Package ‘dreamlet’

May 1, 2024

Type Package

Title Scalable differential expression analysis of single cell transcriptomics datasets with complex study designs

Version 1.2.0

Date 2024-02-14

Description Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-friendly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample.

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL https://DiseaseNeurogenomics.github.io/dreamlet

BugReports https://github.com/DiseaseNeurogenomics/dreamlet/issues

Suggests BiocStyle, knitr, pander, rmarkdown, muscat, ExperimentHub, RUnit, scater, scuttle

biocViews RNASeq, GeneExpression, DifferentialExpression, BatchEffect, QualityControl, Regression, GeneSetEnrichment, GeneRegulation, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, SingleCell, Preprocessing, Sequencing, ImmunoOncology, Software

Depends R (>= 4.3.0), variancePartition (>= 1.33.11), SingleCellExperiment, ggplot2

Imports edgeR, SummarizedExperiment, DelayedMatrixStats, sparseMatrixStats, MatrixGenerics, Matrix, methods, purrr,
GSEABase, data.table, zenith (>= 1.1.2), mashr (>= 0.2.52),
ashr, dplyr, BiocParallel, ggbeeswarm, S4Vectors, IRanges,
irlba, limma, metafor, remaCor, broom, tidyr, rlang,
BiocGenerics, DelayedArray, gtools, reshape2, ggrepel,
scattermore, Rcpp, lme4 (>= 1.1-33), MASS, Rdpack, utils, stats

RoxygenNote 7.2.3
RdMacros Rdpack
SystemRequirements C++11
LinkingTo Rcpp, beachmat
git_url https://git.bioconductor.org/packages/dreamlet
git_branch RELEASE_3_19
git_last_commit c23624e
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-04-30
Author Gabriel Hoffman [aut, cre] (<https://orcid.org/0000-0002-0957-0224>)
Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

Contents

[,dreamletResult,ANY,ANY,ANY-method ... 4
aggregateNonCountSignal ... 4
aggregateToPseudoBulk ... 6
aggregateVar ... 8
as.dreamletResult .. 9
assay,dreamletResult,ANY-method ... 11
assayNames,dreamletResult-method .. 11
buildClusterTreeFromPB ... 12
cellCounts ... 13
cellSpecificityValues-class ... 14
cellTypeSpecificity .. 14
checkFormula ... 15
coeNames ... 16
colData,dreamletProcessedData-method 17
colData<-.dreamletProcessedData,ANY-method 18
compositePosteriorTest ... 18
computeCellCounts .. 20
computeLogCPM ... 21
computeNormCounts ... 22
details ... 22
diffVar,dreamletResult-method .. 23
dreamlet ... 26
dreamlet_mash_result-class ... 28
dreamletCompareClusters .. 28
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dreamletProcessedData</td>
<td>31</td>
</tr>
<tr>
<td>dreamletResult-class</td>
<td>32</td>
</tr>
<tr>
<td>dropRedundantTerms</td>
<td>32</td>
</tr>
<tr>
<td>equalFormulas</td>
<td>33</td>
</tr>
<tr>
<td>extractData</td>
<td>33</td>
</tr>
<tr>
<td>fitVarPart</td>
<td>35</td>
</tr>
<tr>
<td>getExprGeneNames</td>
<td>36</td>
</tr>
<tr>
<td>getTreat,dreamletResult-method</td>
<td>38</td>
</tr>
<tr>
<td>meta_analysis</td>
<td>39</td>
</tr>
<tr>
<td>metadata,dreamletProcessedData-method</td>
<td>40</td>
</tr>
<tr>
<td>outlier</td>
<td>41</td>
</tr>
<tr>
<td>outlierByAssay</td>
<td>42</td>
</tr>
<tr>
<td>pbWeights</td>
<td>43</td>
</tr>
<tr>
<td>plotBeeswarm</td>
<td>44</td>
</tr>
<tr>
<td>plotCellComposition</td>
<td>45</td>
</tr>
<tr>
<td>plotForest</td>
<td>47</td>
</tr>
<tr>
<td>plotGeneHeatmap</td>
<td>48</td>
</tr>
<tr>
<td>plotHeatmap</td>
<td>49</td>
</tr>
<tr>
<td>plotPCA</td>
<td>51</td>
</tr>
<tr>
<td>plotPercentBars,vpDF-method</td>
<td>52</td>
</tr>
<tr>
<td>plotProjection</td>
<td>54</td>
</tr>
<tr>
<td>plotVarPart,DataFrame-method</td>
<td>55</td>
</tr>
<tr>
<td>plotViolin</td>
<td>56</td>
</tr>
<tr>
<td>plotVolcano</td>
<td>57</td>
</tr>
<tr>
<td>plotVoom</td>
<td>59</td>
</tr>
<tr>
<td>print,dreamletResult-method</td>
<td>60</td>
</tr>
<tr>
<td>processAssays</td>
<td>61</td>
</tr>
<tr>
<td>processOneAssay</td>
<td>63</td>
</tr>
<tr>
<td>removeConstantTerms</td>
<td>64</td>
</tr>
<tr>
<td>residuals,dreamletResult-method</td>
<td>65</td>
</tr>
<tr>
<td>run_mash</td>
<td>66</td>
</tr>
<tr>
<td>seeErrors</td>
<td>69</td>
</tr>
<tr>
<td>show,dreamletResult-method</td>
<td>70</td>
</tr>
<tr>
<td>sortCols,vpDF-method</td>
<td>70</td>
</tr>
<tr>
<td>stackAssays</td>
<td>72</td>
</tr>
<tr>
<td>tabToMatrix</td>
<td>73</td>
</tr>
<tr>
<td>topTable,dreamletResult-method</td>
<td>73</td>
</tr>
<tr>
<td>vpDF-class</td>
<td>75</td>
</tr>
<tr>
<td>zenith_gsa,dreamletResult,GeneSetCollection-method</td>
<td>75</td>
</tr>
</tbody>
</table>

