Package 'derfinder'

May 13, 2024

Type Package

Title Annotation-agnostic differential expression analysis of RNA-seq data at base-pair resolution via the DER Finder approach

Version 1.38.0

Date 2021-09-14

Depends R (>= 3.5.0)

Imports BiocGenerics (>= 0.25.1), AnnotationDbi (>= 1.27.9), BiocParallel (>= 1.15.15), bumphunter (>= 1.9.2), derfinderHelper (>= 1.1.0), GenomeInfoDb (>= 1.3.3), GenomicAlignments, GenomicFeatures, GenomicFiles, GenomicRanges (>= 1.17.40), Hmisc, IRanges (>= 2.3.23), methods, qvalue (>= 1.99.0), Rsamtools (>= 1.25.0), rtracklayer, S4Vectors (>= 0.23.19), stats, utils

Suggests BiocStyle (>= 2.5.19), sessioninfo, derfinderData (>= 0.99.0), derfinderPlot, DESeq2, ggplot2, knitr (>= 1.6), limma, RefManageR, rmarkdown (>= 0.3.3), testthat (>= 2.1.0), TxDb.Hsapiens.UCSC.hg19.knownGene, covr

VignetteBuilder knitr

Description This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package: (1) single base-level F-statistics and (2) DER identification at the expressed regions-level. The DER Finder approach can also be used to identify differentially bounded ChIP-seq peaks.

License Artistic-2.0

LazyData true

URL https://github.com/lcolladotor/derfinder

BugReports https://support.bioconductor.org/t/derfinder/

biocViews DifferentialExpression, Sequencing, RNASeq, ChIPSeq, DifferentialPeakCalling, Software, ImmunoOncology, Coverage

RoxygenNote 7.2.3
Encoding UTF-8
Roxygen list(markdown = TRUE)
git_url https://git.bioconductor.org/packages/derfinder
git_branch RELEASE_3_19
git_last_commit e2fe91
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-13

Author Leonardo Collado-Torres [aut, cre]
(A<https://orcid.org/0000-0003-2140-308X>),
Alyssa C. Frazee [ctb],
Andrew E. Jaffe [aut] (<https://orcid.org/0000-0001-6886-1454>),
Jeffrey T. Leek [aut, ths] (<https://orcid.org/0000-0002-2873-2671>)

Maintainer Leonardo Collado-Torres <lcolladotor@gmail.com>

Contents

derfinder-package .. 3
analyzeChr ... 4
annotateRegions ... 7
calculatePvalues .. 8
calculateStats ... 12
coeerceGR ... 13
collapseFullCoverage ... 14
coverageToExon ... 16
createBw ... 18
createBwSample .. 19
define_cluster ... 20
derfinder-deprecated .. 21
extendedMapSeqlevels ... 22
filterData ... 24
findRegions ... 26
fullCoverage .. 28
genomeData .. 30
genomeDataRaw .. 31
genomeFstats ... 32
genomeInfo ... 32
genomeRegions .. 33
genomicState ... 34
getRegionCoverage ... 34
getTotalMapped .. 36
loadCoverage ... 37
makeGenomicState ... 40
makeModels ... 41
mergeResults ... 43
derfinder-package

Description

This package provides functions for annotation-agnostic differential expression analysis of RNA-seq data. Two implementations of the DER Finder approach are included in this package: (1) single base-level F-statistics and (2) DER identification at the expressed regions-level. The DER Finder approach can also be used to identify differentially bounded ChIP-seq peaks.

Author(s)

Maintainer: Leonardo Collado-Torres <lcolladotor@gmail.com> (ORCID)

Authors:

- Andrew E. Jaffe <andrew.jaffe@libd.org> (ORCID)
- Jeffrey T. Leek <jtleek@gmail.com> (ORCID) [thesis advisor]

Other contributors:

- Alyssa C. Frazee <alyssa.frazee@gmail.com> [contributor]

See Also

Useful links:

- https://github.com/lcolladotor/derfinder
- Report bugs at https://support.bioconductor.org/t/derfinder/
analyzeChr

Run the derfinder analysis on a chromosome

Description
This is a major wrapper for running several key functions from this package. It is meant to be used after loadCoverage has been used for a specific chromosome. The steps run include makeModels, preprocessCoverage, calculateStats, calculatePvalues and annotating with annotateTranscripts and matchGenes.

Usage

```r
analyzeChr(
  chr,  
  coverageInfo,  
  models,  
  cutoffPre = 5,  
  cutoffFstat = 1e-08,  
  cutoffType = "theoretical",  
  nPermute = 1,  
  seeds = as.integer(gsub("-", ",", Sys.Date())) + seq_len(nPermute),  
  groupInfo,  
  txdb = NULL,  
  writeOutput = TRUE,  
  runAnnotation = TRUE,  
  lowMemDir = file.path(chr, "chunksDir"),  
  smooth = FALSE,  
  weights = NULL,  
  smoothFunction = bumphunter::locfitByCluster,  
  ...  
)
```

Arguments

- **chr**
 Used for naming the output files when writeOutput=TRUE and the resulting GRanges object.

- **coverageInfo**
 A list containing a DataFrame – `coverage`– with the coverage data and a logical Rle – `$position`– with the positions that passed the cutoff. This object is generated using loadCoverage. You should have specified a cutoff value for loadCoverage unless that you are using colsubset which will force a filtering step with filterData when running preprocessCoverage.

- **models**
 The output from makeModels.

- **cutoffPre**
 This argument is passed to preprocessCoverage (cutoff).

- **cutoffFstat**
 This is used to determine the cutoff argument of calculatePvalues and it’s behaviour is determined by cutoffType.
analyzeChr

cutoffType If set to empirical, the cutoffFstat (example: 0.99) quantile is used via quantile. If set to theoretical, the theoretical cutoffFstats (example: 1e-08) is calculated via qf. If set to manual, cutoffFstats is passed to calculatePvalues without any other calculation.

nPermute The number of permutations. Note that for a full chromosome, a small amount (10) of permutations is sufficient. If set to 0, no permutations are performed and thus no null regions are used, however, the $regions component is created.

seeds An integer vector of length nPermute specifying the seeds to be used for each permutation. If NULL no seeds are used.

groupInfo A factor specifying the group membership of each sample that can later be used with the plotting functions in the derfinderPlot package.

txdb This argument is passed to annotateTranscripts. If NULL, TxDb.Hsapiens.UCSC.hg19.knownGene is used.

writeOutput If TRUE, output Rdata files are created at each step inside a directory with the chromosome name (example: `chr21` if chrnum=21'). One Rdata file is created for each component described in the return section.

runAnnotation If TRUE annotateTranscripts and matchGenes are run. Otherwise these steps are skipped.

lowMemDir If specified, each chunk is saved into a separate Rdata file under lowMemDir and later loaded in fstats.apply when running calculateStats and calculatePvalues. Using this option helps reduce the memory load as each fork in bplapply loads only the data needed for the chunk processing. The downside is a bit longer computation time due to input/output.

smooth Whether to smooth the F-statistics (fstats) or not. This is by default FALSE. For RNA-seq data we recommend using FALSE.

weights Weights used by the smoother as described in smoother.

smoothFunction A function to be used for smoothing the F-statistics. Two functions are provided by the bumphunter package: loessByCluster and runmedByCluster. If you are using your own custom function, it has to return a named list with an element called $fitted that contains the smoothed F-statistics and an element called $smoothed that is a logical vector indicating whether the F-statistics were smoothed or not. If they are not smoothed, the original values will be used.

... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose If TRUE basic status updates will be printed along the way. Default TRUE.

scalefac This argument is passed to preprocessCoverage.

chunksize This argument is passed to preprocessCoverage.

returnOutput If TRUE, it returns a list with the results from each step. Otherwise, it returns NULL. Default: the opposite of writeOutput.

Passed to extendedMapSeqlevels, preprocessCoverage, calculateStats, calculatePvalues, annotateTranscripts, matchGenes, and define_cluster.
analyzeChr

Details

If you are working with data from an organism different from 'Homo sapiens' specify so by setting the global 'species' and 'chrsStyle' options. For example:

```r
options(species = 'arabidopsis_thaliana')
options(chrsStyle = 'NCBI')
```

Value

If `returnOutput=TRUE`, a list with six components:

- **timeinfo** The wallclock timing information for each step.
- **optionsStats** The main options used when running this function.
- **coveragePrep** The output from `preprocessCoverage`.
- **fstats** The output from `calculateStats`.
- **regions** The output from `calculatePvalues`.
- **annotation** The output from `matchGenes`.

These are the same components that are written to Rdata files if `writeOutput=TRUE`.

Author(s)

Leonardo Collado-Torres

See Also

- `makeModels`, `preprocessCoverage`, `calculateStats`, `calculatePvalues`, `annotateTranscripts`, `matchGenes`

Examples

```r
## Collapse the coverage information
collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
  verbose = TRUE)

## Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull,
  probs = c(0.5), nonzero = TRUE,
  verbose = TRUE)

## Build the models
groupInfo <- genomeInfo$pop
adjustvars <- data.frame(genomeInfo$gender)
models <- makeModels(sampleDepths, testvars = groupInfo, adjustvars = adjustvars)

## Analyze the chromosome
results <- analyzeChr(
  chr = "21", coverageInfo = genomeData, models = models,
  cutoffFstat = 1, cutoffType = "manual", groupInfo = groupInfo, mc.cores = 1,
  writeOutput = FALSE, returnOutput = TRUE, method = "regular")
```
annotateRegions

 runAnnotation = FALSE

names(results)

annotateRegions

Assign genomic states to regions

Description

This function takes the regions found in `calculatePvalues` and assigns them genomic states constructed with `makeGenomicState`. The main workhorse functions are `countOverlaps` and `findOverlaps`.

Usage

```r
annotateRegions(regions, genomicState, annotate = TRUE, ...)
```

Arguments

- **regions**: The `$regions` output from `calculatePvalues`.
- **genomicState**: A GRanges object created with `makeGenomicState`. It can be either the `genomicState$fullGenome` or `genomicState$codingGenome` component.
- **annotate**: If TRUE then the regions are annotated by the genomic state. Otherwise, only the overlaps between the regions and the genomic states are computed.
- **...**: Arguments passed to other methods and/or advanced arguments. Advanced arguments:
 - **verbose**: If TRUE basic status updates will be printed along the way.
 - **ignore.strand**: Passed on to `findOverlaps-methods` and `countOverlaps`. Default: TRUE.

Passed to `extendedMapSeqlevels`, `countOverlaps` and `findOverlaps-methods`.

