Package ‘drawProteins’

January 8, 2024

Title Package to Draw Protein Schematics from Uniprot API output

Version 1.22.0

Description This package draws protein schematics from Uniprot API output. From the JSON returned by the GET command, it creates a dataframe from the Uniprot Features API. This dataframe can then be used by geoms based on ggplot2 and base R to draw protein schematics.

Depends R (>= 4.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports ggplot2, httr, dplyr, readr, tidyr

Suggests covr, testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

RoxygenNote 7.1.1

URL https://github.com/brennanpincardiff/drawProteins

BugReports https://github.com/brennanpincardiff/drawProteins/issues/new

biocViews Visualization, FunctionalPrediction, Proteomics

git_url https://git.bioconductor.org/packages/drawProteins

git_branch RELEASE_3_18

git_last_commit 0e8e021

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-01-08

Author Paul Brennan [aut, cre]

Maintainer Paul Brennan <brennanpincardiff@gmail.com>
R topics documented:

- `drawProteins` ... 2
- `draw_canvas` .. 2
- `draw_chains` ... 3
- `draw_domains` .. 4
- `draw_folding` ... 5
- `draw_motif` .. 6
- `draw_phospho` ... 7
- `draw_recept_dom` 8
- `draw_regions` .. 9
- `draw_repeat` ... 9
- `extract_feat_acc` 10
- `extract_names` ... 11
- `extract_transcripts` 12
- `feature_to_dataframe` 13
- `five_rel_data` ... 13
- `five_rel_list` .. 14
- `get_features` ... 15
- `parse_gff` ... 15
- `phospho_site_info` 16
- `protein_json` ... 17
- `rel_A_features` ... 17
- `rel_json` .. 18
- `tnfs_data` ... 18

Index

```plaintext
drawProteins     drawProteins.
```

Description

This package has been created to allow the visualisation of protein schematics based on the data obtained from the [Uniprot Protein Database](http://www.uniprot.org/).

```plaintext
draw_canvas     Create ggplot2 object with protein chains from feature database
```

Description

`draw_canvas` uses the dataframe containing the protein features to creates the basic plot element by determining the length of the longest protein and the number of proteins to plot.

Usage

```r
draw_canvas(data)
```
draw_chains

Arguments

data
Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.

Value

A ggplot2 object either in the plot window or as an object.

Examples

draws a blank canvas of the correct size
data("five_rel_data")
draw_canvas(five_rel_data)

draw_chains
Create ggplot2 object with protein chains from feature database

Description

draw_chains uses the dataframe containing the protein features to plot the chains, the full length proteins. It creates the basic plot element by determining the length of the longest protein. The ggplot2 function geom_rect is then used to draw each of the protein chains proportional to their number of amino acids (length).

Usage

draw_chains(p, data = data,
 outline = "black", fill = "grey",
 label_chains = TRUE, labels = data[data$type == "CHAIN",]$entryName,
 size = 0.5, label_size = 4)

Arguments

p
 ggplot2 object ideally created with draw_canvas.
data
 Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.
outine
 Colour of the outline of each chain.
fill
 Colour of the fill of each chain.
label_chains
 Option to label chains or not.
labels
 Vector with source of names for the chains. EntryName used as default but can be changed.
size
 Size of the outline of the chains.
label_size
 Size of the text used for labels.
draw_domains

Value

A ggplot2 object either in the plot window or as an object.

Examples

combines with draw_canvas to plot and label chains.
data("five_rel_data")
p <- draw_canvas(five_rel_data)
draw_chains(p, five_rel_data)

draws five chains with different colours to default
data("five_rel_data")
p <- draw_canvas(five_rel_data)
draw_chains(p, five_rel_data,
 label_chains = FALSE,
 fill = "red",
 outline = "grey")

Description

draw_domains adds domains to the ggplot2 object created by draw_chains. It uses the data object. The ggplot2 function geom_rect is used to draw each of the domain chains proportional to their number of amino acids (length).