Index 78
aggregateNonCountSignal

Description
Aggregation of single-cell to pseudobulk data for non-count data.

Usage
aggregateNonCountSignal(
 sce,
 assay = NULL,
 sample_id = NULL,
 cluster_id = NULL,
 min.cells = 10,
 min.signal = 0.01,
 min.samples = 4,
 min.prop = 0.4,
)

Arguments
x dreamletProcessedData object
i indeces to extract

Value
entries stored at specified index
aggregateNonCountSignal

```r
verbose = TRUE,
BPPARAM = SerialParam(progressbar = verbose)
)
```

Arguments

- `sce` a `SingleCellExperiment`
- `assay` character string specifying the assay slot to use as input data. Defaults to the 1st available (`assayNames(x)[1]`).
- `sample_id` character string specifying which variable to use as sample id
- `cluster_id` character string specifying which variable to use as cluster id
- `min.cells` minimum number of observed cells for a sample to be included in the analysis
- `min.signal` minimum signal value for a gene to be considered expressed in a sample. Proper value for this cutoff depends on the type of signal value
- `min.samples` minimum number of samples passing cutoffs for cell cluster to be retained
- `min.prop` minimum proportion of retained samples with non-zero counts for a gene to be retained
- `verbose` logical. Should information on progress be reported?
- `BPPARAM` a `BiocParallelParam` object specifying how aggregation should be parallelized.

Details

The `dreamlet` workflow can also be applied to non-count data. In this case, a signal is averaged across all cells from a given sample and cell type. Here `aggregateNonCountSignal()` performs the roles of `aggregateToPseudoBulk()` followed by `processAssays()` but using non-count data.

For each cell cluster, samples with at least `min.cells` are retained. Only clusters with at least `min.samples` retained samples are kept. Features are retained if they have at least `min.signal` in at least `min.prop` fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights are computed as $1/\text{sem}^2$, where $\text{sem} = \text{sd(signal)} / \sqrt{n}$, `signal` stores the values averaged across cells, and `n` is the number of cells.

Value

a `dreamletProcessedData` object

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
# using non-count signal
pb.signal <- aggregateNonCountSignal(example_sce,
  assay = "logcounts",
  cluster_id = "cluster_id",
)```
# Differential expression analysis within each assay, 
# evaluated on the voom normalized data
res.dl <- dreamlet(pb.signal, ~group_id)

aggregateToPseudoBulk

### Description

Aggregation of single-cell to pseudobulk data. Adapted from `muscat::aggregateData` and has same syntax and results. But can be much faster for SingleCellExperiment backed by H5AD files using on-disk storage.