Details

You might want to specify arguments such as `minoverlap` to control how the overlaps are determined. See `findOverlaps` for further details.

Value

A list with elements `countTable` and `annotationList` (only if `annotate=TRUE`).

- **countTable**: This is a data.frame with the number of overlaps from the regions vs the genomic states with one type per column. For example, if `fullOrCoding='full'` then the columns are exon, intergenic and intron.
- **annotationList**: This is a GRangesList with the genomic states that overlapped with the regions.
 The names of this GRangesList correspond to the region index in `regions`.
Author(s)
Andrew Jaffe, Leonardo Collado-Torres

See Also
makeGenomicState, calculatePvalues

Examples

```r
## Annotate regions, first two only
annotatedRegions <- annotateRegions(
  regions = genomeRegions$regions[1:2],
  genomicState = genomicState$fullGenome, minoverlap = 1
)
annotatedRegions
```

```r
## Calculate p-values and identify regions

calculatePvalues(coveragePrep, models, fstats, nPermute = 1L, seeds = as.integer(gsub("-", ",", Sys.Date())) + seq_len(nPermute), chr, cutoff = quantile(fstats, 0.99, na.rm = TRUE), significantCut = c(0.05, 0.1), lowMemDir = NULL, smooth = FALSE, weights = NULL, smoothFunction = bumphunter::locfitByCluster, ...)
```

Description

First, this function finds the regions of interest according to specified cutoffs. Then it permutes the samples and re-calculates the F-statistics. The area of the statistics from these segments are then used to calculate p-values for the original regions.

Usage

```r
calculatePvalues(
  coveragePrep,
  models,
  fstats,
  nPermute = 1L,
  seeds = as.integer(gsub("-", ",", Sys.Date())) + seq_len(nPermute),
  chr,
  cutoff = quantile(fstats, 0.99, na.rm = TRUE),
  significantCut = c(0.05, 0.1),
  lowMemDir = NULL,
  smooth = FALSE,
  weights = NULL,
  smoothFunction = bumphunter::locfitByCluster,
  ...
)
```
Arguments

- `coveragePrep` A list with `$coverageProcessed`, `$mclapplyIndex`, and `$position` normally generated using `preprocessCoverage`.
- `models` A list with `$mod` and `$mod0` normally generated using `makeModels`.
- `fstats` A numerical Rle with the F-statistics normally generated using `calculateStats`.
- `nPermute` The number of permutations. Note that for a full chromosome, a small amount (10) of permutations is sufficient. If set to 0, no permutations are performed and thus no null regions are used, however, the `$regions` component is created.
- `seeds` An integer vector of length `nPermute` specifying the seeds to be used for each permutation. If `NULL` no seeds are used.
- `chr` A single element character vector specifying the chromosome name. This argument is passed to `findRegions`.
- `cutoff` F-statistic cutoff to use to determine segments.
- `significantCut` A vector of length two specifying the cutoffs used to determine significance. The first element is used to determine significance for the P-values, while the second element is used for the Q-values (FDR adjusted P-values).
- `lowMemDir` The directory where the processed chunks are saved when using `preprocessCoverage` with a specified `lowMemDir`.
- `smooth` Whether to smooth the F-statistics (`fstats`) or not. This is by default `FALSE`. For RNA-seq data we recommend using `FALSE`.
- `weights` Weights used by the smoother as described in `smoother`.
- `smoothFunction` A function to be used for smoothing the F-statistics. Two functions are provided by the `bumphunter` package: `loessByCluster` and `runmedByCluster`. If you are using your own custom function, it has to return a named list with an element called `$fitted` that contains the smoothed F-statistics and an element called `$smoothed` that is a logical vector indicating whether the F-statistics were smoothed or not. If they are not smoothed, the original values will be used.
- `...` Arguments passed to other methods and/or advanced arguments. Advanced arguments:
 - `verbose` If `TRUE` basic status updates will be printed along the way.
 - `scalefac` This argument is passed to `fstats.apply` and should be the same as the one used in `preprocessCoverage`. Default: 32.
 - `method` Has to be either ‘Matrix’ (default), ‘Rle’ or ‘regular’. See details in `fstats.apply`.
 - `adjustF` A single value to adjust that is added in the denominator of the F-stat calculation. Useful when the Residual Sum of Squares of the alternative model is very small. Default: 0.
 - `writeOutput` If `TRUE` then the regions are saved before calculating q-values, and then overwritten once the q-values are written. This argument was introduced to save the results from the permutations (can take some time) to investigate the problem described at https://support.bioconductor.org/p/62026/
 - `maxRegionGap` Passed to internal functions of `findRegions`. Default: 0.

Passed to `findRegions`, `smootherFunction` and `define_cluster`.
Value

A list with four components:

- **regions** is a GRanges with metadata columns given by `findRegions` with the additional metadata column `pvalues`: p-value of the region calculated via permutations of the samples; `qvalues`: the qvalues calculated using `qvalue`; `significant`: whether the p-value is less than 0.05 (by default); `significantQval`: whether the q-value is less than 0.10 (by default). It also includes the mean coverage of the region (mean from the mean coverage at each base calculated in `preprocessCoverage`). Furthermore, if `groupInfo` was not NULL in `preprocessCoverage`, then the group mean coverage is calculated as well as the log 2 fold change (using group 1 as the reference).

- **nullStats** is a numeric Rle with the mean of the null statistics by segment.

- **nullWidths** is a numeric Rle with the length of each of the segments in the null distribution. The area can be obtained by multiplying the absolute `nullstats` by the corresponding lengths.

- **nullPermutation** is a Rle with the permutation number from which the null region originated from.

Author(s)

Leonardo Collado-Torres

See Also

`findRegions`, `fstats.apply`, `qvalue`

Examples

```r
## Collapse the coverage information
collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
   verbose = TRUE)

## Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5), verbose = TRUE)

## Build the models
group <- genomeInfo$pop
adjustvars <- data.frame(genomeInfo$gender)
models <- makeModels(sampleDepths, testvars = group, adjustvars = adjustvars)

## Preprocess the data
## Automatic chunksize used to then compare 1 vs 4 cores in the 'do not run'
## section
prep <- preprocessCoverage(genomeData, 
   groupInfo = group, cutoff = 0,
   scalefac = 32, chunksize = NULL, colsubset = NULL, mc.cores = 4)

## Get the F statistics
fstats <- genomeFstats
```
We recommend determining the cutoff to use based on the F-distribution
although you could also base it on the observed F-statistics.

In this example we use a low cutoff used for illustrative purposes
cutoff <- 1

Calculate the p-values and define the regions of interest.
regsWithP <- calculatePvalues(prep, models, fstats,
 nPermute = 1, seeds = 1,
 chr = "chr21", cutoff = cutoff, mc.cores = 1, method = "regular"
)
regsWithP

Not run:
Calculate again, but with 10 permutations instead of just 1
regsWithP <- calculatePvalues(prep, models, fstats,
 nPermute = 10, seeds = 1:10,
 chr = "chr21", cutoff = cutoff, mc.cores = 2, method = "regular"
)

Check that they are the same as the previously calculated regions
library(testthat)
expect_that(regsWithP, equals(genomeRegions))

Histogram of the theoretical p-values by region
hist(pf(regsWithP$regions$value, df1 - df0, n - df1), main = "Distribution
 original p-values by region", freq = FALSE)

Histogram of the permutted p-values by region
hist(regsWithP$regions$pvalues, main = "Distribution permutted p-values by
 region", freq = FALSE)

MA style plot
library("ggplot2")
ma <- data.frame(
 mean = regsWithP$regions$meanCoverage,
 log2FoldChange = regsWithP$regions$log2FoldChangeYRIvsCEU
)

ggplot(ma, aes(x = log2(mean), y = log2FoldChange)) +
 geom_point() +
 ylab("Fold Change (log2)") +
 xlab("Mean coverage (log2)") +
 labs(title = "MA style plot")

Annotate the results
library("bumphunter")
genes <- annotateTranscripts(TxDb.Hsapiens.UCSC.hg19.knownGene::TxDb.Hsapiens.UCSC.hg19.knownGene)
annotation <- matchGenes(regsWithP$regions, genes)
head(annotation)

End(Not run)
calculateStats

Calculate F-statistics at base pair resolution from a loaded BAM files

Description

After defining the models of interest (see makeModels) and pre-processing the data (see preprocessCoverage), use calculateStats to calculate the F-statistics at base-pair resolution.

Usage

calculateStats(coveragePrep, models, lowMemDir = NULL, ...)

Arguments

coveragePrep
A list with $coverageProcessed, $mclapplyIndex, and $position normally generated using preprocessCoverage.

models
A list with $mod and $mod0 normally generated using makeModels.

lowMemDir
The directory where the processed chunks are saved when using preprocessCoverage with a specified lowMemDir.

...
Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose
If TRUE basic status updates will be printed along the way.

scalefac
This argument is passed to fstats.apply and should be the same as the one used in preprocessCoverage. Default: 32.

method
Has to be either 'Matrix' (default), 'Rle' or 'regular'. See details in fstats.apply.

adjustF
A single value to adjust that is added in the denominator of the F-stat calculation. Useful when the Residual Sum of Squares of the alternative model is very small. Default: 0.

Passed to define_cluster.

Value

A numeric Rle with the F-statistics per base pair that passed the cutoff.

Author(s)

Leonardo Collado-Torres

See Also

makeModels, preprocessCoverage
Examples

```r
## Collapse the coverage information
collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
   verbose = TRUE
)

## Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5), verbose = TRUE)

## Build the models
group <- genomeInfo$pop
adjustvars <- data.frame(genomeInfo$gender)
models <- makeModels(sampleDepths, testvars = group, adjustvars = adjustvars)

## Preprocess the data
prep <- preprocessCoverage(genomeData,
   cutoff = 0, scalefac = 32,
   chunksize = 1e3, colsubset = NULL
)

## Run the function
fstats <- calculateStats(prep, models, verbose = TRUE, method = "regular")
fstats
```

Not run:
```r
## Compare vs pre-packaged F-statistics
library("testthat")
expect_that(fstats, is_equivalent_to(genomeFstats))
```

End(Not run)

coerceGR

Coerce the coverage to a GRanges object for a given sample

Description

Given the output of `fullCoverage`, coerce the coverage to a GRanges object.

