Package ‘derfinderHelper’

March 22, 2024

Type Package
Title derfinder helper package
Version 1.36.0
Date 2021-08-05
Depends R(>= 3.2.2)
Imports IRanges (>= 1.99.27), Matrix, methods, S4Vectors (>= 0.2.2)
Suggests sessioninfo, knitr (>= 1.6), BiocStyle (>= 2.5.19),
 RefManageR, rmarkdown (>= 0.3.3), testthat, covr

VignetteBuilder knitr

Description Helper package for speeding up the derfinder package when using
 multiple cores. This package is particularly useful when using
 BiocParallel and it helps reduce the time spent loading the full
 derfinder package when running the F-statistics calculation in parallel.

License Artistic-2.0
LazyData false

URL https://github.com/leekgroup/derfinderHelper

BugReports https://support.bioconductor.org/t/derfinderHelper

biocViews DifferentialExpression, Sequencing, RNASeq, Software,
 ImmunoOncology

RoxygenNote 7.2.3
Encoding UTF-8

Roxygen list(markdown = TRUE)
git_url https://git.bioconductor.org/packages/derfinderHelper
git_branch RELEASE_3_18
git_last_commit dc60520
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-22
Author Leonardo Collado-Torres [aut, cre]
(https://orcid.org/0000-0003-2140-308X),
Andrew E. Jaffe [aut] (https://orcid.org/0000-0001-6886-1454),
Jeffrey T. Leek [aut, ths] (https://orcid.org/0000-0002-2873-2671)

Maintainer Leonardo Collado-Torres <lcolladotor@gmail.com>

R topics documented:

 derfinderHelper-package .. 2
 fstats.apply ... 3

Index

derfinderHelper-package

derfinderHelper: derfinder helper package

Description

 Helper package for speeding up the derfinder package when using multiple cores. This package
 is particularly useful when using BiocParallel and it helps reduce the time spent loading the full
 derfinder package when running the F-statistics calculation in parallel.

Author(s)

 Maintainer: Leonardo Collado-Torres <lcolladotor@gmail.com> (ORCID)

 Authors:

 • Andrew E. Jaffe <andrew.jaffe@libd.org> (ORCID)
 • Jeffrey T. Leek <jtleek@gmail.com> (ORCID) [thesis advisor]

See Also

 Useful links:

 • https://github.com/leekgroup/derfinderHelper
 • Report bugs at https://support.bioconductor.org/t/derfinderHelper
Calculate F-statistics per base by extracting chunks from a DataFrame

Description

Extract chunks from a DataFrame and get the F-statistics on the rows of data, comparing the models mod (alternative) and mod0 (null).

Usage

fstats.apply(
 index = Rle(TRUE, nrow(data)),
 data,
 mod,
 mod0,
 adjustF = 0,
 lowMemDir = NULL,
 method = "Matrix",
 scalefac = 32
)

Arguments

index
An index (logical Rle is the best for saving memory) indicating which rows of the DataFrame to use.

data
The DataFrame containing the coverage information. Normally stored in coveragePrep$coverageProcessed from derfinder::preprocessCoverage. Could also be the full data from derfinder::loadCoverage.

mod
The design matrix for the alternative model. Should be m by p where p is the number of covariates (normally also including the intercept).

mod0
The design matrix for the null model. Should be m by p_0.

adjustF
A single value to adjust that is added in the denominator of the F-stat calculation. Useful when the Residual Sum of Squares of the alternative model is very small.

lowMemDir
The directory where the processed chunks are saved when using derfinder::preprocessCoverage with a specified lowMemDir.

method
Has to be either 'Matrix' (default), 'Rle' or 'regular'. See details.

scalefac
The scaling factor used in derfinder::preprocessCoverage. It is only used when method='Matrix'.

Details

If lowMemDir is specified then index is expected to specify the chunk number.

fstats.apply has three different implementations which are controlled by the method parameter. method='regular' coerces the data to a standard 'matrix' object. method='Matrix' coerces the data to a sparseMatrix which reduces the required memory. This method is only usable when the
projection matrices have row sums equal to 0. Note that these row sums are not exactly 0 due to how the computer works, thus leading to very small numerical differences in the F-statistics calculated versus method='regular'. Finally, method='Rle' calculates the F-statistics using the Rle compressed data without coercing it to other types of objects, thus using less memory that the other methods. However, it’s speed is affected by the number of samples (n) as the current implementation requires n (n + 1) operations, so it’s only recommended for small data sets. method='Rle' does result in small numerical differences versus method='regular'.

Overall method='Matrix' is faster than the other options and requires less memory than method='regular'. With tiny example data sets, method='Matrix' can be slower than method='regular' because the coercion step is slower.

In derfinder versions <= 0.0.62, method='regular' was the only option available.

Value

A numeric Rle with the F-statistics per base for the chunk in question.

Author(s)

Leonardo Collado-Torres, Jeff Leek

Examples

```r
## Create some toy data
library("IRanges")
toyData <- DataFrame(
  "sample1" = Rle(sample(0:10, 1000, TRUE)),
  "sample2" = Rle(sample(0:10, 1000, TRUE)),
  "sample3" = Rle(sample(0:10, 1000, TRUE)),
  "sample4" = Rle(sample(0:10, 1000, TRUE))
)

## Create the model matrices
group <- c("A", "A", "B", "B")
mod.toy <- model.matrix(~group)
mod0.toy <- model.matrix(~ 0 + rep(1, 4))

## Get the F-statistics
fstats <- fstats.apply(
  data = toyData, mod = mod.toy, mod0 = mod0.toy,
  scalefac = 1
)

## Example with data from derfinder package
## Not run:
## Load the data
library("derfinder")

## Create the model matrices
mod <- model.matrix(~ genomeInfo$pop)
mod0 <- model.matrix(~ 0 + rep(1, nrow(genomeInfo)))
```
Run the function

```r
system.time(fstats.Matrix <- fstats.apply(
    data = genomeData$coverage, mod = mod,
    mod0 = mod0, method = "Matrix", scalefac = 1
))

fstats.Matrix
```

Compare methods

```r
system.time(fstats.regular <- fstats.apply(
    data = genomeData$coverage,
    mod = mod, mod0 = mod0, method = "regular"
))

system.time(fstats.Rle <- fstats.apply(
    data = genomeData$coverage, mod = mod,
    mod0 = mod0, method = "Rle"
))
```

Small numerical differences can occur

```r
summary(fstats.regular - fstats.Matrix)
summary(fstats.regular - fstats.Rle)
```

You can make the effect negligible by appropriately rounding

```r
findRegions(cutoff) so the DERs will be the same regardless of the method
```

Extra comparison, although the method to compare against is 'regular'

```r
summary(fstats.Rle - fstats.Matrix)
```

End(Not run)
Index

* internal
 derfinderHelper-package, 2

derfinderHelper
 (derfinderHelper-package), 2
 derfinderHelper-package, 2

fstats.apply, 3, 3

sparseMatrix, 3