### Usage

```r
aggregateToPseudoBulk(
 x,
 assay = NULL,
 sample_id = NULL,
 cluster_id = NULL,
 fun = c("sum", "mean", "median", "prop.detected", "num.detected", "sem", "number"),
 scale = FALSE,
 verbose = TRUE,
 BPPARAM = SerialParam(progressbar = verbose),
 checkValues = TRUE,
 h5adBlockSizes = 1e+09
)
```

### Arguments

- **x**: a `SingleCellExperiment`
- **assay**: character string specifying the assay slot to use as input data. Defaults to the 1st available (`assayNames(x)[1]`).
- **sample_id**: character string specifying which variable to use as sample id
- **cluster_id**: character string specifying which variable to use as cluster id
- **fun**: a character string. Specifies the function to use as summary statistic. Passed to `summarizeAssayByGroup2`.
- **scale**: logical. Should pseudo-bulks be scaled with the effective library size & multiplied by 1M?
- **verbose**: logical. Should information on progress be reported?
- **BPPARAM**: a `BiocParallelParam` object specifying how aggregation should be parallelized.
aggregateToPseudoBulk

checkValues logical. Should we check that signal values are positive integers?

h5adBlockSizes set the automatic block size block size (in bytes) for DelayedArray to read an H5AD file. Larger values use more memory but are faster.

Details

Adapted from muscat::aggregateData and has similar syntax and same results. This is much faster for SingleCellExperiment backed by H5AD files using DelayedMatrix because this summarizes counts using DelayedMatrixStats. But this function also includes optimizations for sparseMatrix used by Seurat by using sparseMatrixStats.

Keeps variables from colData() that are constant within sample_id. For example, sex will be constant for all cells from the same sample_id, so it is retained as a variable in the pseudobulk result. But number of expressed genes varies across cells within each sample_id, so it is dropped from colData(). Instead the mean value per cell type is stored in metadata(pb)$aggr_means, and these can be included in regression formulas downstream. In that case, the value of the covariates used per sample will depend on the cell type analyzed.

Value

da SingleCellExperiment.

Aggregation parameters (assay, by, fun, scaled) are stored in metadata()$agg_pars, where by = c(cluster_id, sample_id). The number of cells that were aggregated are accessible in int_colData()$n_cells.

Author(s)

Gabriel Hoffman, Helena L Crowell & Mark D Robinson

References


Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE)

# pseudobulk data from each cell type
# is stored as its own assay
pb

# aggregate by cluster only,
# collapsing all samples into the same pseudobulk
pb2 <- aggregateToPseudoBulk(example_sce,
    cluster_id = "cluster_id",
    verbose = FALSE)

pb2

---

**aggregateVar**

*Per-sample variance of single-cell counts*

**Description**

Aggregation function for single-cell log-normalized counts to calculate per-sample variance for `dreamlet`.

**Usage**

```r
aggregateVar(
 sce,
 assay = NULL,
 cluster_id = NULL,
 sample_id = NULL,
 min.cells = 10,
 min.var = 0.01,
 min.samples = 4,
 min.prop = 0.4,
 verbose = TRUE,
 BPPARAM = SerialParam(progressbar = verbose)
)
```

**Arguments**

- `sce` a `SingleCellExperiment`.
- `assay` character string specifying the assay slot to use as input data. Defaults to the 1st available (`assayNames(x)[1]`).
- `cluster_id` character string specifying which variable to use as cluster id
- `sample_id` character string specifying which variable to use as sample id
- `min.cells` minimum number of observed cells for a sample to be included in the analysis
- `min.var` minimum variance for a gene to be considered expressed in a sample
- `min.samples` minimum number of samples passing cutoffs for cell cluster to be retained
**Details**

The dreamlet workflow can also be applied to model gene expression variance. In this case, a per-sample per-gene variance is calculated across all cells from a given sample and cell type. Here aggregateVar() performs the roles of aggregateToPseudoBulk() followed by processAssays() but using log-normalized count data.

For each cell cluster, samples with at least min.cells are retained. Only clusters with at least min.samples retained samples are kept. Features are retained if they have at least min.var in at least min.prop fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights are computed as $1/\text{sem}^2$, where $\text{sem} = \text{sd} / \sqrt{\text{n}}$ and n is the number of cells.