Usage

`coerceGR(sample, fullCov, ...)`

Arguments

- `sample`: The name or integer index of the sample of interest to coerce to a GRanges object.
- `fullCov`: A list where each element is the result from `loadCoverage` used with `returnCoverage = TRUE`. Can be generated using `fullCoverage`.
collapseFullCoverage

Arguments passed to other methods and/or advanced arguments. Advanced arguments:

- **verbose** If TRUE basic status updates will be printed along the way.
- **seqlengths** A named vector with the sequence lengths of the chromosomes. This argument is passed to GRanges. By default this is NULL and inferred from the data.

Passed to define_cluster.

Value

A GRanges object with score metadata vector containing the coverage information for the specified sample. The ranges reported are only those for regions of the genome with coverage greater than zero.

Author(s)

Leonardo Collado-Torres

See Also

GRanges

Examples

```r
## Create a small fullCov object with data only for chr21
fullCov <- list("chr21" = genomeDataRaw)

## Coerce to a GRanges the first sample
gr <- createBwSample("ERR009101",
  fullCov = fullCov, 
  seqlengths = c("chr21" = 48129895) 
)

## Explore the output
gr

## Coerces fullCoverage() output to GRanges for a given sample
```

Description

For a given data set this function collapses the full coverage information for each sample from all the chromosomes. The resulting information per sample is the number of bases with coverage 0, 1, etc. It is similar to using table() on a regular vector. This information is then used by sampleDepth for calculating the sample depth adjustments. The data set can loaded to R using (see fullCoverage) and optionally filtered using filterData.
collapseFullCoverage

Usage

collapseFullCoverage(fullCov, colsubset = NULL, save = FALSE, ...)

Arguments

fullCov A list where each element is the result from loadCoverage used with cutoff=NULL. Can be generated using fullCoverage.
colsubset Which columns of coverageInfo$coverage to use.
save If TRUE, the result is saved as 'collapsedFull.Rdata'.
... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose If TRUE basic status updates will be printed along the way. Default: FALSE.

Value

A list with one element per sample. Then per sample, a list with two vector elements: values and weights. The first one is the coverage value and the second one is the number of bases with that value.

Author(s)

Leonardo Collado-Torres

See Also

fullCoverage, sampleDepth

Examples

Collapse the coverage information for the filtered data
collapsedFull <- collapseFullCoverage(list(genomeData),
 verbose = TRUE)
collapsedFull
Not run:
You can also collapsed the raw data
collapsedFullRaw <- collapseFullCoverage(list(genomeDataRaw), verbose = TRUE)

End(Not run)
coverageToExon

Extract coverage information for exons

Description

This function extracts the coverage information calculated by `fullCoverage` for a set of exons determined by `makeGenomicState`. The underlying code is similar to `getRegionCoverage` with additional tweaks for calculating RPKM values.

Usage

```r
coverageToExon(
  fullCov = NULL,
  genomicState,
  L = NULL,
  returnType = "raw",
  files = NULL,
  ...
)
```

Arguments

- `fullCov`: A list where each element is the result from `loadCoverage` used with `returnCoverage = TRUE`. Can be generated using `fullCoverage`. Alternatively, specify `files` to extract the coverage information from the regions of interest. This can be helpful if you do not wish to store `fullCov` for memory reasons.
- `genomicState`: A GRanges object created with `makeGenomicState`. It can be either the `genomicState$fullGenome` or `genomicState$codingGenome` component.
- `L`: The width of the reads used. Either a vector of length 1 or length equal to the number of samples.
- `returnType`: If `raw`, then the raw coverage information per exon is returned. If `rpkm`, RPKM values are calculated for each exon.
- `files`: A character vector with the full path to the sample BAM files (or BigWig files). The names are used for the column names of the DataFrame. Check `rawFiles` for constructing files. `files` can also be a `BamFileList` object created with `BamFileList` or a `BigWigFileList` object created with `BigWigFileList`.
- `...`: Arguments passed to other methods and/or advanced arguments. Advanced arguments:
 - `verbose`: If `TRUE` basic status updates will be printed along the way.
 - `BPPARAM.strandStep`: A BPPARAM object to use for the strand step. If not specified, then `strandCores` specifies the number of cores to use for the strand step. The actual number of cores used is the minimum of `strandCores`, `mc.cores` and the number of strands in the data.
BPPARAM.chrStep A BPPRAM object to use for the chr step. If not specified, then mc.cores specifies the number of cores to use for the chr step. The actual number of cores used is the minimum of mc.cores and the number of samples.

Passed to `extendedMapSeqlevels` and `define_cluster`.

Details

Parallelization is used twice. First, it is used by strand. Second, for processing the exons by chromosome. So there is no gain in using mc.cores greater than the maximum of the number of strands and number of chromosomes.

If `fullCov` is `NULL` and `files` is specified, this function will attempt to read the coverage from the files. Note that if you used 'totalMapped' and 'targetSize' before, you will have to specify them again to get the same results.

Value

A matrix (nrow = number of exons in `genomicState` corresponding to the chromosomes in `fullCov`, ncol = number of samples) with the number of reads (or RPKM) per exon. The row names correspond to the row indexes of `genomicState$fullGenome` (if `fullOrCoding='full'`) or `genomicState$codingGenome` (if `fullOrCoding='coding'`).

Author(s)

Andrew Jaffe, Leonardo Collado-Torres

See Also

`fullCoverage`, `getRegionCoverage`

Examples

```r
## Obtain fullCov object
fullCov <- list("21" = genomeDataRaw$coverage)

## Use only the first two exons
smallGenomicState <- genomicState
smallGenomicState$fullGenome <- smallGenomicState$fullGenome[      which(smallGenomicState$fullGenome$theRegion == "exon")[1:2]  ]

## Finally, get the coverage information for each exon
exonCov <- coverageToExon(
  fullCov = fullCov,
  genomicState = smallGenomicState$fullGenome, L = 36
)```
createBw  
Export coverage to BigWig files

Description
Using output from fullCoverage, export the coverage from all the samples to BigWig files using createBwSample.

Usage
createBw(fullCov, path = ".", keepGR = TRUE, ...)

Arguments

fullCov  
A list where each element is the result from loadCoverage used with returnCoverage = TRUE. Can be generated using fullCoverage.

path  
The path where the BigWig files will be created.

keepGR  
If TRUE, the GRanges objects created by coerceGR grouped into a GRangesList are returned. Otherwise they are discarded.

...  
Arguments passed to createBwSample.

Details
Use at most one core per chromosome.

Value
If keepGR = TRUE, then a GRangesList with the output for coerceGR for each of the samples.

Author(s)
Leonardo Collado-Torres

See Also
GRangesList, export.bw, createBwSample, coerceGR

Examples

```r
Create a small fullCov object with data only for chr21
fullCov <- list("chr21" = genomeDataRaw)

Keep only 2 samples
fullCov$chr21$coverage <- fullCov$chr21$coverage[c(1, 31)]

Create the BigWig files for all samples in a test dir
dir.create("createBw-example")
bws <- createBw(fullCov, "createBw-example")
```
## Explore the output

```r
bws
```

## First sample

```r
bws[[1]]
```

## Note that if a sample has no bases with coverage > 0, the GRanges object is empty and no BigWig file is created for that sample.

```r
bws[[2]]
```

## Exports fullCoverage() output to BigWig files

---

### createBwSample

Create a BigWig file with the coverage information for a given sample

#### Description

Given the output of `fullCoverage`, this function coerces the coverage to a `GRanges` object using `coerceGR` and then exports the coverage to a BigWig file using `export.bw`.

#### Usage

```r
createBwSample(sample, path = ".", fullCov, keepGR = TRUE, ...)
```

#### Arguments

- `sample`: The name or integer index of the sample of interest to coerce to a `GRanges` object.
- `path`: The path where the BigWig file will be created.
- `fullCov`: A list where each element is the result from `loadCoverage` used with `returnCoverage = TRUE`. Can be generated using `fullCoverage`.
- `keepGR`: If `TRUE`, the `GRanges` object created by `coerceGR` is returned. Otherwise it is discarded.
- `...`: Arguments passed to other methods and/or advanced arguments. Advanced arguments:
  - `verbose`: If `TRUE` basic status updates will be printed along the way. Passed to `coerceGR`.

#### Value

 Creates a BigWig file with the coverage information (regions with coverage greater than zero) for a given sample. If `keepGR` it returns the output from `coerceGR`.

#### Author(s)

Leonardo Collado-Torres
define_cluster

Define a cluster to use.

Usage

```r
define_cluster(cores = "mc.cores", ...)
```

Arguments

- **cores**
  
The argument to use to define the number of cores. This is useful for cases with nested parallelizations.

- **...**
  
  Advanced arguments are:

  - **mc.cores**
    
    If 1 (default), then `SerialParam` will be used. If greater than 1, then it specifies the number of workers for `SnowParam`.

  - **mc.log**
    
    Passed to log when using `SnowParam`.

  - **BPPARAM.custom**
    
    If specified, that’s the BPPARAM that will be used.

Details

This function is used internally in many functions.

Value

A BiocParallel *Param object

See Also

`GRanges`, `export.bw`, `linkcoerceGR`

Examples

```r
Create a small fullCov object with data only for chr21
fullCov <- list("chr21" = genomeDataRaw)

Create a BigWig for the first sample in a test directory
dir.create("createBwSample-example")
bw <- createBwSample("ERR009101", "createBwSample-example",
 fullCov = fullCov, seqlengths = c("chr21" = 48129895)
)

Explore the output
bw

Exports a single sample to a BigWig file
```
Author(s)

Leonardo Collado-Torres

Examples

```r
Use SerialParam()
define_cluster(mc.cores = 1)

Note that BPPARAM.custom takes precedence
define_cluster(mc.cores = 2, BPPARAM.custom = BiocParallel::SerialParam())
```

### Description

These functions are provided for compatibility with older version of `derfinder` only and will be defunct at the next release.

#### Usage

```r
advancedArg(fun, package = "derfinder", browse = interactive())
```

#### Arguments

- `fun`: The name of a function(s) that has advanced arguments in package.
- `package`: The name of the package where the function is stored. Only `derfinder`, `derfinderPlot`, and `regionReport` are accepted.
- `browse`: Whether to open the URLs in a browser.

#### Details

The following functions are deprecated and will be made defunct.

- `advancedArg` Not needed now that the advanced arguments are documented on the help pages of each function.

#### Value

A vector of URLs with the GitHub search queries.

#### Examples

