Package ‘diffUTR’

January 8, 2024

Type Package

Title diffUTR: Streamlining differential exon and 3’ UTR usage

Version 1.10.0

Depends R (>= 4.0)

Description The diffUTR package provides a uniform interface and plotting functions for limma/edgeR/DEXSeq -powered differential bin/exon usage. It includes in addition an improved version of the limma::diffSplice method. Most importantly, diffUTR further extends the application of these frameworks to differential UTR usage analysis using poly-A site databases.

Imports S4Vectors, SummarizedExperiment, limma, edgeR, DEXSeq, GenomicRanges, Rsubread, ggplot2, rtracklayer, ComplexHeatmap, ggrepel, stringi, methods, stats, GenomeInfoDb, dplyr, matrixStats, IRanges, ensembldb, viridisLite

Suggests BiocStyle, knitr, rmarkdown

biocViews GeneExpression

BugReports https://github.com/ETHZ-INS/diffUTR

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/diffUTR

git_branch RELEASE_3_18

git_last_commit 90e9a90

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-01-08

Author Pierre-Luc Germain [cre, aut] (<https://orcid.org/0000-0003-3418-4218>), Stefan Gerber [aut]

Maintainer Pierre-Luc Germain <pierre-luc.germain@hest.ethz.ch>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>addNormalizedAssays</td>
<td>2</td>
</tr>
<tr>
<td>countFeatures</td>
<td>3</td>
</tr>
<tr>
<td>deuBinPlot</td>
<td>4</td>
</tr>
<tr>
<td>diffSplice2</td>
<td>5</td>
</tr>
<tr>
<td>diffSpliceDGEWrapper</td>
<td>6</td>
</tr>
<tr>
<td>example_bin_se</td>
<td>7</td>
</tr>
<tr>
<td>example_gene_annotation</td>
<td>8</td>
</tr>
<tr>
<td>geneBinHeatmap</td>
<td>9</td>
</tr>
<tr>
<td>geneLevelStats</td>
<td>10</td>
</tr>
<tr>
<td>plotTopGenes</td>
<td>11</td>
</tr>
<tr>
<td>prepareBins</td>
<td>12</td>
</tr>
<tr>
<td>rn6_PAS</td>
<td>13</td>
</tr>
<tr>
<td>simesAggregation</td>
<td>13</td>
</tr>
</tbody>
</table>

Index

addNormalizedAssays addNormalizedAssays

Description

addNormalizedAssays

Usage

addNormalizedAssays(se, readLength = 50L)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>se</td>
<td>A bin-wise ‘SummarizedExperiment’ as produced by countFeatures</td>
</tr>
<tr>
<td>readLength</td>
<td>Used as a minimum width to estimate read density (default 50).</td>
</tr>
</tbody>
</table>

Value

The ‘se’ object with populated ‘logcpm’ and ‘logNormDensity’ assays.

Examples

data(example_bin_se)
example_bin_se <- addNormalizedAssays(example_bin_se)
countFeatures

Description

`countFeatures`

Usage

```r
countFeatures(
  bamfiles,
  bins,
  strandSpecific = 0,
  readLength = 50L,
  allowMultiOverlap = TRUE,
  inclNormalized = TRUE,
  tmpDir = tempdir(),
  ...
)
```

Arguments

- `bamfiles` A vector of paths to bam files
- `bins` A GRanges of bins in which to count reads (or path to a rds file containing such an object
- `strandSpecific` Passed to `Rsubread::featureCounts`
- `readLength` Used as a minimum width to estimate read density.
- `allowMultiOverlap` Passed to `Rsubread::featureCounts`
- `inclNormalized` Logical; whether to include normalized assays (needed for plotting)
- `tmpDir` Passed to `Rsubread::featureCounts`
- ... Passed to `Rsubread::featureCounts`

Value

A `RangedSummarizedExperiment-class`

Examples

```r
data("example_gene_annotation", package="diffUTR")
bins <- prepareBins(example_gene_annotation)
bam_files <- list.files(system.file("extdata", package="diffUTR"),
  pattern="bam$", full=TRUE)
  # not run
  # se <- countFeatures(bam_files, bins, verbose=FALSE)
```
deuBinPlot

Description

deuBinPlot

Usage

deuBinPlot(
 se,
 gene,
 type = c("summary", "condition", "sample"),
 intronSize = 2,
 exonSize = c("sqrt", "linear", "log"),
 y = NULL,
 condition = NULL,
 size = "type",
 lineSize = 1,
 colour = NULL,
 alpha = NULL,
 removeAmbiguous = TRUE,
 minDensityRatio = 0.1
)