**Value**

a dreamletProcessedData object

**Examples**

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

Compute variance for each sample and cell cluster
pbVar <- aggregateVar(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)
```

---

**as.dreamletResult**

Convert list of regression fits to dreamletResult

**Description**

Convert list of regression fits to dreamletResult for downstream analysis

**Usage**

```r
as.dreamletResult(fitList, df_details = NULL)
```
Arguments

fitList list of regression fit with dream()
df_details data.frame storing assay details

Details

Useful for combining multiple runs of dreamletCompareClusters() into a single dreamletResult for downstream analysis

Value

object of class dreamletResult

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# first comparison
ct.pairs <- c("B cells", "CD14+ Monocytes")
fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

# second comparison
ct.pairs2 <- c("B cells", "CD8 T cells")
fit2 <- dreamletCompareClusters(pb, ct.pairs2, method = "fixed")

# Make a list storing each result with a meaningful name
fitList <- list()

id <- paste0("[", ct.pairs[1], "_vs_", ct.pairs[2], "]")
fitList[[id]] <- fit

id <- paste0("[", ct.pairs2[1], "_vs_", ct.pairs2[2], "]")
fitList[[id]] <- fit2

# create a dreamletResult form this list
res.compare <- as.dreamletResult(fitList)
res.compare
assay,dreamletResult,ANY-method

Get assay

Description

Get assay
Get assay
Get assays by name

Usage

## S4 method for signature 'dreamletResult,ANY'
assay(x, i, withDimnames = TRUE, ...)

## S4 method for signature 'dreamletProcessedData,ANY'
assay(x, i, withDimnames = TRUE, ...)

## S4 method for signature 'vpDF,ANY'
assay(x, i, withDimnames = TRUE, ...)  

Arguments

x       vpDF object
i       number indicating index, or string indicating assay
withDimnames  not used
...    other arguments

Value

return ith assay

assayNames,dreamletResult-method

Get assayNames

Description

Get assayNames
Get assayNames
Get assayNames
Usage

```r
S4 method for signature 'dreamletResult'
assayNames(x, ...)

S4 method for signature 'dreamletProcessedData'
assayNames(x, ...)

S4 method for signature 'vpDF'
assayNames(x, ...)
```

Arguments

- `x`: vpDF object
- `...`: additional arguments

Value

array of assay names

---

**buildClusterTreeFromPB**

*Hierarchical clustering on cell types from pseudobulk*

Description

Perform hierarchical clustering on cell types from pseudobulk by aggregating read counts from each cell type.

Usage

```r
buildClusterTreeFromPB(
 pb,
 method = c("complete", "ward.D", "single", "average", "mcquitty", "median", "centroid", "ward.D2"),
 dist.method = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
 assays = assayNames(pb)
)
```

Arguments

- `pb`: SingleCellObject storing pseudobulk for each cell type in in assay() field
- `method`: clustering method for hclust()
- `dist.method`: distance metric
- `assays`: which assays to include
**Value**

hierarchical clustering object of class hclust

**Examples**

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Hierarchical clustering of cell types
hcl <- buildClusterTreeFromPB(pb)

plot(hcl)
```

---

**cellCounts**  
*Extract cell counts*

**Description**

Extract matrix of cell counts from SingleCellExperiment

**Usage**

`cellCounts(x)`

**Arguments**

- `x`  
  a SingleCellExperiment

**Value**

matrix of cell counts with samples as rows and cell types as columns

**See Also**

`computeCellCounts()`
Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   cluster_id = "cluster_id",
   sample_id = "sample_id",
   verbose = FALSE
)

# get matrix of cell counts for each sample
cellCounts(pb)

cellSpecificityValues-class

Class cellSpecificityValues

Description

Class cellSpecificityValues cell type specificity values for each gene and cell type

Value

none

cellTypeSpecificity

Get cell type specificity of gene expression

Description

For each gene, compute fraction of overall expression attributable to each cell type

Usage

cellTypeSpecificity(pb, ...)

Arguments

pb SingleCellExperiment of pseudobulk data where easy assay is a cell type.
...
other arguments passed to edgeR::calcNormFactors()
Details

Sum counts for each cell type, and compute the fraction of counts-per-million attributable to each cell type for each gene.

Value

matrix of the fraction of expression attributable to each cell type for each gene.