```r
Open the advanced argument docs for loadCoverage()
if (interactive()) {
 advancedArg("loadCoverage")
} else {
 (advancedArg("loadCoverage", browse = FALSE))
}
```
extendedMapSeqlevels  Change naming style for a set of sequence names

Description

If available, use the information from GenomeInfoDb for your species of interest to map the sequence names from the style currently used to another valid style. For example, for Homo sapiens map '2' (NCBI style) to 'chr2' (UCSC style). If the information from GenomeInfoDb is not available, the original sequence names will be returned. To disable this functionality specify set chrsStyle to NULL.

Usage

extendedMapSeqlevels(
  seqnames,
  style = getOption("chrsStyle", "UCSC"),
  species = getOption("species", "homo_sapiens"),
  currentStyle = NULL,
  ...
)

Arguments

seqnames  A character vector with the sequence names.
style  A single character vector specifying the naming style to use for renaming the sequence names.
species  A single character vector with the species of interest: it has to match the valid species names supported in GenomeInfoDb. See names(GenomeInfoDb::genomeStyles()). If species = NULL, a guess will be made using the available information in GenomeInfoDb.
currentStyle  A single character vector with the currently used naming style. If NULL, a guess will be made from the naming styles supported by species.
...  Arguments passed to other methods and/or advanced arguments. Advanced arguments:
verbose  If TRUE basic status updates will be printed along the way.
chrsStyle  The naming style of the chromosomes. By default, UCSC. See seqlevelsStyle. Set to NULL to disable this function. This is used when style is missing, which is normally the case when extendedMapSeqlevels is called by other functions.

Details

This function is inspired from mapSeqlevels with the difference that it will return the original sequence names if the species, current naming style or target naming style are not supported in GenomeInfoDb.
extendedMapSeqlevels

If you want to disable this function, set chrsStyle to NULL. From other functions in derfinder that pass the ... argument to this function, use chrsStyle = NULL. This can be useful when working with organisms that are absent from GenomeInfoDb as documented in https://support.bioconductor.org/p/95521/.

Value

A vector of sequence names using the specified naming style.

Author(s)

L. Collado-Torres

Examples

```r
Without guessing any information
extendedMapSeqlevels("2", "UCSC", "Homo sapiens", "NCBI")

Guessing the current naming style
extendedMapSeqlevels("2", "UCSC", "Homo sapiens")

Guess species and current style
extendedMapSeqlevels("2", "NCBI")

Guess species while supplying the current style.
Probably an uncommon use-case
extendedMapSeqlevels("2", "NCBI", currentStyle = "TAIR10")

Sequence names are unchanged when using an unsupported species
extendedMapSeqlevels("seq2", "NCBI", "toyOrganism")

Disable extendedMapSeqlevels. This can be useful when working with
organisms that are not supported by GenomeInfoDb
 "XI", "XII", "XIII", "XIV", "XV", "XVI", "XVII")
extendedMapSeqlevels(chrs, chrsStyle = NULL)

Not run:
Set global species and style option
options("chrsStyle" = "UCSC")
options("species" = "homo_sapiens")

Run using global options
extendedMapSeqlevels("2")

End(Not run)
```
filterData

Filter the positions of interest

Description

For a group of samples this function reads the coverage information for a specific chromosome directly from the BAM files. It then merges them into a DataFrame and removes the bases that do not pass the cutoff. This is a helper function for `loadCoverage` and `preprocessCoverage`.

Usage

```r
filterData(
 data,
 cutoff = NULL,
 index = NULL,
 filter = "one",
 totalMapped = NULL,
 targetSize = 8e+07,
 ...
)
```

Arguments

data: Either a list of Rle objects or a DataFrame with the coverage information.
cutoff: The base-pair level cutoff to use. It’s behavior is controlled by `filter`.
index: A logical Rle with the positions of the chromosome that passed the cutoff. If `NULL` it is assumed that this is the first time using `filterData` and thus no previous index exists.
filter: Has to be either 'one' (default) or 'mean'. In the first case, at least one sample has to have coverage above `cutoff`. In the second case, the mean coverage has to be greater than `cutoff`.
totalMapped: A vector with the total number of reads mapped for each sample. The vector should be in the same order as the samples in `data`. Providing this data adjusts the coverage to reads in `targetSize` library prior to filtering. See `getTotalMapped` for calculating this vector.
targetSize: The target library size to adjust the coverage to. Used only when `totalMapped` is specified. By default, it adjusts to libraries with 80 million reads.
...: Arguments passed to other methods and/or advanced arguments. Advanced arguments:

- **verbose**: If `TRUE` basic status updates will be printed along the way.
- **returnMean**: If `TRUE` the mean coverage is included in the result. `FALSE` by default.
- **returnCoverage**: If `TRUE`, the coverage DataFrame is returned. `TRUE` by default.
Details

If `cutoff` is NULL then the data is grouped into DataFrame without applying any cutoffs. This can be useful if you want to use `loadCoverage` to build the coverage DataFrame without applying any cutoffs for other downstream purposes like plotting the coverage values of a given region. You can always specify the `colsubset` argument in `preprocessCoverage` to filter the data before calculating the F statistics.

Value

A list with up to three components.

- **coverage** is a DataFrame object where each column represents a sample. The number of rows depends on the number of base pairs that passed the cutoff and the information stored is the coverage at that given base. Included only when `returnCoverage = TRUE`.
- **position** is a logical Rle with the positions of the chromosome that passed the cutoff.
- **meanCoverage** is a numeric Rle with the mean coverage at each base. Included only when `returnMean = TRUE`.
- **colnames** Specifies the column names to be used for the results DataFrame. If NULL, names from data are used.
- **smoothMean** Whether to smooth the mean. Used only when `filter = 'mean'`. This option is used internally by `regionMatrix`.

Passed to the internal function `.smootherFstats`, see `findRegions`.

Author(s)

Leonardo Collado-Torres

See Also

`loadCoverage`, `preprocessCoverage`, `getTotalMapped`

Examples

```r
Construct some toy data
library("IRanges")
x <- Rle(round(runif(1e4, max = 10)))
y <- Rle(round(runif(1e4, max = 10)))
z <- Rle(round(runif(1e4, max = 10)))
DF <- DataFrame(x, y, z)

Filter the data
filt1 <- filterData(DF, 5)
filt1

Filter again but only using the first two samples
filt2 <- filterData(filt1$coverage[, 1:2], 5, index = filt1$position)
filt2
```
findRegions

Find non-zero regions in a Rle

Description

Find genomic regions for which a numeric vector is above (or below) predefined thresholds. In other words, this function finds the candidate Differentially Expressed Regions (candidate DERs). This is similar to regionFinder and is a helper function for calculatePvalues.

Usage

findRegions(
  position = NULL,
  fstats,
  chr,
  oneTable = TRUE,
  maxClusterGap = 300L,
  cutoff = quantile(fstats, 0.99, na.rm = TRUE),
  segmentIR = NULL,
  smooth = FALSE,
  weights = NULL,
  smoothFunction = bumphunter::locfitByCluster,
  ...
)

Arguments

position A logical Rle of genomic positions. This is generated in loadCoverage. Note that it gets updated in preprocessCoverage if colsubset is not NULL.
fstats A numeric Rle with the F-statistics. Usually obtained using calculateStats.chr A single element character vector specifying the chromosome name.oneTable If TRUE only one GRanges is returned. Otherwise, a GRangesList with two components is returned: one for the regions with positive values and one for the negative values.maxClusterGap This determines the maximum gap between candidate DERs. It should be greater than maxRegionGap (0 by default).cutoff Threshold applied to the fstats used to determine the regions.segmentIR An IRanges object with the genomic positions that are potentials DERs. This is used in calculatePvalues to speed up permutation calculations.smooth Whether to smooth the F-statistics (fstats) or not. This is by default FALSE. For RNA-seq data we recommend using FALSE.weights Weights used by the smoother as described in smoother.
smoothFunction A function to be used for smoothing the F-statistics. Two functions are provided by the bumphunter package: loessByCluster and runmedByCluster. If you are using your own custom function, it has to return a named list with an element called $fitted that contains the smoothed F-statistics and an element called $smoothed that is a logical vector indicating whether the F-statistics were smoothed or not. If they are not smoothed, the original values will be used.

... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose If TRUE basic status updates will be printed along the way.

basic If TRUE a DataFrame is returned that has only basic information on the candidate DERs. This is used in calculatePvalues to speed up permutation calculations. Default: FALSE.

maxRegionGap This determines the maximum number of gaps between two genomic positions to be considered part of the same candidate region. The default is 0L.

Passed to extendedMapSeqlevels and the internal function .getSegmentsRle that has by default verbose = FALSE.

When smooth = TRUE, ... is passed to the internal function .smootherFstats. This internal function has the advanced argument maxClusterGap (same as above) and passes ... to define_cluster and the formal arguments of smoothFun.

Details

regionFinder adapted to Rle world.

Value

Either a GRanges or a GRangesList as determined by oneTable. Each of them has the following metadata variables.

value The mean of the values of y for the given region.

area The absolute value of the sum of the values of y for the given region.

indexStart The start position of the region in terms of the index for y.

indexEnd The end position of the region in terms of the index for y.

cluster The cluster ID.

clusterL The total length of the cluster.

Author(s)

Leonardo Collado-Torres

References

fullCoverage

Load the unfiltered coverage information from a group of BAM files and a list of chromosomes

Description

For a group of samples this function reads the coverage information for several chromosomes directly from the BAM files. Per chromosome, it merges the unfiltered coverage by sample into a DataFrame. The end result is a list with one such DataFrame objects per chromosome.

Usage

fullCoverage(
  files,
  chrs,
fullCoverage(bai = NULL, chrlens = NULL, outputs = NULL, cutoff = NULL, ...)

Arguments

files A character vector with the full path to the sample BAM files (or BigWig files). The names are used for the column names of the DataFrame. Check rawFiles for constructing files. files can also be a BamFileList object created with BamFileList or a BigWigFileList object created with BigWigFileList.

chrs The chromosome of the files to read. The format has to match the one used in the input files.

bai The full path to the BAM index files. If NULL it is assumed that the BAM index files are in the same location as the BAM files and that they have the .bai extension. Ignored if files is a BamFileList object.

chrlens The chromosome lengths in base pairs. If it’s NULL, the chromosome length is extracted from the BAM files. Otherwise, it should have the same length as chrs.

outputs This argument is passed to the output argument of loadCoverage. If NULL or ’auto’ it is then recycled.

cutoff This argument is passed to filterData.

... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose If TRUE basic status updates will be printed along the way.

mc.cores How many cores to use for reading the chromosome information. There’s no benefit of using a number greater than the number of chromosomes. Also note that your harddisk speed will limit how much you get from using a higher mc.cores value.

mc.cores.load Controls the number of cores to be used per chr for loading the data which is only useful in the scenario that you are loading in genome tiles. If not supplied, it uses mc.cores for loadCoverage. Default: 1. If you are using genome tiles, the total number of cores you’ll use will be mc.cores times mc.cores.load.

Passed to loadCoverage, define_cluster and extendedMapSeqlevels. Note that filterData is used internally by loadCoverage (and hence fullCoverage) and has the important arguments totalMapped and targetSize which can be used to normalize the coverage by library size. See getTotalMapped for calculating totalMapped.

Value

A list with one element per chromosome.

Each element is a DataFrame with the coverage information produced by loadCoverage.
Author(s)

Leonardo Collado-Torres

See Also

loadCoverage, filterData, getTotalMapped

Examples

datadir <- system.file("extdata", "genomeData", package = "derfinder")
files <- rawFiles(
  datadir = datadir, samplepatt = "*accepted_hits.bam$",
  fileterm = NULL
)
## Shorten the column names
names(files) <- gsub("_accepted_hits.bam", "", names(files))

## Read and filter the data, only for 1 file
fullCov <- fullCoverage(files = files[1], chrs = c("21", "22"))
fullCov
## Not run:
## You can then use filterData() to filter the data if you want to.
## Use bplapply() if you want to do so with multiple cores as shown below.
library("BiocParallel")
p <- SnowParam(2L)
bplapply(fullCov, function(x) {
  library("derfinder")
  filterData(x, cutoff = 0)
}, BPPARAM = p)

## End(Not run)

---

gene

**Description**

10kb region from chr21 processed for 31 RNA-seq samples described in genomeInfo. The TopHat BAM files are included in the package and this is the output of loadCoverage applied to it. For more information check the example of loadCoverage.

**Format**

A list with two components.

- **coverage** is a DataFrame object where each column represents a sample.
- **position** is a logical Rle with the positions of the chromosome that passed a cutoff of 0.
References


See Also

loadCoverage, genomeInfo
### genomeFstats

**F-statistics for the example data**

**Description**

Calculated F-statistics for a 10kb region from chr21 processed for 31 RNA-seq samples described in genomeInfo. For more information check the example of calculateStats.

**Format**

A numeric Rle of length 1434 with the calculated F-statistics as exemplified in calculateStats.

**See Also**

calculateStats

### genomeInfo

**Genome samples information**

**Description**

Information for the 31 samples downloaded from the Short Read Archive from studies comparing CEU and YRI populations. This data is used to specify the adjustment variables in calculateStats. The data is sorted according to the BAM files identifiers. Reads were 36bp long.

**Format**

A data.frame with 5 columns:

- **run** The short name used to identify the sample BAM file.
- **library.layout** Whether it was a single-end library or a paired-end library.
- **hapmap.id** The HapMap identifier of the person sequenced. Note that some were sequenced more than once.
- **gender** Whether the person sequence is a female or a male.
- **pop** The population the person belongs to.

**Details**

The samples are from:

- **10** unrelated females from the YRI population.
- **5** unrelated females from the CEU population.
- **5** unrelated males (unrelated to the females too) from the CEU population.
References


See Also

genomeData, calculateStats


Candidate DERs for example data

Candidate Differentially Expressed Regions (DERs) for the example data. For more information check calculatePvalues.

A list with four components.

regions a GRanges object with the candidate DERs.

nullStats a numeric Rle with the mean F-statistics for the null DERs found from the permutations.

nullWidths an integer Rle with the width of each null candidate DER.

nullPermutation an integer Rle with the permutation number for each candidate DER. It identifies which permutation cycle created the null candidate DER.

See Also

calculatePvalues
**genomicState**  
*Genomic State for Hsapiens.UCSC.hg19.knownGene*

**Description**

Pre-computed genomic state for Hsapiens UCSC hg19 knownGene annotation built using `makeGenomicState` for TxDb.Hsapiens.UCSC.hg19.knownGene version 2.14.0. The object has been subset for chr21 only.

**Format**

A GRangesList with two components.

- **fullGenome** classifies each region as either being exon, intron or intergenic.
- **codingGenome** classifies the regions as being promoter, exon, intro, 5UTR, 3UTR or intergenic.

**See Also**

`makeGenomicState`

---

**getRegionCoverage**  
*Extract coverage information for a set of regions*

**Description**

This function extracts the raw coverage information calculated by `fullCoverage` at each base for a set of regions found with `calculatePvalues`. It can further calculate the mean coverage per sample for each region.

**Usage**

