Package ‘divergence’

May 29, 2024

Title Divergence: Functionality for assessing omics data by divergence with respect to a baseline

Version 1.20.0

Author Wikum Dinalankara <wdd4001@med.cornell.edu>, Luigi Marchionni <marchion@jhu.edu>, Qian Ke <qke1@jhu.edu>

Maintainer Wikum Dinalankara <wdd4001@med.cornell.edu>, Luigi Marchionni <marchion@jhu.edu>

Description This package provides functionality for performing divergence analysis as presented in Dinalankara et al, "Digitizing omics profiles by divergence from a baseline", PANS 2018. This allows the user to simplify high dimensional omics data into a binary or ternary format which encapsulates how the data is divergent from a specified baseline group with the same univariate or multivariate features.

Depends R (>= 3.6), SummarizedExperiment

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

biocViews Software, StatisticalMethod

Suggests knitr, rmarkdown

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/divergence

git_branch RELEASE_3_19

git_last_commit dfc0934

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
breastTCGA_ER

Description

A factor indicating whether 887 breast samples in breastTCGA_Mat are ER positive or ER negative. The matched normals have empty values.

Usage

breastTCGA_ER

Format

A Factor of length 887 of levels Negative and Positive (with 111 missing values for the normals).

Source

https://cancergenome.nih.gov/
breastTCGA_Group

<table>
<thead>
<tr>
<th>Description</th>
<th>Normal or Tumor status of breast samples</th>
</tr>
</thead>
</table>

Usage

breastTCGA_Group

Format

A Factor of length 887 of levels NORMAL and TUMOR.

Source

https://cancergenome.nih.gov/

breastTCGA_Mat

<table>
<thead>
<tr>
<th>Description</th>
<th>Gene expression for 260 genes in 887 breast samples</th>
</tr>
</thead>
</table>

Usage

breastTCGA_Mat

Format

A data matrix with 260 rows and 887 columns.

Source

https://cancergenome.nih.gov/
computeChiSquaredTest
Compute chi-squared test

Description

Given a binary or ternary data matrix with class associations of samples, computes chi-squared tests for each feature between given groups.

Usage

```r
computeChiSquaredTest(Mat, Groups, classes)
```

Arguments

- `Mat`: Matrix of digitized binary or ternary data with each column corresponding to a sample and each row corresponding to a feature.
- `Groups`: Factor indicating class association of samples.
- `classes`: Vector of class labels; the test will be applied between the classes given.

Value

A data frame with columns 'statistic' and 'pval'.

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
dataMat = breastTCGA_Mat[, breastTCGA_Group != "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
seMat = SummarizedExperiment(assays=list(data=dataMat))
div = computeUnivariateDigitization(
  seMat = seMat,
  seMat.base = seMat.base,
  parallel = TRUE
)
assays(seMat)$div = div$Mat.div
sel = which(colnames(seMat) %in% colnames(dataMat))
div.chi = computeChiSquaredTest(Mat=assays(seMat)$div,
  Groups=breastTCGA_ER[sel],
  classes=c("Positive", "Negative"))
```
computeMultivariateBinaryMatrix

Compute the binary matrix with digitized divergence coding

Description

Function for obtaining the binary form for a matrix for multivariate divergence of data given a baseline range.

Usage

```r
computeMultivariateBinaryMatrix(seMat, Baseline)
```

Arguments

- `seMat` SummarizedExperiment with assay to be digitized, in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.
- `Baseline` A Baseline object; this corresponds to the output of `findMultivariateGammaWithSupport()` or `computeMultivariateSupport()`

Value

A matrix with the same columns as `Mat`, with rows being the multivariate features, containing the binary form data.

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
assays(seMat.base)$quantile = computeQuantileMatrix(seMat.base)
baseline = computeMultivariateSupport(seMat=seMat.base, FeatureSets=msigdb_Hallmarks)
dataMat = breastTCGA_Mat[, breastTCGA_Group != "NORMAL"]
seMat = SummarizedExperiment(assays=list(data=dataMat))
assays(seMat)$quantile = computeQuantileMatrix(seMat)
Mat.div = computeMultivariateBinaryMatrix(seMat=seMat, Baseline=baseline)
```

computeMultivariateDigitization

Perform binary digitization

Description

Function for obtaining the digitized form, along with other relevant statistics and measures given a data matrix and a baseline matrix with multivariate features of interest.
Usage

computeMultivariateDigitization(seMat, seMat.base, FeatureSets,
computeQuantiles = TRUE, gamma = c(0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 0.9),
alpha = 0.01, distance = "euclidean", verbose = TRUE,
findGamma = TRUE, Groups = NULL, classes = NULL)

Arguments

seMat SummarizedExperiment with assay to be digitized, in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.

seMat.base SummarizedExperiment with baseline assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature.

