects of all nodes on all direct and indirect children in the DAG. Alternatively see `pcalg::causalEffect` for pairwise computation.

**Usage**

```
trueEffects(g, partial = FALSE)
```

**Arguments**

- `g` : graphNEL object
- `partial` : if FALSE computes the total causal effects and not just the partial edge effects
trueEffects

Value
matrix of causal effects

Author(s)
Martin Pirkl

Examples

```r
graph.wt <- as(matrix(c(0,0,0,1,0,0,0,1,0), 3), "graphNEL")
trueEffects(graph.wt)
```
# Index

<table>
<thead>
<tr>
<th><em>datasets</em></th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>df_pathway_statistics</td>
<td>8</td>
</tr>
<tr>
<td>as.data.frame.dce</td>
<td>3</td>
</tr>
<tr>
<td>as_adjmat</td>
<td>3</td>
</tr>
<tr>
<td>create_random_DAG</td>
<td>4</td>
</tr>
<tr>
<td>dce, 5</td>
<td></td>
</tr>
<tr>
<td>dce,igraph-method (dce)</td>
<td>5</td>
</tr>
<tr>
<td>dce,igraph-method (dce)</td>
<td>5</td>
</tr>
<tr>
<td>dce,matrix-method (dce)</td>
<td>5</td>
</tr>
<tr>
<td>dce_nb, 7</td>
<td></td>
</tr>
<tr>
<td>df_pathway_statistics</td>
<td>8</td>
</tr>
<tr>
<td>estimate_latent_count</td>
<td>9</td>
</tr>
<tr>
<td>g2dag, 10</td>
<td></td>
</tr>
<tr>
<td>get_pathway_info, 11</td>
<td></td>
</tr>
<tr>
<td>get_pathways, 10</td>
<td></td>
</tr>
<tr>
<td>get_prediction_counts, 12</td>
<td></td>
</tr>
<tr>
<td>graph2df, 13</td>
<td></td>
</tr>
<tr>
<td>graph_union, 13</td>
<td></td>
</tr>
<tr>
<td>pcor, 14</td>
<td></td>
</tr>
<tr>
<td>permutation_test, 14</td>
<td></td>
</tr>
<tr>
<td>plot.dce, 15</td>
<td></td>
</tr>
<tr>
<td>plot_network, 16</td>
<td></td>
</tr>
<tr>
<td>propagate_gene_edges</td>
<td>17</td>
</tr>
<tr>
<td>resample_edge_weights, 18</td>
<td></td>
</tr>
<tr>
<td>rlm_dce, 19</td>
<td></td>
</tr>
<tr>
<td>simulate_data, 19</td>
<td></td>
</tr>
<tr>
<td>simulate_data,igraph-method</td>
<td></td>
</tr>
<tr>
<td>(simulate_data), 19</td>
<td></td>
</tr>
<tr>
<td>simulate_data,matrix-method</td>
<td></td>
</tr>
<tr>
<td>(simulate_data), 19</td>
<td></td>
</tr>
<tr>
<td>simulate_data,graphNEL-method</td>
<td></td>
</tr>
<tr>
<td>(simulate_data), 19</td>
<td></td>
</tr>
<tr>
<td>summary.rlm_dce, 21</td>
<td></td>
</tr>
<tr>
<td>topologically_ordering, 22</td>
<td></td>
</tr>
<tr>
<td>trueEffects, 22</td>
<td></td>
</tr>
</tbody>
</table>