Usage

draw_domains(p,
 data = data,
 label_domains = TRUE,
 label_size = 4,
 show.legend = TRUE,
 type = "DOMAIN")

Arguments

p ggplot2 object ideally created with draw_canvas.
data Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.
label_domains Option to label domains or not.
label_size Size of the text used for labels.
show.legend Option to include legend in this layer
type Can change to show other protein features
draw_folding

Add regions to ggplot object: alpha-helixes, beta-strands and turns.

Description

draw_folding adds alpha-helixes, beta-strands and turns to the ggplot2 object created by `draw_chains`. It uses the data object. The ggplot2 function `geom_rect` is used to draw parts of the protein chain which has alpha-helixes, beta-strands and turns proportional to the number of amino acids (length).

Usage

draw_folding(p, data = data,
show.legend = TRUE, show_strand = TRUE, show_helix = TRUE, show_turn = TRUE)

Arguments

- **p** ggplot2 object ideally created with `draw_canvas`.
- **data** Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Uses STRAND, HELIX and TURN type to indicate these parts of the proteins.
- **show.legend** Option to include legend in this layer
- **show_strand** Option to show STRAND in this layer
- **show_helix** Option to show HELIX in this layer
- **show_turn** Option to show TURN in this layer

Value

A ggplot2 object either in the plot window or as an object with an additional geom_rect layer.

Examples

```r
# combines with draw_chains to plot chains and domains.
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_domains(p, five_rel_data)
```

```r
draw_folding(p, data = data, show.legend = TRUE, show_strand = TRUE, show_helix = TRUE, show_turn = TRUE)
```
Examples

combines with draw_chains to plot chains and motifs
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_motif(p, five_rel_data)

draw_motif

Add protein motifs sites to ggplot2 object.

Description

draw_motif adds protein motifs from Uniprot to ggplot2 object created by draw_canvas and draw_chains. It uses the data object. The ggplot2 function geom_rect is used to draw each of the motifs proportional to their number of amino acids (length).

Usage

draw_motif(p, data = data, show.legend = TRUE)

Arguments

- **p** ggplot2 object ideally created with `draw_canvas`.
- **data** Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.
- **show.legend** Option to include legend in this layer

Value

A ggplot2 object either in the plot window or as an object with an additional geom_rect layer.

Examples

combines with draw_chains to plot chains and motifs
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_motif(p, five_rel_data)
draw_phospho

Add protein phosphorylation sites to ggplot2 object.

Description

`draw_phospho` adds phosphorylation sites to ggplot2 object created by `draw_canvas` and `draw_chains`. It uses the data object. The ggplot2 function `geom_point` is used to draw each of the phosphorylation sites at their location as determined by data object.

Usage

```r
draw_phospho(p, data = data, size = 2, fill = "yellow", show.legend = FALSE)
```

Arguments

- `p` ggplot2 object ideally created with `draw_canvas`.
- `data` Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as `data$type`.
- `size` Size of the circle
- `fill` Colour of the circle.
- `show.legend` Option to include legend in this layer

Value

A ggplot2 object either in the plot window or as an object with an additional `geom_point` layer.

Examples

```r
# combines will with draw_domains to plot chains and phosphorylation sites.
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_phospho(p, five_rel_data)
```
draw_recept_dom

Add receptor domains to ggplot2 object.

Description

draw_recept_dom adds receptor domains to the ggplot2 object created by `draw_chains`. It uses the data object. The ggplot2 function `geom_rect` is used to draw each of the domain chains proportional to their number of amino acids (length).

Usage

draw_recept_dom(p, data = data, label_domains = FALSE, label_size = 4, show.legend = TRUE)

Arguments

- **p**: ggplot2 object ideally created with `draw_canvas`.
- **data**: Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Uses TOPO_DOM and TRANSMEM type to plot these parts of receptors.
- **label_domains**: Option to label receptor domains or not.
- **label_size**: Size of the text used for labels.
- **show.legend**: Option to include legend in this layer.