Arguments

- **se**: A bin-wise SummarizedExperiment as produced by `countFeatures` and including bin-level tests (i.e. having been passed through one of the DEU wrappers such as `diffSpliceWrapper` or `DEXSeqWrapper`)
- **gene**: The gene of interest
- **type**: Either 'summary' (plot DEU summary), 'sample' (plot sample-wise data), or 'condition' (plot data aggregate by condition)
- **intronSize**: Intron plot size. If <=3, intron size will be this fraction of the mean exon size. If >3, each intron will have the given size.
- **exonSize**: Scaling for exon sizes, either 'sqrt', 'log', or 'linear'.
- **y**: Value to plot on the y-axis. If 'type="summary"', this should be a column of 'rowData(se)', otherwise should be an assay name of 'se'.
- **condition**: The colData column containing the samples' condition.
- **size**: rowData variable to use to determine the thickness of the bins.
- **lineSize**: Size of the line connecting the bins. Use 'lineSize=0' to omit the line.
- **colour**: rowData variable to use to determine the colour of the bins. If 'type="condition"', can also be "condition"; if 'type="sample"' can be any colData column.
- **alpha**: Alpha level, passed to ggplot.
removeAmbiguous
Logical; whether to remove bins that are gene-ambiguous (i.e. overlap multiple genes).

minDensityRatio
Minimum ratio of read density (with respect to the gene’s average) for a bin to be plotted.

Value
A ggplot object

Examples
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
deuBinPlot(se, "Jund")

diffSplice2

Description
This is a small improvement to the diffSplice function written by Gordon Smyth and Charity Law.

Usage
diffSplice2(fit, geneid, exonid = NULL, robust = FALSE, verbose = TRUE)

Arguments
fit an MArrayLM-class fitted model object produced by lmFit or ‘contrasts.fit’, with rows corresponding to exons.
geneid gene identifiers (as in diffSplice)
exonid exon identifiers (as in diffSplice)
robust logical, should the estimation of the empirical Bayes prior parameters be robustified against outlier sample variances?
verbose logical, if TRUE will output some diagnostic information

Value
An MArrayLM-class object containing both exon level and gene level tests. Results are sorted by geneid and by exonid within gene.
Examples

```r
library(SummarizedExperiment)
library(edgeR)
data(example_bin_se)
se <- example_bin_se
design <- model.matrix(~condition, data=as.data.frame(colData(se)))
dds <- calcNormFactors(DGEList(assays(se)$counts))
dds <- voom(dds, design)
dds <- lmFit(dds, design)
res <- diffSplice2(dds, geneid=rowData(se)$gene, exonid=row.names(se))
topSplice(res)
```

Description

Wrappers around commonly-used DEU methods (`diffSpliceDGE`, `DEXSeq` and an improved version of `diffSplice`)

Usage

```r
diffSpliceDGEWrapper(
  se, 
  design, 
  coef = NULL, 
  QLF = TRUE, 
  robust = TRUE, 
  countFilter = TRUE, 
  excludeTypes = NULL
)

diffSpliceWrapper(
  se, 
  design, 
  coef = NULL, 
  robust = TRUE, 
  improved = TRUE, 
  countFilter = TRUE, 
  excludeTypes = NULL
)

DEXSeqWrapper(
  se, 
  design = ~sample + exon + condition:exon, 
  reducedModel = ~sample + exon, 
  excludeTypes = NULL,
)```
Arguments

- **se**: A bin-wise SummarizedExperiment as produced by `countFeatures`.
- **design**: A formula (using columns of `colData(se)`) or (for `diffSpliceWrapper` or `diffSpliceDGEWrapper` only) a model.matrix.
- **coef**: The coefficient to be tested (ignored for `DEXSeqWrapper`).
- **QLF**: Logical; whether to use edgeR’s quasi-likelihood negative binomial (applicable only to `diffSpliceDGEWrapper`).
- **robust**: Logical; whether to use robust fitting for the dispersion trend (ignored for `DEXSeqWrapper`).
- **countFilter**: Logical; whether to filter out low-count bins (ignored for `DEXSeqWrapper`).
- **excludeTypes**: A vector of bin types to ignore for testing. To test for any kind of differential usage, leave empty. To test for differential UTR usage, use `excludeTypes=c("CDS", "non-coding")` (or see `geneLevelStats` for more options).
- **improved**: Logical; whether to use `diffSplice2` instead of the original `diffSplice` (default `TRUE`).
- **reducedModel**: A reduced formula (applicable only to `DEXSeqWrapper`).
- **...**: Further arguments (passed to `testForDEU` and `estimateExonFoldChanges`) of `DEXSeq`. Can for instance be used to enable multithreading, by passing `BPPARAM=BiocParallel::MulticoreParam(ncores)`.

Value

The `se` object with additional rowData columns contain bin (i.e. exon) -level statistics, and a metadata slot containing gene level p-values.

Examples