```r
getRegionCoverage(
 fullCov = NULL,
 regions,
 totalMapped = NULL,
 targetSize = 8e+07,
 files = NULL,
 ...
)
```
Arguments

- `fullCov`: A list where each element is the result from `loadCoverage` used with `returnCoverage = TRUE`. Can be generated using `fullCoverage`. Alternatively, specify `files` to extract the coverage information from the regions of interest. This can be helpful if you do not wish to store `fullCov` for memory reasons.

- `regions`: The `$regions` output from `calculatePvalues`. It is important that the seqlengths information is provided.

- `totalMapped`: The total number of reads mapped for each sample. Providing this data adjusts the coverage to reads in `targetSize` library. By default, to reads per 80 million reads.

- `targetSize`: The target library size to adjust the coverage to. Used only when `totalMapped` is specified.

- `files`: A character vector with the full path to the sample BAM files (or BigWig files). The names are used for the column names of the DataFrame. Check `rawFiles` for constructing `files`. `files` can also be a `BamFileList` object created with `BamFileList` or a `BigWigFileList` object created with `BigWigFileList`.

- `...`: Arguments passed to other methods and/or advanced arguments. Advanced arguments:
  - `verbose`: If `TRUE` basic status updates will be printed along the way. Passed to `extendedMapSeqlevels` and `define_cluster`. When `fullCov` is `NULL`, `...` has the advanced argument `protectionWhich` (default 30000) from `loadCoverage`. Also `...` is passed to `fullCoverage` for loading the data on the fly. This can be useful for loading the data from a specific region (or small sets of regions) without having to load in memory the output the coverage information from all the genome.

Details

When `fullCov` is the output of `loadCoverage` with `cutoff` non-NULL, `getRegionCoverage` assumes that the regions come from the same data. Meaning that `filterData` was not used again. This ensures that the regions are a subset of the data available in `fullCov`.

If `fullCov` is `NULL` and `files` is specified, this function will attempt to read the coverage from the files. Note that if you used ‘totalMapped’ and ‘targetSize’ before, you will have to specify them again to get the same results.

You should use at most one core per chromosome.

Value

A list of data.frame where each data.frame has the coverage information (nrow = width of region, ncol = number of samples) for a given region. The names of the list correspond to the region indexes in `regions`.

Author(s)

Andrew Jaffe, Leonardo Collado-Torres
See Also

fullCoverage, calculatePvalues

Examples

```r
Obtain fullCov object
gfullCov <- list("21" = genomeDataRaw$coverage)

Assign chr lengths using hg19 information, use only first two regions
library("GenomicRanges")
regions <- genomeRegions$regions[1:2]
seqlengths(regions) <- seqlengths(getChromInfoFromUCSC("hg19",
as.Seqinfo = TRUE
))[mapSeqlevels(names(seqlengths(regions)), "UCSC")]

Finally, get the region coverage
regionCov <- getRegionCoverage(fullCov = fullCov, regions = regions)
```

description

For a given BAM calculate the total number of mapped reads and for a BigWig file calculate the area under the curve (AUC), which is related to the number of mapped reads: the exact relationship depends on whether the aligner soft clips reads and/or if the length of the reads is the same. If you use the ‘chrs’ argument you can choose to only consider the information for your chromosomes of interest. For example, you can exclude the mitochondrial chromosome.

Usage

```r
getTotalMapped(rawFile, chrs = NULL)
```

Arguments

- `rawFile` Either a BAM file or a BigWig file.
- `chrs` If NULL, all the chromosomes will be used. Otherwise, only those in chrs will be used.

Value

The total number of mapped reads for a BAM file or the AUC for a BigWig file in a single element vector.

Author(s)

Leonardo Collado-Torres
loadCoverage

Examples

```r
Get the total number of mapped reads for an example BAM file:
bam <- system.file("extdata", "genomeData", "ERR009102_accepted_hits.bam",
 package = "derfinder", mustWork = TRUE
)
getTotalMapped(bam)
```

loadCoverage

Load the coverage information from a group of BAM files

Description

For a group of samples this function reads the coverage information for a specific chromosome directly from the BAM files. It then merges them into a DataFrame and removes the bases that do not pass the cutoff.

Usage

```r
loadCoverage(
 files,
 chr,
 cutoff = NULL,
 filter = "one",
 chrlen = NULL,
 output = NULL,
 bai = NULL,
 ...
)
```

Arguments

- **files**: A character vector with the full path to the sample BAM files (or BigWig files). The names are used for the column names of the DataFrame. Check `rawFiles` for constructing files. files can also be a BamFileList, BamFile, BigWigFileList, or BigWigFile object.
- **chr**: Chromosome to read. Should be in the format matching the one used in the raw data.
- **cutoff**: This argument is passed to `filterData`.
- **filter**: Has to be either 'one' (default) or 'mean'. In the first case, at least one sample has to have coverage above cutoff. In the second case, the mean coverage has to be greater than cutoff.
- **chrlen**: The chromosome length in base pairs. If it's NULL, the chromosome length is extracted from the BAM files.
- **output**: If NULL then no output is saved in disk. If auto then an automatic name is constructed using UCSC names (chrXCovInfo.Rdata for example). If another character is specified, then that name is used for the output file.
The full path to the BAM index files. If NULL it is assumed that the BAM index files are in the same location as the BAM files and that they have the .bai extension. Ignored if files is a BamFileList object or if inputType=='BigWig'.

Arguments passed to other methods and/or advanced arguments. Advanced arguments:

- **verbose**  If TRUE basic status updates will be printed along the way.
- **inputType** Has to be either bam or BigWig. It specifies the format of the raw data files. By default it's set to bam before trying to guess it from the file names.
- **tilewidth** When specified, tileGenome is used to break up the chromosome into chunks. We don't recommend this for BAM files as the coverage in the borders of the chunks might be slightly off.
- **which**  NULL by default. When a GRanges is specified, this specific region of the genome is loaded instead of the full chromosome.
- **fileStyle**  The naming style of the chromosomes in the input files. If the global option chrsStyle is not set, the naming style won’t be changed. This option is useful when you want to use a specific naming style but the raw files use another style.
- **protectWhich**  When not NULL and which is specified, this argument specifies by how much the ranges in which will be expanded. This helps get the same base level coverage you would get from reading the coverage for a full chromosome from BAM files. Otherwise some reads might be excluded and thus the base level coverage will be lower. NULL by default.
- **drop.D**  Whether to drop the bases with 'D' in the CIGAR strings or to include them. Only used with BAM files. FALSE by default.
- **sampleNames**  Column names to be used the samples. By default it's names(files).

Passed to extendedMapSeqlevels, define_cluster, scanBamFlag and filterData. Note that filterData is used internally by loadCoverage and has the important arguments totalMapped and targetSize which can be used to normalize the coverage by library size. See getTotalMapped for calculating totalMapped.

### Details

The . . . argument can be used to control which alignments to consider when reading from BAM files. See scanBamFlag.

Parallelization for loading the data in chunks is used only used when tilewidth is specified. You may use up to one core per tile.

If you set the advanced argument drop.D = TRUE, bases with CIGAR string "D" (deletion from reference) will be excluded from the base-level coverage calculation.

If you are working with data from an organism different from 'Homo sapiens' specify so by setting the global 'species' and 'chrsStyle' options. For example: options(species = 'arabidopsis_thaliana') options(chrsStyle = 'NCBI')

### Value

A list with two components.
**loadCoverage** is a DataFrame object where each column represents a sample. The number of rows depends on the number of base pairs that passed the cutoff and the information stored is the coverage at that given base.

**position** is a logical Rle with the positions of the chromosome that passed the cutoff.

**Author(s)**

Leonardo Collado-Torres, Andrew Jaffe

**See Also**

fullCoverage, getTotalMapped

**Examples**