FeatureSets The multivariate features in list or matrix form. In list form, each list element should be a vector of individual features; in matrix form, it should be a binary matrix with row names being individual features and column names being the names of the feature sets.

computeQuantiles Apply quantile transformation to both data and baseline matrices (TRUE or FALSE; defaults to TRUE).

gamma Range of gamma values to search through. By default gamma = 0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 0.9.

beta Parameter for eliminating outliers (0 < beta <= 1). By default beta=0.95.

alpha Expected proportion of divergent features per sample to be estimated. The optimal gamma providing this level of divergence in the baseline data will be searched for.

distance Type of distance to be calculated between points. Any type of distance that can be passed on to the dist function can be used (default 'euclidean').

verbose Logical indicating whether to print status related messages during computation (defaults to TRUE).

findGamma Logical indicating whether to search for optimal gamma values through the given gamma values (defaults to TRUE). If FALSE, the first value given in gamma will be used.

Groups Factor indicating class association of samples.

classes Vector of class labels.

Value

A list with elements: Mat.div: divergence coding of data matrix in binary form, of same dimensions at seMat baseMat.div: divergence coding of base matrix in binary form, of same column names at seMat.base, rows being multivariate features. div: data frame with the number of divergent features in each sample features.div: data frame with the divergent probability of each feature; divergence probability for each phenotype in included as well if 'Groups' and 'classes' inputs were provided. Baseline: a list containing a "Ranges" data frame with the baseline interval for each feature, and a "Support" binary matrix of the same dimensions as Mat indicating whether each sample was a support or a feature or not (1=support, 0=not in the support), gamma: selected gamma value alpha: the expected number of divergent features per sample computed over the baseline data matrix.
computeMultivariateSupport

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
dataMat = breastTCGA_Mat[, breastTCGA_Group != "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
seMat = SummarizedExperiment(assays=list(data=dataMat))
div = computeMultivariateDigitization(
  seMat = seMat,
  seMat.base = seMat.base,
  FeatureSets = msigdb_Hallmarks
)
```

computeMultivariateSupport

Estimate the baseline support

Description

Function for computing the baseline support for multivariate features given gamma and beta parameters.

Usage

```r
computeMultivariateSupport(seMat, FeatureSets, gamma = 0.1, beta = 0.95, distance = "euclidean", verbose = TRUE)
```

Arguments

- `seMat`
 SummarizedExperiment with an assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.

- `FeatureSets`
 The multivariate features in list or matrix form. In list form, each list element should be a vector of individual features; in matrix form, it should be a binary matrix with rownames being individual features and column names being the names of the feature sets.

- `gamma`
 Parameter for selecting radius around each support point (0 < gamma < 1). By default gamma = 0.1.

- `beta`
 Parameter for eliminating outliers (0 < beta <= 1). By default beta=0.95.

- `distance`
 Type of distance to be calculated between points. Any type of distance that can be passed on to the dist function can be used (default 'euclidean').

- `verbose`
 Logical indicating whether to print status related messages during computation (defaults to TRUE).
computeQuantileMatrix

Function for computing the quantile transformation for one or more samples supplied as columns of a matrix.

Usage

computeQuantileMatrix(seMat)

Arguments

seMat A data matrix in SummarizedExperiment form, with each column corresponding to a sample and each row corresponding to a feature.

Value

A matrix of the same dimensions with the quantile data.

Examples

baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
assays(seMat.base)$quantile = computeQuantileMatrix(seMat.base)
baseline = computeMultivariateSupport(seMat=seMat.base, FeatureSets=msigdb_Hallmarks)
computeUnivariateDigitization

Description

Function for obtaining the digitized form, along with other relevant statistics and measures given a data matrix and a baseline matrix

Usage

computeUnivariateDigitization(seMat, seMat.base, computeQuantiles = TRUE, gamma = c(1:9/100, 1:9/10), beta = 0.95, alpha = 0.01, parallel = TRUE, verbose = TRUE, findGamma = TRUE, Groups = NULL, classes = NULL)

Arguments

seMat SummarizedExperiment with assay to be digitized, in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.

seMat.base SummarizedExperiment with baseline assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature

computeQuantiles Logical: apply quantile transformation to both data and baseline matrices (TRUE or FALSE; defaults to TRUE).

gamma Range of gamma values to search through. By default gamma = 0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 0.9.

beta Parameter for eliminating outliers (0 < beta <= 1). By default beta=0.95.

alpha Expected proportion of divergent features per sample to be estimated. The optimal gamma providing this level of divergence in the baseline data will be searched for.

parallel Logical indicating whether to compute features parallelly with mclapply on Unix based systems (defaults to TRUE, switched to FALSE if parallel package is not available).

verbose Logical indicating whether to print status related messages during computation (defaults to TRUE).

findGamma Logical indicating whether to search for optimal gamma values through the given gamma values (defaults to TRUE). If FALSE, the first value given in gamma will be used.

Groups Factor indicating class association of samples (optional).

classes Vector of class labels (optional).
computeUnivariateSupport

Value

A list with elements: Mat.div: divergence coding of data matrix in ternary (-1, 0, 1) form, of same dimensions at seMat.base. div: divergence coding of base matrix in ternary (-1, 0, 1) form, of same dimensions at seMat.base. div: data frame with the number of divergent features in each sample, including upper and lower divergence features. div: data frame with the divergent probability of each feature; divergence probability for each phenotype in included as well if ‘Groups’ and ‘classes’ inputs were provided. Baseline: a list containing a “Ranges” data frame with the baseline interval for each feature, and a “Support” binary matrix of the same dimensions as Mat indicating whether each sample was a support or a feature or not (1=support, 0=not in the support), gamma: selected gamma value, alpha: the expected number of divergent features per sample computed over the baseline data matrix, optimal: logical indicating whether the selected gamma value provided the necessary alpha requirement, alpha_space: a data frame with alpha values for each gamma searched.

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
dataMat = breastTCGA_Mat[, breastTCGA_Group != "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
seMat = SummarizedExperiment(assays=list(data=dataMat))
div = computeUnivariateDigitization(
    seMat = seMat,
    seMat.base = seMat.base,
    parallel = TRUE
)
assays(seMat)$div = div$Mat.div
```