```r
library(SummarizedExperiment)
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
head(rowData(se))
```

Description

An object produced by `countFeatures` containing small subset of genes from mouse hippocampal slices undergoing Forskolin-induced long-term potentiation (GSE84643).
Value

a ‘RangedSummarizedExperiment’

References

https://www.nature.com/articles/s41598-017-17407-w

---

**Example gene annotation**

Example gene annotation

---

Description

An example gene annotation containing only a small subset of mouse genes.

Value

a ‘GRanges’ object

---

geneBinHeatmap
geneBinHeatmap

---

Description

A wrapper around ‘ComplexHeatmap’.

Usage

geneBinHeatmap(
    se,
    gene,
    what = NULL,
    anno_rows = c("type", "logWidth", "meanLogDensity", "log10PValue", "geneAmbiguous"),
    anno_columns = c(),
    anno_colors = list(),
    removeAmbiguous = FALSE,
    merge_legends = TRUE,
    cluster_columns = FALSE,
    minDensityRatio = 0.1,
    left_annotation = NULL,
    top_annotation = NULL,
    ...
)
Arguments

- **se**: A bin-wise SummarizedExperiment as produced by `countFeatures`
- **gene**: The gene of interest
- **what**: Type of values (i.e. assay) to plot
- **anno_rows**: Row annotation columns (i.e. columns of `rowData(se)`) to plot
- **anno_columns**: Column annotation columns (i.e. columns of `colData(se)`) to plot
- **anno_colors**: Annotation colors, as a list named with the row/column annotations, see `SingleAnnotation` for details. Ignored if `left_annotation` and/or `top_annotation` are given directly.
- **removeAmbiguous**: Logical; whether to remove bins that are gene-ambiguous (i.e. overlap multiple genes).
- **merge_legends**: Logical; whether to merge legends. This effectively calls `draw(..., merge_legends=TRUE)` around the heatmap.
- **cluster_columns**: Logical; whether to cluster columns (passed to `Heatmap`)
- **minDensityRatio**: Minimum ratio of read density (with respect to the gene’s average) for a bin to be plotted.
- **left_annotation**: Passed to `Heatmap`, overrides `anno_rows`.
- **top_annotation**: Passed to `Heatmap`, overrides `anno_columns`.
- **...**: Passed to `ComplexHeatmap` (see `Heatmap`)

Value

A `Heatmap`

Examples

```r
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
geneBinHeatmap(se, "Jund")
```

Description

Aggregates bin-level statistics to the gene-level
geneLevelStats

Usage

geneLevelStats(
  se,
  coef = NULL,
  excludeTypes = NULL,
  includeTypes = NULL,
  returnSE = TRUE,
  minDensityRatio = 0.1,
  minWidth = 20,
  excludeGeneAmbiguous = TRUE
)

Arguments

se A 'RangedSummarizedExperiment' containing the results of one of the DEU wrappers.
coef The coefficients tested (if the model included more than one term).
excludeTypes Vector of bin types to exclude.
includeTypes Vector of bin types to include (overrides 'excludeTypes')
returnSE Logical; whether to return the updated 'se' object (default), or the gene-level table.
minDensityRatio Minimum ratio of read density (with respect to the gene's average) for a bin to be included.
minWidth Minimum bin width to include
excludeGeneAmbiguous Logical; whether to exclude bins which are ambiguous (i.e. can be from different genes)

Value

If 'returnSE=TRUE' (default), returns the 'se' object with an updated 'metadata(se)$geneLevel' slot, otherwise returns the gene-level data.frame.

Examples

library(SummarizedExperiment)
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
se <- geneLevelStats(se, includeTypes="3UTR")
head(metadata(se)$geneLevel)
**plotTopGenes**

**Description**

plotTopGenes

**Usage**