```r
datadir <- system.file("extdata", "genomeData", package = "derfinder")
files <- rawFiles(
 datadir = datadir, samplepatt = "*_accepted_hits.bam$",
 fileterm = NULL
)
Shorten the column names
names(files) <- gsub("_accepted_hits.bam", ",", names(files))

Read and filter the data, only for 2 files
dataSmall <- loadCoverage(files = files[1:2], chr = "21", cutoff = 0)
Not run:
Export to BigWig files
createBw(list("chr21" = dataSmall))

Load data from BigWig files
dataSmall.bw <- loadCoverage(c(
 ERR009101 = "ERR009101.bw", ERR009102 =
 "ERR009102.bw"
), chr = "chr21")

Compare them
mapply(function(x, y) {
 x - y
}, dataSmall$coverage, dataSmall.bw$coverage)
Note that the only difference is the type of Rle (integer vs numeric) used
to store the data.

End(Not run)
```
**Description**

This function summarizes the annotation contained in a `TxDb` at each given base of the genome based on annotated transcripts. It groups contiguous base pairs classified as the same type into regions.

**Usage**

```r
makeGenomicState(txdb, chrs = c(seq_len(22), "X", "Y"), ...)
```

**Arguments**

- `txdb` A `TxDb` object with chromosome lengths (check `seqlengths(txdb)`). If you are using a `TxDb` object created from a GFF/GTF file, you will find this [https://support.bioconductor.org/p/93235/](https://support.bioconductor.org/p/93235/) useful.
- `chrs` The names of the chromosomes to use as denoted in the `txdb` object. Check `isActiveSeq`.
- `...` Arguments passed to `extendedMapSeqLevels`.

**Value**

A `GRangesList` object with two elements: `fullGenome` and `codingGenome`. Both have metadata information for the type of region (`theRegion`), transcript IDs (tx_id), transcript name (tx_name), and gene ID (gene_id). `fullGenome` classifies each region as either being exon, intron or intergenic. `codingGenome` classifies the regions as being promoter, exon, intro, 5UTR, 3UTR or intergenic.

**Author(s)**

Andrew Jaffe, Leonardo Collado-Torres

**See Also**

`TxDb`

**Examples**

```r
Load the example data base from the GenomicFeatures vignette
library("GenomicFeatures")
samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
 package = "GenomicFeatures")
txdb <- loadDb(samplefile)

Generate genomic state object, only for chr6
sampleGenomicState <- makeGenomicState(txdb, chrs = "chr6")
```
# Not run:

## Create the GenomicState object for Hsapiens.UCSC.hg19.knownGene


## Creating this GenomicState object takes around 8 min for all chrs and around 30 secs for chr21

GenomicState.Hsapiens.UCSC.hg19.knownGene.chr21 <-
  makeGenomicState(txdb = txdb, chrs = "chr21")

## For convinience, this object is already included in derfinder

library("testthat")

expect_that(
  GenomicState.Hsapiens.UCSC.hg19.knownGene.chr21,
  is_equivalent_to(genomicState)
)

## Hsapiens ENSEMBL GRCh37

library("GenomicFeatures")

## Can take several minutes and speed will depend on your internet speed

xx <- makeTxDbPackageFromBiomart(
  version = "0.99", maintainer = "Your Name",
  author = "Your Name"
)

txdb <- loadDb(file.path(
  "extdata", "TxDb.Hsapiens.BioMart.ensembl.GRCh37.p11.sqlite"
))

## Creating this GenomicState object takes around 13 min

GenomicState.Hsapiens.ensembl.GRCh37.p11 <- makeGenomicState(
  txdb = txdb,
  chrs = c(1:22, "X", "Y")
)

## Save for later use

save(GenomicState.Hsapiens.ensembl.GRCh37.p11,
     file = "GenomicState.Hsapiens.ensembl.GRCh37.p11.Rdata"
)

## End(Not run)

---

**makeModels**

*Build model matrices for differential expression*

**Description**

Builds the model matrices for testing for differential expression by comparing a model with a grouping factor versus one without it. It adjusts for the confounders specified and the median coverage of each sample. The resulting models can be used in `calculateStats`. 
Usage

makeModels(sampleDepths, testvars, adjustvars = NULL, testIntercept = FALSE)

Arguments

- **sampleDepths**: Per sample library size adjustments calculated with `sampleDepth`.
- **testvars**: A vector or matrix specifying the variables to test. For example, a factor with the group memberships when testing for differences across groups. Its length should match the number of columns used from `coverageInfo$coverage`.
- **adjustvars**: Optional matrix of adjustment variables (e.g., measured confounders, output from SVA, etc.) to use in fitting linear models to each nucleotide. These variables have to be specified by sample and the number of rows must match the number of columns used. It will also work if it is a vector of the correct length.
- **testIntercept**: If TRUE then `testvars` is ignored and `mod0` will contain the column medians and any adjusting variables specified, but no intercept.

Value

A list with two components.

- **mod**: The alternative model matrix.
- **mod0**: The null model matrix.

Author(s)

Leonardo Collado-Torres

See Also

- `sampleDepth`, `calculateStats`

Examples

```r
Collapse the coverage information
collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
 verbose = TRUE)

Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull,
 probs = c(0.5), nonzero = TRUE,
 verbose = TRUE)

Build the models
group <- genomeInfo$pop
adjustvars <- data.frame(genomeInfo$gender)
models <- makeModels(sampleDepths, testvars = group, adjustvars = adjustvars)
names(models)
models
```
mergeResults

Merge results from different chromosomes

Description

This function merges the results from running `analyzeChr` on several chromosomes and assigns genomic states using `annotateRegions`. It re-calculates the p-values and q-values using the pooled areas from the null regions from all chromosomes. Once the results have been merged, `derfinderReport::generateReport` can be used to generate an HTML report of the results. The `derfinderReport` package is available at https://github.com/lcolladotor/derfinderReport.

Usage

```r
mergeResults(
 chrs = c(seq_len(22), "X", "Y"),
 prefix = ".",
 significantCut = c(0.05, 0.1),
 genomicState,
 minoverlap = 20,
 mergePrep = FALSE,
 ...
)
```

Arguments

- **chrs**: The chromosomes of the files to be merged.
- **prefix**: The main data directory path, which can be useful if `analyzeChr` is used for several parameters and the results are saved in different directories.
- **significantCut**: A vector of length two specifying the cutoffs used to determine significance. The first element is used to determine significance for the P-values and FWER adjusted P-values, while the second element is used for the Q-values (FDR adjusted P-values) similar to `calculatePvalues`.
- **genomicState**: A GRanges object created with `makeGenomicState`. It can be either the `genomicState$fullGenome` or `genomicState$codingGenome` component.
- **minoverlap**: Determines the minimum overlap needed when annotating regions with `annotateRegions`.
- **mergePrep**: If TRUE the output from `preprocessCoverage` is merged.
- **...**: Arguments passed to other methods and/or advanced arguments. Advanced arguments:
  - **verbose**: If TRUE basic status updates will be printed along the way.
  - **optionsStats**: The options used in `analyzeChr`. By default NULL and will be inferred from the output files.
  - **cutoffFstatUsed**: The actual F-statistic cutoff used. This can be obtained from the logs or from the output of `analyzeChr`. If NULL then this function will attempt to re-calculate it.

Passed to `annotateRegions` and `extendedMapSeqlevels`. 
Details

If you want to calculate the FWER adjusted P-values, supply `optionsStats` which is produced by `analyzeChr`.

Value

Seven Rdata files.

- **fullFstats.Rdata**  Full F-statistics from all chromosomes in a list of Rle objects.
- **fullTime.Rdata**  Timing information from all chromosomes.
- **fullNullSummary.Rdata**  A DataFrame with the null region information: statistic, width, chromosome and permutation identifier. It’s ordered by the statistics.
- **fullRegions.Rdata**  GRanges object with regions found and with full annotation from `matchGenes`. Note that the column `strand` from `matchGenes` is renamed to `annoStrand` to comply with GRanges specifications.
- **fullCoveragePrep.Rdata**  A list with the pre-processed coverage data from all chromosomes.
- **fullAnnotatedRegions.Rdata**  A list as constructed in `annotateRegions` with the assigned genomic states.
- **optionsMerge.Rdata**  A list with the options used when merging the results. Used in `derfinderReport::generateReport`.

Author(s)

Leonardo Collado-Torres

See Also

`analyzeChr`, `calculatePvalues`, `annotateRegions`

Examples

```r
The output will be saved in the 'generateReport-example' directory
dir.create("generateReport-example", showWarnings = FALSE, recursive = TRUE)

For convenience, the derfinder output has been pre-computed
file.copy(system.file(file.path("extdata", "chr21"),
 package = "derfinder",
 mustWork = TRUE
), "generateReport-example", recursive = TRUE)

Merge the results from the different chromosomes. In this case, there's
only one: chr21
mergeResults(
 chrs = "21", prefix = "generateReport-example",
 genomicState = genomicState$fullGenome
)