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

# Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

# Violin plot of specificity scores for each cell type
# Dashed line indicates genes that are equally expressed
# across all cell types. For K cell types, this is 1/K
plotViolin(df)

# Compute the maximum specificity score for each gene
scoreMax <- apply(df, 1, max)
head(scoreMax)

# For each cell type, get most specific gene
genes <- rownames(df)[apply(df, 2, which.max)]

# Barplot of 5 genes
plotPercentBars(df, genes = genes)

# heatmap of 5 genes that are most cell type specific
dreamlet::plotHeatmap(df, genes = genes)
Description
Check that variables in formula are present in the data

Usage
checkFormula(formula, data)

Arguments
formula   formula of variables to check
data      data.frame storing variables in the formula

Value
If formula is valid, return TRUE. Else throw error

Examples
# Valid formula
dreamlet:::checkFormula(~speed, cars)

# Not valid formula
# dreamlet:::checkFormula( ~ speed + a, cars)

---

coefNames  Get coefficient names

Description
Get coefficient names

Usage
coefNames(obj)

## S4 method for signature 'dreamletResult'
coefNames(obj)

Arguments
obj  A dreamletResult object

Value
array storing names of coefficients
Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   cluster_id = "cluster_id",
   sample_id = "sample_id",
   verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# show coefficients estimated for each cell type
coefNames(res.dl)

---

colData,dreamletProcessedData-method

_extract colData from dreamletProcessedData

Description

Extract colData from dreamletProcessedData

Usage

## S4 method for signature 'dreamletProcessedData'
colData(x, ...)

Arguments

  x        A dreamletProcessedData object

  ...       other arguments

Value

  object from colData field
colData <- dreamletProcessedData, ANY-method

Set colData

Description

Set colData of dreamletProcessedData, and check for same dimensions and rownames

Usage

## S4 replacement method for signature 'dreamletProcessedData, ANY'
colData(x, ...) <- value

Arguments

x dreamletProcessedData object
...
other arguments
value data.frame or object that can be coerced to it

Value

none

compositePosteriorTest

Perform composite test on results from mashr

Description

The posterior probabilities for all genes and conditions is obtained as 1-LFSR. Let prob be an array storing results for one gene. The probability that _no_ conditions in the exclusion set are non-zero is prod(1 - prob[exclude]). The probability that _all_ conditions in the inclusion set are non-zero is prod(prob[include]). The probability that _at least one_ condition in the inclusion set is non-zero is 1 - prod(1 - prob[include]). The composite test is the product of the probabilities computed from the inclusion and exclusion sets.

Usage

compositePosteriorTest(
  x,
  include,
  exclude = NULL,
  test = c("at least 1", "all")
)
Arguments

x          "dreamlet_mash_result" from run_mash()
include    array of conditions in the inclusion set
exclude    array of conditions in the exclusion set. Defaults to NULL for no exclusion
test       evaluate the posterior probability of a non-zero effect in "at least 1" or "all" conditions

Details

Perform composite test evaluating the specificity of an effect. Evaluate the posterior probability that an a non-zero effect present in _all_ or _at least one_ condition in the inclusion set, but _no conditions_ in the exclusion set.

See Also

run_mash()

Examples

library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce[1:100, ],
assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay, # evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# run MASH model
# This can take 10s of minutes on real data
# This small datasets should take ~30s
res.mash <- run_mash(res.dl, "group_idstim")

# Composite test based on posterior probabilities
# to identify effect present in *at least 1* monocyte type
# and *NO* T-cell type.
include <- c("CD14+ Monocytes", "FCGR3A+ Monocytes")
exclude <- c("CD4 T cells", "CD8 T cells")
# Perform composite test
prob <- compositePosteriorTest(res_mash, include, exclude)

# examine the lFSR for top gene
get_lfsr(res_mash$model)[which.max(prob), , drop = FALSE]

# Test if *all* cell types have non-zero effect
prob <- compositePosteriorTest(res_mash, assayNames(res.dl))

---

**computeCellCounts**  
*Get cell counts with metadata*

**Description**
Get cell counts with metadata for each sample

**Usage**
```
computeCellCounts(sce, annotation, sampleIDs)
```

**Arguments**
- **sce** SingleCellExperiment
- **annotation** string indicating column in `colData(sce)` storing cell type annotations
- **sampleIDs** string indicating column in `colData(sce)` storing sample identifiers

**Value**
matrix storing cell counts

**Examples**
```
library(muscat)
library(SingleCellExperiment)
data(example_sce)
counts <- computeCellCounts(example_sce, "cluster_id", "sample_id")
counts[1:4, 1:4]
```
computeLogCPM