computeUnivariateSupport

Estimate the baseline support

Description

Function for computing the baseline support for univariate features given gamma and beta parameters.

Usage

```r
computeUnivariateSupport(seMat, gamma = 0.1, beta = 0.95, parallel = TRUE, verbose = TRUE)
```

Arguments

- **seMat**: SummarizedExperiment with an assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.
- **gamma**: Parameter for selecting radius around each support point (0 < gamma < 1). By default gamma = 0.1.
computeUnivariateTernaryMatrix

Parameter for eliminating outliers (0 < beta <= 1). By default beta=0.95.

Logical indicating whether to compute features parallelly with mclapply on Unix based systems (defaults to TRUE, switched to FALSE if parallel package is not available).

Logical indicating whether to print status related messages during computation (defaults to TRUE).

Value

A list with elements "Ranges": data frame with the baseline interval for each feature, "Support": binary matrix of the same dimensions as Mat indicating whether each sample was a support for a feature or not (1=support, 0=not in the support), "gamma": gamma value, and "alpha": the expected number of divergent features per sample estimated over the samples.

Examples

baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
assays(seMat.base)$quantile = computeQuantileMatrix(seMat.base)
baseline = computeUnivariateSupport(seMat=seMat.base)

computeUnivariateTernaryMatrix

Compute the ternary matrix with digitized divergence coding

Description

Function for obtaining the ternary form for a matrix of data given a baseline range

Usage

computeUnivariateTernaryMatrix(seMat, Baseline)

Arguments

seMat SummarizedExperiment with an assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.

Baseline A list with a data frame element "Ranges" containing the baseline range of each features; this corresponds to the output of findUnivariateGammaWithSupport() or computeUnivariateSupport()

Value

A matrix containing the ternary form data.
findMultivariateGammaWithSupport

Find optimal gamma and corresponding support for list of feature sets

Description

Function for searching through a range of gamma values for finding the smallest gamma and support that provides expected proportion of divergent features per sample less than or equal to alpha.

Usage

```r
findMultivariateGammaWithSupport(seMat, FeatureSets, gamma = 1:9/10, 
  beta = 0.95, alpha = 0.01, distance = "euclidean", 
  verbose = TRUE)
```

Arguments

- `seMat`: SummarizedExperiment with an assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.
- `FeatureSets`: The multivariate features in list or matrix form. In list form, each list element should be a vector of individual features; in matrix form, it should be a binary matrix with rownames being individual features and column names being the names of the feature sets.
- `gamma`: Range of gamma values to search through. By default `gamma = {0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 0.9}`.
- `beta`: Parameter for eliminating outliers (0 < beta <= 1). By default `beta=0.95`.
- `alpha`: Expected proportion of divergent features per sample to be estimated over the samples in Mat. By default `alpha = 0.01`; i.e. search for the smallest gamma that provides 1% or less number of divergent features per sample.
- `distance`: Type of distance to be calculated between points. Any type of distance that can be passed on to the `dist` function can be used (default 'euclidean').
- `verbose`: Logical indicating whether to print status related messages during computation (defaults to TRUE).
Value