Not run:
You can then explore the wallclock time spent on each step
load(file.path("generateReport-example", "fullRegions.Rdata"))
```
## Process the time info

time <- lapply(fullTime, function(x) data.frame(diff(x)))
time <- do.call(rbind, time)
colnames(time) <- "sec"
time$sec <- as.integer(round(time$sec))
time$min <- time$sec / 60

time$chr <- paste0("chr", gsub("\..*", "", rownames(time)))
time$step <- gsub("\..\..", "", rownames(time))
rownames(time) <- seq_len(nrow(time))

## Make plot

library("ggplot2")
ggplot(time, aes(x = step, y = min, colour = chr)) +
  geom_point() +
  labs(title = "Wallclock time by step") +
  scale_colour_discrete(limits = chrs) +
  scale_x_discrete(limits = names(fullTime[[1]])[-1]) +
  ylab("Time (min)") +
  xlab("Step")

## End(Not run)

---

### preprocessCoverage

**Transform and split the data**

**Description**

This function takes the coverage data from `loadCoverage`, scales the data, does the log2 transformation, and splits it into appropriate chunks for using `calculateStats`.

**Usage**

`preprocessCoverage(coverageInfo, groupInfo = NULL, cutoff = 5, colsubset = NULL, lowMemDir = NULL, ...)`

**Arguments**

- `coverageInfo` A list containing a DataFrame `$coverage` with the coverage data and a logical Rle `$position` with the positions that passed the cutoff. This object is generated using `loadCoverage`. You should have specified a cutoff value for `loadCoverage` unless you are using `colsubset` which will force a filtering step with `filterData` when running `preprocessCoverage`. 
groupInfo A factor specifying the group membership of each sample. If NULL no group
mean coverages are calculated. If the factor has more than one level, the first
one will be used to calculate the log2 fold change in `calculatePvalues`.
cutoff The base-pair level cutoff to use. It's behavior is controlled by `filter`.
colsubset Optional vector of column indices of `coverageInfo$coverage` that denote sam-
ples you wish to include in analysis.
lowMemDir If specified, each chunk is saved into a separate Rdata file under `lowMemDir` and
later loaded in `fstats.apply` when running `calculateStats` and `calculatePvalues`. Using this option helps reduce the memory load as each fork in `bplapply` loads
only the data needed for the chunk processing. The downside is a bit longer
computation time due to input/output.

Arguments passed to other methods and/or advanced arguments. Advanced ar-
guments:

`verbose` If TRUE basic status updates will be printed along the way. Default:
`FALSE`.

`toMatrix` Determines whether the data in the chunk should already be saved as
a Matrix object, which can be useful to reduce the computation time of the
F-statistics. Only used when `lowMemDir` is not NULL and by in that case set
to TRUE by default.

`mc.cores` Number of cores you will use for calculating the statistics.

`scalefac` A log 2 transformation is used on the count tables, so zero counts
present a problem. What number should we add to the entire matrix? De-
fault: 32.

`chunksize` How many rows of `coverageInfo$coverage` should be processed
at a time? Default: 5 million. Reduce this number if you have hundreds of
samples to reduce the memory burden while sacrificing some speed.

Details

If `chunksize` is NULL, then `mc.cores` is used to determine the `chunksize`. This is useful if you
want to split the data so each core gets the same amount of data (up to rounding).

Computing the indexes and using those for `mclapply` reduces memory copying as described by
Ryan Thompson and illustrated in approach #4 at http://lcolladotor.github.io/2013/11/
14/Reducing-memory-overhead-when-using-mclapply

If `lowMemDir` is specified then `$coverageProcessed` is NULL and `$mclapplyIndex` is a vector
with the chunk identifiers.

Value

A list with five components.

`coverageProcessed` contains the processed coverage information in a DataFrame object. Each col-
umn represents a sample and the coverage information is scaled and log2 transformed. Note
that if `colsubset` is not NULL the number of columns will be less than those in `coverageInfo$coverage`.
The total number of rows depends on the number of base pairs that passed the cutoff and the
information stored is the coverage at that given base. Further note that `filterData` is re-applied if
`colsubset` is not NULL and could thus lead to fewer rows compared to `coverageInfo$coverage`.
mclapplyIndex is a list of logical Rle objects. They contain the partitioning information according to chunksize.

position is a logical Rle with the positions of the chromosome that passed the cutoff.

meanCoverage is a numeric Rle with the mean coverage at each filtered base.

groupMeans is a list of Rle objects containing the mean coverage at each filtered base calculated by group. This list has length 0 if groupInfo=NULL.

Passed to filterData when colsubset is specified.

Author(s)

Leonardo Collado-Torres

See Also

filterData, loadCoverage, calculateStats

Examples

## Split the data and transform appropriately before using calculateStats()
dataReady <- preprocessCoverage(genomeData,
cutoff = 0, scalefac = 32,
chunksize = 1e3, colsubset = NULL, verbose = TRUE
)
names(dataReady)
dataReady

dataReady

railMatrix

Identify regions data by a coverage filter and get a count matrix from BigWig files

Description

Rail (available at http://rail.bio) generates coverage BigWig files. These files are faster to load in R and to process. Rail creates an un-adjusted coverage BigWig file per sample and an adjusted summary coverage BigWig file by chromosome (median or mean). railMatrix reads in the mean (or median) coverage BigWig file and applies a threshold cutoff to identify expressed regions (ERs). Then it goes back to the sample coverage BigWig files and extracts the base level coverage for each sample. Finally it summarizes this information in a matrix with one row per ERs and one column per sample. This function is similar to regionMatrix but is faster thanks to the advantages presented by BigWig files.
Usage

railMatrix(
  chrs,
  summaryFiles,
  sampleFiles,
  L,
  cutoff = NULL,
  maxClusterGap = 300L,
  totalMapped = NULL,
  targetSize = 4e+07,
  file.cores = 1L,
  chrlens = NULL,
  ...
)

Arguments

chrs A character vector with the names of the chromosomes.

summaryFiles A character vector (or BigWigFileList) with the paths to the summary BigWig files created by Rail. Either mean or median files. These are library size adjusted by default in Rail. The order of the files in this vector must match the order in chrs.

sampleFiles A character vector with the paths to the BigWig files by sample. These files are unadjusted for library size.

L The width of the reads used. Either a vector of length 1 or length equal to the number of samples.

cutoff The base-pair level cutoff to use. It’s behavior is controlled by filter.

maxClusterGap This determines the maximum gap between candidate ERs.

totalMapped A vector with the total number of reads mapped for each sample. The vector should be in the same order as the samples in data. Providing this data adjusts the coverage to reads in targetSize library prior to filtering. See getTotalMapped for calculating this vector.

targetSize The target library size to adjust the coverage to. Used only when totalMapped is specified. By default, it adjusts to libraries with 40 million reads, which matches the default used in Rail.

file.cores Number of cores used for loading the BigWig files per chr.

chrlens The chromosome lengths in base pairs. If it’s NULL, the chromosome length is extracted from the BAM files. Otherwise, it should have the same length as chrs.

... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

  verbose If TRUE basic status updates will be printed along the way. Default: TRUE.

  verbose.load If TRUE basic status updates will be printed along the way when loading data. Default: TRUE.
**railMatrix**

**BPPARAM.railChr**  A BPPARAM object to use for the chr step. Set to `SerialParam` when `file.cores = 1` and `SnowParam` otherwise.

**chunksize**  Chunksize to use. Default: 1000.

Passed to `filterData`, `findRegions` and `define_cluster`.

**Details**

Given a set of un-filtered coverage data (see `fullCoverage`), create candidate regions by applying a cutoff on the coverage values, and obtain a count matrix where the number of rows corresponds to the number of candidate regions and the number of columns corresponds to the number of samples. The values are the mean coverage for a given sample for a given region.

This function uses several other `derfinder-package` functions. Inspect the code if interested.

You should use at most one core per chromosome.

**Value**

A list with one entry per chromosome. Then per chromosome, a list with two components.

- **regions**  A set of regions based on the coverage filter cutoff as returned by `findRegions`.
- **coverageMatrix**  A matrix with the mean coverage by sample for each candidate region.

**Author(s)**

Leonardo Collado-Torres

**Examples**

```r
BigWig files are not supported in Windows
if (.Platform$OS.type != "windows") {
 ## Get data
 library("derfinderData")
 ## Identify sample files
 sampleFiles <- rawFiles(system.file("extdata", "AMY", package = "derfinderData"), samplepatt = "bw", fileterm = NULL)
 names(sampleFiles) <- gsub(".bw", ",", names(sampleFiles))
 ## Create the mean bigwig file. This file is normally created by Rail
 ## but in this example we'll create it manually.
 library("GenomicRanges")
 fullCov <- fullCoverage(files = sampleFiles, chrs = "chr21")
 meanCov <- Reduce("+", fullCov$chr21) / ncol(fullCov$chr21)
 createBw(list("chr21" = DataFrame("meanChr21" = meanCov)), keepGR = FALSE)
}

summaryFile <- "meanChr21.bw"
```
## Get the regions

```r
regionMat <- railMatrix(
 chrs = "chr21", summaryFiles = summaryFile,
 sampleFiles = sampleFiles, L = 76, cutoff = 5.1,
 maxClusterGap = 3000L
)
```

## Explore results

```r
names(regionMat$chr21)
regionMat$chr21$regions
dim(regionMat$chr21$coverageMatrix)
```

---

**rawFiles**

*Construct full paths to a group of raw input files*

### Description

For a group of samples this function creates the list of paths to the raw input files which can then be used in `loadCoverage`. The raw input files are either BAM files or BigWig files.

### Usage

```r
rawFiles(
 datadir = NULL,
 sampledirs = NULL,
 samplepatt = NULL,
 fileterm = "accepted_hits.bam"
)
```

### Arguments

- `datadir` The main directory where each of the `sampledirs` is a sub-directory of `datadir`.
- `sampledirs` A character vector with the names of the sample directories. If `datadir` is `NULL`, it is then assumed that `sampledirs` specifies the full path to each sample.
- `samplepatt` If specified and `sampledirs` is set to `NULL`, then the directories matching this pattern in `datadir` (set to . if it's set to `NULL`) are used as the sample directories.
- `fileterm` Name of the BAM or BigWig file used in each sample. By default it is set to `accepted_hits.bam` since that is the automatic name generated when aligning with TopHat. If `NULL` it is then ignored when reading the rawfiles. This can be useful if all the raw files are stored in a single directory.

### Details

This function can also be used to identify a set of BigWig files.
regionMatrix

Value
A vector with the full paths to the raw files and sample names stored as the vector names.

Author(s)
Leonardo Collado-Torres

See Also
loadCoverage

Examples