**computeLogCPM**  
*Compute log normalized counts*

### Description

Compute normalized counts as log2 counts per million

### Usage

```r
computeLogCPM(
 sce,
 lib.size = colSums2(counts(sce)),
 prior.count = 2,
 scaledByLib = FALSE
)
```

### Arguments

- `sce` SingleCellExperiment with counts stored as `counts(sce)`
- `lib.size` library size for each cell
- `prior.count` average count to be added to each observation to avoid taking log of zero
- `scaledByLib` if TRUE, scale pseudocount by `lib.size`. Else do standard constant pseudocount addition

### Details

This function gives same result as `edgeR::cpm(counts(sce), log=TRUE)`

### Value

matrix of log CPM values

### See Also

`edgeR::cpm()`

### Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)
logcounts(example_sce) <- computeLogCPM(example_sce)
```
computeNormCounts  Compute normalized counts

Description
Compute normalized counts as counts per million

Usage
computeNormCounts(sce)

Arguments
sce  SingleCellExperiment with counts stored as counts(sce)

Details
This function gives same result as edgeR::cpm(counts(sce), log=FALSE)

Value
matrix of CPM values

See Also
also edgeR::cpm()

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)
normcounts(example_sce) <- computeNormCounts(example_sce)

details  Extract details from dreamletProcessedData

Description
Extract details from dreamletProcessedData
Usage

details(object)

## S4 method for signature 'dreamletProcessedData'
details(object)

## S4 method for signature 'dreamletResult'
details(object)

## S4 method for signature 'vpDF'
details(object)

Arguments

object A dreamletProcessedData object

Value

Extract detailed information from some classes

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   cluster_id = "cluster_id",
   sample_id = "sample_id",
   verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# For each cell type, number of samples retained,
# and variables retained
details(res.proc)

diffVar,dreamletResult-method

Test differential variance
Description

Test the association between a covariate of interest and the response’s deviation from expectation.

Usage

```r
S4 method for signature 'dreamletResult'
diffVar(
 fit,
 method = c("AD", "SQ"),
 scale = c("leverage", "none"),
 BPPARAM = SerialParam(),
 ...
)
```

Arguments

- `fit`: model fit from `dream()`
- `method`: transform the residuals using absolute deviation ("AD") or squared deviation ("SQ").
- `scale`: scale each observation by "leverage", or no scaling ("none")
- `BPPARAM`: parameters for parallel evaluation
- `...`: other parameters passed to `dream()`

Details

This method performs a test of differential variance between two subsets of the data, in a way that generalizes to multiple categories, continuous variables and metrics of spread beyond variance. For the two category test, this method is similar to Levene’s test. This model was adapted from Phipson, et al (2014), extended to linear mixed models, and adapted to be compatible with `variancePartition::diffVar()` and `dreamlet::dreamlet()`.

This method is composed of multiple steps where 1) a typical linear (mixed) model is fit with `dreamlet()`, 2) residuals are computed and transformed based on an absolute value or squaring transform, 3) a second regression is performed with `dreamlet()` to test if a variable is associated with increased deviation from expectation. Both regression take advantage of the `dreamlet()` linear (mixed) modelling framework followed by empirical Bayes shrinkage that extends the `limma::voom()` framework.

Note that `diffVar()` takes the results of the first regression as a parameter to use as a starting point.

References


See Also

- `variancePartition::diffVar()`
- `variancePartition::diffVar()`, `missMethyl::diffVar()`
Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, 
    assay = "counts", 
    cluster_id = "cluster_id", 
    sample_id = "sample_id", 
    verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay, 
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# Differential variance analysis 
# result is a dreamlet fit
res.dvar <- diffVar(res.dl)

# Examine results
res.dvar

# Examine details for each assay
details(res.dvar)

# show coefficients estimated for each cell type
coefNames(res.dvar)

# extract results using limma-style syntax 
# combines all cell types together
# adj.P.Val gives study-wide FDR
topTable(res.dvar, coef = "group_idstim", number = 3)

# Plot top hit to see differential variance
# Note that this is a toy example with only 4 samples
cellType <- "CD4 T cells"
gene <- "DYNLRB1"

y <- res.proc[[cellType]]$E[gene, ]
x <- colData(res.proc)$group_id

boxplot(y ~ x, 
    xlab = "Stimulation status", 
    ylab = "Gene expression", 
    main = paste(cellType, gene) 
)
# differential expression for each assay

dreamlet

## Description

Perform differential expression for each assay using linear (mixed) models

## Usage

dreamlet(
  x,
  formula,
  data = colData(x),
  assays = assayNames(x),
  contrasts = NULL,
  min.cells = 10,
  robust = FALSE,
  quiet = FALSE,
  BPPARAM = SerialParam(),
  use.eBayes = TRUE,
  ...
)

## S4 method for signature 'dreamletProcessedData'
dreamlet(
  x,
  formula,
  data = colData(x),
  assays = assayNames(x),
  contrasts = NULL,
  min.cells = 10,
  robust = FALSE,
  quiet = FALSE,
  BPPARAM = SerialParam(),
  use.eBayes = TRUE,
  ...
)

## Arguments

- **x**: SingleCellExperiment or dreamletProcessedData object
- **formula**: regression formula for differential expression analysis
- **data**: metadata used in regression formula
- **assays**: array of assay names to include in analysis. Defaults to assayNames(x)
contrasts character vector specifying contrasts specifying linear combinations of fixed effects to test. This is fed into `makeContrastsDream(formula, data, contrasts=contrasts)`

min.cells minimum number of observed cells for a sample to be included in the analysis

robust logical, use eBayes method that is robust to outlier genes

quiet show messages

BPPARAM parameters for parallel evaluation

use.eBayes should eBayes be used on result? (default: TRUE)

... other arguments passed to `dream`

Details

Fit linear (mixed) model on each cell type separately. For advanced use of contrasts see `variancePartition::makeContrastsDream()` and vignette [https://gabrielhoffman.github.io/variancePartition/articles/dream.html#advanced-hypothesis-testing-1](https://gabrielhoffman.github.io/variancePartition/articles/dream.html#advanced-hypothesis-testing-1).

Value

Object of class `dreamletResult` storing results for each cell type

See Also

`variancePartition::dream()`, `variancePartition::makeContrastsDream()`

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Examine results
res.dl

Examine details for each assay
details(res.dl)
```
# show coefficients estimated for each cell type
decfNames(res.dl)