A list with elements:
- **Support**: a matrix indicating which samples were included in the support.
- **Baseline**: a list where each element is the baseline of a multivariate feature.
- **featureMat**: the multivariate features in matrix form.
- **alpha**: the expected number of divergent multivariate features per sample.
- **gamma**: the gamma parameter selected.
- **distance**: the type of distance used for baseline computation.
- **optimal**: TRUE or FALSE indicating whether the alpha criteria was met.
- **alpha_space**: the alpha values corresponding to the gamma values searched through.

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
assays(seMat.base)$quantile = computeQuantileMatrix(seMat.base)
baseline = findMultivariateGammaWithSupport(seMat=seMat.base, FeatureSets=msigdb_Hallmarks)
```

Description

Function for searching through a range of gamma values for finding the smallest gamma that provides expected proportion of divergent features per sample less than or equal to alpha.

Usage

```r
findUnivariateGammaWithSupport(seMat, gamma = c(1:9/100, 1:9/10),
    beta = 0.95, alpha = 0.01, parallel = TRUE, verbose = TRUE)
```

Arguments

- **seMat**: SummarizedExperiment with an assay in [0, 1], with each column corresponding to a sample and each row corresponding to a feature; usually in quantile form.
- **gamma**: Range of gamma values to search through. By default `gamma = c(0.01, 0.02, ..., 0.9)`.
- **beta**: Parameter for eliminating outliers (0 < beta <= 1). By default beta=0.95.
- **alpha**: Expected proportion of divergent features per sample to be estimated over the samples in Mat. By default alpha = 0.01; i.e. search for the smallest gamma that provides 1% or less number of divergent features per sample.
- **parallel**: Logical indicating whether to compute features parallely with mclapply on Unix based systems (defaults to TRUE, switched to FALSE if parallel package is not available).
- **verbose**: Logical indicating whether to print status related messages during computation (defaults to TRUE).
Value

A list with elements "Ranges": data frame with the baseline interval for each feature, "Support": binary matrix of the same dimensions as Mat indicating whether each sample was a support for a feature or not (1=support, 0=not in the support), "gamma": gamma value, and "alpha": the expected number of divergent features per sample estimated over the samples, "optimal": logical indicating whether the selected gamma value provided the necessary alpha requirement, and "alpha_space": a data frame with alpha values for each gamma searched.

Examples

```r
baseMat = breastTCGA_Mat[, breastTCGA_Group == "NORMAL"]
seMat.base = SummarizedExperiment(assays=list(data=baseMat))
assays(seMat.base)$quantile = computeQuantileMatrix(seMat.base)
baseline = findUnivariateGammaWithSupport(seMat=seMat.base)
```

msigdb_Hallmarks

Cancer Hallmark gene sets from the MSigDB collection

Description

A subset of the cancer hallmarks functional gene sets from the MSigDB collection.

Usage

`msigdb_Hallmarks`

Format

A list of length 10, with the hallmark gene set name, each a character vector of gene symbols.

Source

Index

* baseline,

 computeMultivariateSupport, 7
 computeUnivariateSupport, 10

* binary

 computeMultivariateBinaryMatrix, 5

* chi-squared

 computeChiSquaredTest, 4

* datasets

 breastTCGA_ER, 2
 breastTCGA_Group, 3
 breastTCGA_Mat, 3
 msigdb_Hallmarks, 14

* digitization

 computeMultivariateBinaryMatrix, 5
 computeUnivariateTernaryMatrix, 11

* digitize

 computeMultivariateDigitization, 5
 computeUnivariateDigitization, 9

* gamma

 findMultivariateGammaWithSupport, 12
 findUnivariateGammaWithSupport, 13

* support

 computeMultivariateSupport, 7
 computeUnivariateSupport, 10

* ternary

 computeMultivariateDigitization, 5
 computeUnivariateDigitization, 9
 computeUnivariateTernaryMatrix, 11

breastTCGA_ER, 2
breastTCGA_Group, 3
breastTCGA_Mat, 3
computeChiSquaredTest, 4
computeMultivariateBinaryMatrix, 5
computeMultivariateDigitization, 5
computeMultivariateSupport, 7
computeQuantileMatrix, 8
computeUnivariateDigitization, 9
computeUnivariateSupport, 10
computeUnivariateTernaryMatrix, 11
findMultivariateGammaWithSupport, 12
findUnivariateGammaWithSupport, 13
msigdb_Hallmarks, 14