Value

A ggplot2 object either in the plot window or as an object with an additional geom_rect layer.

Examples

combines with draw_chains to plot chains and domains.
we like to draw receptors vertically so flip using ggplot2 functions
scale_x_reverse and coord_flip
data("tnfs_data")
p <- draw_canvas(tnfs_data)
p <- draw_chains(p, tnfs_data, label_size = 1.25)
draw_recept_dom(p, tnfs_data) + ggplot2::scale_x_reverse() +
ggplot2::coord_flip()
draw_regions

Add protein region sites to ggplot2 object.

Description

draw_regions adds protein regions from Uniprot to ggplot2 object created by **draw_canvas** and **draw_chains**. It uses the data object. The ggplot2 function geom_rect is used to draw each of the regions proportional to their number of amino acids (length).

Usage

draw_regions(p, data = data, show.legend=TRUE)

Arguments

- **p** ggplot2 object ideally created with **draw_canvas**.
- **data** Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.
- **show.legend** Option to include legend in this layer

Value

A ggplot2 object either in the plot window or as an object with an additional geom_rect layer.

Examples

```r
# combines with draw_chains to plot chains and regions.
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_regions(p, five_rel_data)
```

draw_repeat

Add protein repeats sites to ggplot2 object.

Description

draw_repeat adds protein repeats from Uniprot to ggplot2 object created by **draw_canvas** and **draw_chains**. It uses the data object. The ggplot2 function geom_rect is used to draw each of the motifs proportional to their number of amino acids (length).

Usage

draw_repeat(p, data = data, label_size = 2, outline = "dimgrey", fill = "dimgrey", label_repeats = TRUE, show.legend = TRUE)

Arguments

- **p**
 - ggplot2 object ideally created with `draw_canvas`.

- **data**
 - Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.

- **label_size**
 - Size of text used for labels of protein repeats.

- **outline**
 - Colour of the outline of each repeat.

- **fill**
 - Colour of the fill of each repeat.

- **label_repeats**
 - Option to label repeats or not.

- **show.legend**
 - Option to include legend in this layer

Value

A ggplot2 object either in the plot window or as an object with an additional geom_rect layer.

Examples

```r
# combines with draw_chains to plot chains and repeats.
data("five_rel_data")
p <- draw_canvas(five_rel_data)
p <- draw_chains(p, five_rel_data, label_size = 1.25)
draw_repeat(p, five_rel_data)
```

extract_feat_acc

Create a dataframe of protein features from JSON object (List of 6)

Description

Converts the list of 6 JSON object created by getting the features from UniProt. Used in the feature_to_dataframe(). Does not give order. Does not operate on List of lists - just the list of 6.

Usage

```r
extract_feat_acc(features_list)
```

Arguments

- **features_list**
 - A JSON object - list of 6 with features inside. Created as one of the lists in the list of lists by the get_features() function.

Value

A dataframe with features: "type", "description", "begin", "end" and adds accession, entryName and taxid for each row.
Examples

data("five_rel_list")
one_protein_features <- extract_feat_acc(five_rel_list[[1]])
head(one_protein_features)

extract_names

Extract protein names into a list

Description

Extracts protein names from JSON object produced by a search of Uniprot with a single protein asking for all the information. The search produces a Large list that contains all the Uniprot information about a protein.

Usage

extract_names(protein_json)

Arguments

- **protein_json**

 A JSON object from a search with 14 primary parts

Value

A List of 6 with "accession", "name", "protein.recommendedName.fullName", gene.name.primary, gene.name.synonym and organism.name.scientific

Examples

using internal data
data("protein_json")
prot_names <- extract_names(protein_json)
generates a list of 6