```
plotTopGenes(se, n = 10, FDR = 0.05, diffUTR = FALSE, alpha = 1, ...
```

**Arguments**

- `se`: A bin-wise SummarizedExperiment as produced by `countFeatures` and including bin-level tests (i.e. having been passed through one of the DEU wrappers such as `diffSpliceWrapper` or `DEXSeqWrapper`)
- `n`: The maximum number of genes for which to plot labels
- `FDR`: The FDR threshold above which to plot labels
- `diffUTR`: Logical; if FALSE, uses absolute coefficients (appropriate for normal differential exon usage); if TRUE, uses non-absolute (ie changes should be in the same direction across significant bins) and width-weighted scores (i.e. larger bins have more weight) – this is relevant only when testing UTR usage.
- `alpha`: Points transparency
- `...`: Passed to `geom_label_repel`; this can for instance be used to increase ‘max.overlaps’ when not all desired gene labels are displayed

**Value**

A ggplot

**Examples**

```r
data(example_bin_se)
se <- diffSpliceWrapper(example_bin_se, ~condition)
plotTopGenes(se)
```
prepareBins

Description
prepareBins

Usage
prepareBins(
g, APA = NULL, onlyMainChr = TRUE, removeAntisense = TRUE, chrStyle = NULL, maxUTRbinSize = 15000, codingOnly = FALSE, genewise = FALSE, stranded = FALSE, verbose = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>A GRanges (or path to RDS file containing a GRanges) or path to a gtf file or EnsDb object containing the gene annotation.</td>
</tr>
<tr>
<td>APA</td>
<td>A GRanges (or path to a GRanges in RDS format) or bed file containing the alternative poly-A site database</td>
</tr>
<tr>
<td>onlyMainChr</td>
<td>Logical; whether to keep only main chromosomes</td>
</tr>
<tr>
<td>removeAntisense</td>
<td>Logical; whether to remove antisense APA sites</td>
</tr>
<tr>
<td>chrStyle</td>
<td>Chromosome notation to convert to (default no conversion)</td>
</tr>
<tr>
<td>maxUTRbinSize</td>
<td>Max width of new alternative UTR bins</td>
</tr>
<tr>
<td>codingOnly</td>
<td>Logical, whether to keep only coding transcripts</td>
</tr>
<tr>
<td>genewise</td>
<td>Logical, whether annotation should be flattened genewise</td>
</tr>
<tr>
<td>stranded</td>
<td>Logical, whether to perform disjoin in a stranded fashion.</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical, whether to print run information</td>
</tr>
</tbody>
</table>

Details
See the vignette for more details.

Value
A ‘GRanges‘ object.
rn6_PAS

Author(s)
Stefan Greber

Examples
data(example_gene_annotation)
bins <- prepareBins(example_gene_annotation)

rn6_PAS Poly-A sites compendium for Rattus Norvegicus (Rno6)

Description
These are the sites from polyA_DB release 3.2, downloaded from https://exon.apps.wistar.org/PolyA_DB/v3/download/3.2/rat_pas.zip, and lifted over to Rno6.

Value
a ‘GRanges’ object

simesAggregation simesAggregation

Description
Simes p-value correction and aggregation, adapted from link[limma]{diffSplice}

Usage
simesAggregation(p.value, geneid)

Arguments
p.value A vector of p-values
geneid A vector of group labels such as gene identifiers

Value
A named vector of aggregated p-values

Examples
p <- runif(50)
genes <- sample(LETTERS,50,replace=TRUE)
simesAggregation(p, genes)
Index

addNormalizedAssays, 2

countFeatures, 2, 3, 4, 7, 9, 11

deuBinPlot, 4
DEUwrappers (diffSpliceDGEWrapper), 6
DEXSeq, 6
DEXSeqWrapper, 4, 11
DEXSeqWrapper (diffSpliceDGEWrapper), 6
diffSplice, 5–7
diffSplice2, 5, 7
diffSpliceDGE, 6
diffSpliceDGEWrapper, 6
diffSpliceWrapper, 4, 11
diffSpliceWrapper (diffSpliceDGEWrapper), 6

element_bin_se, 7
element_gene_annotation, 8

geneBinHeatmap, 8
geneLevelStats, 7, 9
gene_level_repel, 11

Heatmap, 9

lmFit, 5

plotTopGenes, 11
prepareBins, 12

RangedSummarizedExperiment-class, 3
rn6_PAS, 13

simesAggregation, 13
SingleAnnotation, 9