# extract results using limma-style syntax
# combines all cell types together
# adj.P.Val gives study-wide FDR
topTable(res.dl, coef = "group_idstim", number = 3)

dreamlet_mash_result-class

Class dreamlet_mash_result

Description

Class dreamlet_mash_result

Value

dreamlet_mash_result class

dreamletCompareClusters

Differential expression between pair of assays

Description

Perform differential expression between a pair of assays using linear (mixed) models

Usage
dreamletCompareClusters(
  pb,
  assays,
  method = c("fixed", "random", "none"),
  formula = ~0,
  collapse = TRUE,
  min.cells = 10,
  min.count = 10,
  min.samples = 4,
  isCounts = TRUE,
  normalize.method = "TMM",
  robust = FALSE,
  quiet = FALSE,
  contrasts = c(compare = paste("cellClustertest - cellClusterbaseline")),
)
BPPARAM = SerialParam(),
errorsAsWarnings = FALSE,
...
)

Arguments

  pb                  pseudobulk data as SingleCellExperiment object
  assays             array of two entries specifying assays (i.e. cell clusters) to compare, or a list of
two sets of assays.
  method             account for repeated measures from donors using a "random" effect, a "fixed"
effect, or "none"
  formula            covariates to include in the analysis.
  collapse           if TRUE (default), combine all cell clusters within the test set, and separately the
baseline set. If FALSE, estimate coefficient for each cell cluster and then iden-
tify differential expression using linear contrasts with variancePartition::makeContrastsDream()
  min.cells          minimum number of observed cells for a sample to be included in the analysis
  min.count          minimum number of reads for a gene to be consider expressed in a sample.
Passed to edgeR::filterByExpr
  min.samples        minimum number of samples passing cutoffs for cell cluster to be retained
  isCounts           logical, indicating if data is raw counts
  normalize.method   normalization method to be used by calcNormFactors
  robust             logical, use eBayes method that is robust to outlier genes
  quiet              show messages
  contrasts          cell type is encoded in variable cellCluster with levels test and baseline.
contrasts specifies contrasts passed to variancePartition::makeContrastsDream().
Note, advanced users only.
  BPPARAM            parameters for parallel evaluation
  errorsAsWarnings   if TRUE, convert error to a warning and return NULL
                      ... other arguments passed to dream