```r
Get list of BAM files included in derfinder
datadir <- system.file("extdata", "genomeData", package = "derfinder")
files <- rawFiles(
 datadir = datadir, samplepatt = "*accepted_hits.bam$",
 fileterm = NULL
)
files
```

regionMatrix Identify regions data by a coverage filter and get a count matrix

Description
Given a set of un-filtered coverage data (see fullCoverage), create candidate regions by applying a
cutoff on the coverage values, and obtain a count matrix where the number of rows corresponds to
the number of candidate regions and the number of columns corresponds to the number of samples.
The values are the mean coverage for a given sample for a given region.

Usage

```r
regionMatrix(
 fullCov,
 cutoff = 5,
 L,
 totalMapped = 8e+07,
 targetSize = 8e+07,
 runFilter = TRUE,
 returnBP = TRUE,
 ...
)
```
Arguments

fullCov A list where each element is the result from `loadCoverage` used with `returnCoverage = TRUE`. Can be generated using `fullCoverage`. If `runFilter = FALSE`, then `returnMean = TRUE` must have been used.

cutoff The base-pair level cutoff to use. It’s behavior is controlled by `filter`.

L The width of the reads used. Either a vector of length 1 or length equal to the number of samples.

totalMapped A vector with the total number of reads mapped for each sample. The vector should be in the same order as the samples in `fullCov`. Providing this argument adjusts the coverage to reads in `targetSize` library prior to filtering. See `getTotalMapped` for calculating this vector.

targetSize The target library size to adjust the coverage to. Used only when `totalMapped` is specified. By default, it adjusts to libraries with 80 million reads.

runFilter This controls whether to run `filterData` or not. If set to `FALSE` then `returnMean = TRUE` must have been used to create each element of `fullCov` and the data must have been normalized (totalMapped equal to `targetSize`).

returnBP If `TRUE`, returns $bpCoverage$ explained below.

... Arguments passed to other methods and/or advanced arguments. Advanced arguments:

verbose If `TRUE` basic status updates will be printed along the way.

chrsStyle Default: UCSC. Passed to `extendedMapSeqlevels` via `getRegionCoverage`.

species Default: homo_sapiens. Passed to `extendedMapSeqlevels` via `getRegionCoverage`.

currentStyle Default: NULL. Passed to `extendedMapSeqlevels` via `getRegionCoverage`.

Passed to `filterData`, `findRegions` and `define_cluster`.

Note that `filterData` is used internally by `loadCoverage` (and hence `fullCoverage`) and has the important arguments `totalMapped` and `targetSize` which can be used to normalize the coverage by library size. If you already used these arguments when creating the `fullCov` object, then don’t specify them a second time in `regionMatrix`. If you have not used these arguments, we recommend using them to normalize the mean coverage.

Details

This function uses several other derfinder-package functions. Inspect the code if interested.

You should use at most one core per chromosome.

Value

A list with one entry per chromosome. Then per chromosome, a list with three components.

regions A set of regions based on the coverage filter cutoff as returned by `findRegions`. 
**bpCoverage** A list with one element per region. Each element is a matrix with numbers of rows equal to the number of base pairs in the region and number of columns equal to the number of samples. It contains the base-level coverage information for the regions. Only returned when returnBP = TRUE.

**coverageMatrix** A matrix with the mean coverage by sample for each candidate region.

**Author(s)**
Leonardo Collado-Torres

**Examples**

```r
Create some toy data
library("IRanges")
x <- Rle(round(runif(1e4, max = 10)))
y <- Rle(round(runif(1e4, max = 10)))
z <- Rle(round(runif(1e4, max = 10)))
fullCov <- list("chr21" = DataFrame(x, y, z))

Calculate a proxy of library size
libSize <- sapply(fullCov$chr21, sum)

Run region matrix normalizing the coverage
regionMat <- regionMatrix(
 fullCov = fullCov, maxRegionGap = 10L,
 maxClusterGap = 300L, L = 36, totalMapped = libSize, targetSize = 4e4
)

You can alternatively use filterData() on fullCov to reduce the required memory before using regionMatrix(). This can be useful when mc.cores > 1
filteredCov <- lapply(fullCov, filterData, returnMean = TRUE, filter = "mean",
 cutoff = 5, totalMapped = libSize, targetSize = 4e4)
regionMat2 <- regionMatrix(filteredCov,
 maxRegionGap = 10L,
 maxClusterGap = 300L, L = 36, runFilter = FALSE)

regionMatrix() can work with multiple chrs as shown below.
fullCov2 <- list("chr21" = DataFrame(x, y, z), "chr22" = DataFrame(x, y, z))
regionMat2 <- regionMatrix(
 fullCov = fullCov2, maxRegionGap = 10L,
 maxClusterGap = 300L, L = 36, totalMapped = libSize, targetSize = 4e4)

Combine results from multiple chromosomes
library("GenomicRanges")

First extract the data
```
```r
regs <- unlist(GRangesList(lapply(regionMat2, "[[", "regions")))
covMat <- do.call(rbind, lapply(regionMat2, "[[", "coverageMatrix"))
covBp <- do.call(c, lapply(regionMat2, "[[", "bpCoverage"))
Force the names to match
names(regs) <- rownames(covMat) <- names(covBp) <- seq_len(length(regs))
Combine into a list (not really needed)
mergedRegionMat <- list(
 "regions" = regs, "coverageMatrix" = covMat,
 "bpCoverage" = covBp
)
```

---

**sampleDepth**

*Calculate adjustments for library size*

---

**Description**

For a given data set calculate the per-sample coverage adjustments. Hector Corrada’s group proposed calculating the sum of the coverage for genes below a given sample quantile. In this function, we calculate the sample quantiles of interest by sample, and then the sum of the coverage for bases below or equal to quantiles of interest. The resulting values are transformed \( \log_2(x \cdot \text{scalefac}) \) to avoid very large numbers that could potentially affect the stability of the F-statistics calculation. The sample coverage adjustments are then used in `makeModels` for constructing the null and alternative models.

**Usage**

```r
sampleDepth(collapsedFull, probs = c(0.5, 1), scalefac = 32, ...
```

**Arguments**

- `collapsedFull` The full coverage data collapsed by sample as produced by `collapseFullCoverage`.
- `probs` Number(s) between 0 and 1 representing the quantile(s) of interest. For example, 0.5 is the median.
- `scalefac` Number added to the sample coverage adjustments before the \( \log_2 \) transformation.
- `...` Arguments passed to other methods and/or advanced arguments. Advanced arguments:
  - `verbose` If `TRUE` basic status updates will be printed along the way.
  - `nonzero` If `TRUE` only the nonzero counts are used to calculate the library size adjustment. Default: `TRUE`.
  - `center` If `TRUE` the sample coverage adjustments are centered. In some cases, this could be helpful for interpretation purposes. Default: `FALSE`.
sampleDepth

Value

A matrix (vector of length(probs) == 1) with the library size depth adjustments per sample to be used in `makeModels`. The number of rows corresponds to the number of quantiles used for the sample adjustments.

Author(s)

Leonardo Collado-Torres

References


See Also

collapseFullCoverage, makeModels

Examples

```r
Collapse the coverage information
collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
 verbose = TRUE
)

Calculate library size adjustments
sampleDepths <- sampleDepth(collapsedFull, probs = c(0.5, 1), verbose = TRUE)
sampleDepths
```
Index

* datasets
  - genomeData, 30
  - genomeDataRaw, 31
  - genomeFstats, 32
  - genomeInfo, 32
  - genomeRegions, 33
  - genomicState, 34

* internal
  - derfinder-package, 3

advancedArg (derfinder-deprecated), 21
analyzeChr, 4, 43, 44
annotateRegions, 7, 43, 44
annotateTranscripts, 4–6

BamFile, 37
BamFileList, 16, 29, 35, 37
BigWigFile, 37
BigWigFileList, 16, 29, 35, 37
bplapply, 5, 46

calculatePvalues, 4–8, 8, 26–28, 33–36, 43, 44, 46
calculateStats, 4–6, 9, 12, 12, 26, 32, 33, 41, 42, 45–47
coerceGR, 13, 18, 19
collapseFullCoverage, 14, 54, 55
countOverlaps, 7
coverageToExon, 16
createBw, 18
createBwSample, 18, 19
define_cluster, 5, 9, 12, 14, 17, 20, 27, 29, 35, 38, 49, 52
derfinder (derfinder-package), 3
derfinder-deprecated, 21
derfinder-package, 3, 49, 52
export.bw, 18–20
extendedMapSeqlevels, 5, 7, 17, 22, 27, 29, 35, 38, 40, 43, 52

filterData, 4, 14, 24, 29, 30, 35, 37, 38, 45–47, 49, 52
findOverlaps, 7
findOverlaps-methods, 7
findRegions, 9, 10, 25, 26, 49, 52
fstats.apply, 5, 9, 10, 12, 46
fullCoverage, 13–19, 28, 29, 34–36, 39, 49, 51, 52

geneData, 30, 33
geneDataRaw, 31
genomeFstats, 32
genomeInfo, 30–32, 32
genomeRegions, 33
genomicState, 34
getRegionCoverage, 16, 17, 34, 35, 52
getTotalMapped, 24, 25, 29, 30, 36, 38, 39, 48, 52
GRanges, 13, 14, 18–20
GRangesList, 18

isActiveSeq, 40

loadCoverage, 4, 13, 15, 16, 18, 19, 24–26, 29–31, 35, 37, 38, 45, 47, 50–52
loessByCluster, 5, 9, 27

makeGenomicState, 7, 8, 16, 34, 40, 43
makeModels, 4, 6, 9, 12, 41, 54, 55
mapSeqlevels, 22
matchGenes, 4–6, 44
mergeResults, 43

preprocessCoverage, 4–6, 9, 10, 12, 24–26, 43, 45, 45

qf, 5
quantile, 5
qvalue, 10

railMatrix, 47, 47
rawFiles, 16, 29, 35, 37, 50
regionFinder, 26, 27
regionMatrix, 25, 47, 51, 52
runmedByCluster, 5, 9, 27

sampleDepth, 14, 15, 42, 54
scanBamFlag, 38
seqlevelsStyle, 22
SerialParam, 20, 49
smoother, 5, 9, 26
SnowParam, 20, 49

tileGenome, 38
TxDb, 40
TxDb.Hsapiens.UCSC.hg19.knownGene, 5