Not run:
access the Uniprot Protein API
uniprot_acc <- c("Q04206") # change this for your fav protein
Get UniProt entry by accession
acc_uniprot_url <-
c("https://www.ebi.ac.uk/proteins/api/proteins?accession=")
comb_acc_api <- paste0(acc_uniprot_url, uniprot_acc)
basic function is GET() which accesses the API
requires internet access
protein <- http::GET(comb_acc_api, accept_json())
status_code(protein) # returns a 200 means it worked
with content() function from httr to give us a list
protein_json <- http::content(protein) # gives a Large list with 14 primary parts and lots of bits inside
function from my package to extract names of protein
names <- extract_names(protein_json)

End(Not run)

##

extract_transcripts

Create a new dataframe of protein features from dataframe with multiple transcripts separated so that each transcript is drawn separately with only the appropriate features.

Description

This function works on the object returned by the get_features() function. It creates a dataframe of features and includes the accession number AND an order number. It uses the extract_feat_acc function.

Usage

extract_transcripts(data)

Arguments

data

Dataframe of one or more rows with the following column names: 'type', 'description', 'begin', 'end', 'length', 'accession', 'entryName', 'taxid', 'order'. Must contain a minimum of one "CHAIN" as data$type.

Value

A dataframe with extra rows if there were multiple transcripts present. Extra transcripts will have an order at the end of the object. Each new row should have 9 variables including type, description, begin, end, length, accession, entryName, taxid and order for plotting.

Examples

data(five_rel_data)
new_data <- extract_transcripts(five_rel_data)
because there are two entries with two transcripts
max(new_data$order) # should now be 7...
Create a dataframe of protein features from JSON object

Description

This function works on the object returned by the get_features() function. It creates a data.frame of features and includes the accession number AND an order number. It uses the extract_feat_acc function below.

Usage

feature_to_dataframe(features_in_lists_of_six)

Arguments

features_in_lists_of_six
A list of lists returned by get_features() The number of lists corresponds to the number of accession numbers queried using get_features. The list of 6 contains protein names and features.

Value

A dataframe with 9 variables including type, description, begin, end, length, accession, entryName, taxid and order for plotting.

Examples

data("rel_json")
rel_data <- feature_to_dataframe(rel_json)
head(rel_data)

data("five_rel_list")
prot_data <- feature_to_dataframe(five_rel_list)
head(prot_data)

dataframe features of 5 human NFkappaB proteins Uniprot on 1 Nov 2017

Description

Dataframe features of 5 human NFkappaB proteins Uniprot on 1 Nov 2017

Usage

five_rel_data
Format

A data frame with 320 rows and 9 variables:

- **type** type of features - e.g. chain
- **description** long name for the protein
- **begin** starting position (amino acid number) of feature
- **end** ending position (amino acid number) of feature
- **length** length of feature - number of amino acids
- **accession** protein Uniprot accession number
- **entryName** protein Uniprot entry Name
- **taxid** taxonomic identification - species
- **order** plotting order from the bottom of the graph

Value

A data frame with 320 rows and 9 variables

Source

Uniprot http://www.uniprot.org Accession numbers Q04206 Q01201 Q04864 P19838 Q00653

five_rel_list

Features of five human Rel A proteins

Description

List of features from five human NFkappaB proteins downloaded from Uniprot on 15 August 2017

Usage

five_rel_list

Format

Large List of 5 elements - one element for each protein

Value

Large List of 5 elements - one element for each protein

Source

Uniprot http://www.uniprot.org Accession numbers Q04206 Q01201 Q04864 P19838 Q00653
get_features

GET features of protein(s) from UniProt API

Description

This function creates the URL required to query the UniProt API and returns the features of the protein or proteins in JSON format. It uses the GET() function from the httr package.

Usage

get_features(proteins_acc)

Arguments

proteins_acc A vector of length 1 with one or more UniProt accession numbers separated by spaces.

Value

If there is internet access and the UniProt accession numbers are good, the function will return a list of lists. The list will be of length equivalent to the number of Uniprot accession numbers supplied. The lists inside will be of length 6 and will contain information about the proteins and the features.

Examples

Requires internet access
prot_data <- get_features("Q04206 Q01201 Q04864 P19838 Q00653")

parse_gff

Reformat file or url in gff format to allow to draw

Description

parse_gff loads a file or downloads from an url if provided protein information that is then changed to allow it to work with draw_canvas and other draw functions in drawProteins.

Usage

parse_gff(file_or_link)

Arguments

file_or_link link in gff format or a file in gff format that can be read by read_tsv function from the readr package.
phospho_site_info

Value

Dataframe of one or more rows with the following column names: ‘accession’, ‘source’, ‘type’, ‘begin’, ‘end’, ‘order’, ‘entryName’, ‘description’. Must contain a minimum of one "CHAIN" as data$type to allow plotting.

Examples

data <- parse_gff("https://www.uniprot.org/uniprot/Q04206.gff")

phospho_site_info
Create a dataframe of protein features from JSON object

Description

Reduces data.frame of features to just phosphorylation sites. Uses a subsetting step and a grep with the pattern "Phospho".

Usage

phospho_site_info(features)

Arguments

features
A dataframe of protein features, for example created by the feature_to_dataframe() function.

Value

A dataframe that only contains protein phosphorylation sites from Uniprot

Examples

data("five_rel_data")
sites <- phospho_site_info(five_rel_data)
head(sites)
protein_json

Uniprot infor human Rel A protein in JSON format

Description
Large list (968.8 Kb) of information about human Rel A downloaded from Uniprot on 1 November 2017

Usage
protein_json

Format
List of 1 with List of 14 inside

Value
List of 6 - information necessary to draw Rel A/p65

Source
http://www.uniprot.org/uniprot/Q04206

rel_A_features
Features of human Rel A protein

Description
List of features from human Rel A downloaded from Uniprot on 15 August 2017

Usage
rel_A_features

Format
List of 6 - information necessary to draw Rel A/p65

Value
List of 6 - information necessary to draw Rel A/p65

Source
http://www.uniprot.org/uniprot/Q04206
rel_json
Human Rel A protein features in JSON format

Description
List of 1 with List of 6 inside downloaded from Uniprot on 1 November 2017

Usage
rel_json

Format
List of 1 with List of 6 - information necessary to draw Rel A/p65

Value
List of 1 with List of 6 - information necessary to draw Rel A/p65

Source
http://www.uniprot.org/uniprot/Q04206

tnfs_data
Dataframe features of 2 human TNF receptors from Uniprot on 3 Jan 2018

Description
Dataframe features of 2 human TNF receptors from Uniprot on 3 Jan 2018

Usage
 tnfs_data

Format
A data frame with 127 rows of 9 variables:

- **type** type of features - e.g. chain
- **description** long name for the protein
- **begin** starting position (amino acid number) of feature
- **end** ending position (amino acid number) of feature
- **length** length of feature - number of amino acids
- **accession** protein Uniprot accession number
- **entryName** protein Uniprot entry Name
- **taxid** taxonomic identification - species
- **order** plotting order from the bottom of the graph
tnfs_data

Value

A data frame with 127 rows and 9 variables

Source

Uniprot http://www.uniprot.org Accession numbers P19438 P25942
Index

datasets
 five_rel_data, 13
 five_rel_list, 14
 protein_json, 17
 rel_A_features, 17
 rel_json, 18
 tnfs_data, 18

draw_canvas, 2, 3–10
draw_chains, 3, 4–9
draw_domains, 4
draw_folding, 5
draw_motif, 6
draw_phospho, 7
draw_recept_dom, 8
draw_regions, 9
draw_repeat, 9
drawProteins, 2

extract_feat_acc, 10
extract_names, 11
extract_transcripts, 12

feature_to_dataframe, 13
five_rel_data, 13
five_rel_list, 14

geom_point, 7
get_features, 15

parse_gff, 15
phospho_site_info, 16
protein_json, 17

rel_A_features, 17
rel_json, 18

tnfs_data, 18