Details

Analyze pseudobulk data to identify differential gene expression between two cell clusters or sets of
clusters while modeling the cross-donor expression variation and other aspects of the study design.
dreamletCompareClusters() is useful for finding genes that are differentially expressed between
cell clusters and estimating their fold change. However, the p-values and number of differentially
expressed genes are problematic for two reasons, so users must be careful not to overinterpret them:

1. Cell clusters are typically identified with the same gene expression data used for this differen-
tial expression analysis between clusters. The same data is used both for discovery and testing,
and this means that the p-values from the differential expression analysis will not be uniform
under the null. This will produce a lot of findings with small p-values even in the absence of
true biological differences.
2. The dreamlet package is designed for large datasets with many subjects. The sample sizes from cohort studies are an order of magnitude larger than typical single cell studies. This means that these analyses have huge power to detect even subtle difference in expression between cell clusters. While cluster-specific marker genes are often discovered from an handful of samples, the dreamlet package is applicable to 100s or 1000s of subjects.

method indicates the regression method used to test differential expression between sets of cell clusters. Since the same biosample will usually be represented in both sets of cell clusters, method determines how the paired design is modeled. For method = "mixed", the sample is modeled as a random effect: \( ~ (1|\text{Sample}) + \ldots \). For method = "fixed", the sample is modeled as a fixed effect: \( ~ \text{Sample} + \ldots \). For method = "none", the pairing is ignored.

When collapse=TRUE (default) combine all cell clusters within the test set, and separately the baseline set, and estimate a coefficient indicating the differential expression between sets for a given gene. If collapse=FALSE, estimate a coefficient for each cell type and then identify differential expression using linear contrasts with variancePartition::makeContrastsDream().

Value

Object of class dreamletResult storing results for each comparison

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts", cluster_id = "cluster_id", sample_id = "sample_id", verbose = FALSE)

Evaluate the specificity of each gene for each cluster
df_cts <- cellTypeSpecificity(pb)

compare first two assays (i.e. cell types)
ct.pairs <- c("B cells", "CD14+ Monocytes")

run comparison
use method = 'fixed' here since it is faster
fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

Extract top 10 differentially expressed genes
The coefficient 'compare' is the value logFC between test and baseline:
compare = cellClusterTest - cellClusterBaseline
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
B cells compared to CD14+ Monocytes
head(res)

dreamlet::plotHeatmap(df_cts, genes = rownames(res)[1:5])

compare B cells versus the rest of the cell types
'rest' is a keyword indicating all other assays
fit <- dreamletCompareClusters(pb, c("B cells", "rest"), method = "fixed")
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
B cells compared to all others
head(res)

Get genes upregulated in B cells
idx <- with(res, which(logFC > 0))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])

lst <- list(
 test = c("CD14+ Monocytes", "FCGR3A+ Monocytes"),
 baseline = c("CD4 T cells", "CD8 T cells")
)

compare 2 monocyte clusters to two T cell clusters
fit <- dreamletCompareClusters(pb, lst, method = "fixed")
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
monocytes compared to T cells
head(res)

Get genes upregulated in monocytes
idx <- with(res, which(logFC > 0))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])
dreamletResult-class
Class dreamletResult

Description

Class `dreamletResult` stores results produced by `dreamlet()` to give a standard interface for downstream analysis.

Value

- `none`

dropRedundantTerms
Drop redundant terms from the model

Description

Detect co-linear fixed effects and drop the last one.

Usage

`dropRedundantTerms(formula, data, tol = 0.001)`

Arguments

- `formula` original formula
- `data` data.frame
- `tol` tolerance to test difference of correlation from 1 or -1

Value

A formula, possibly with terms omitted.

Examples

```r
# Valid formula
dropRedundantTerms(~ group + extra, sleep)
```
equalFormulas

Description

Check if two formulas are equal by evaluating the formulas and extracting terms

Usage

```r
equalFormulas(formula1, formula2)
```

Arguments

- `formula1`: first formula
- `formula2`: second formula

Value

boolean value indicating if formulas are equivalent

Examples

```r
# These formulas are equivalent
formula1 <- ~ Size + 1
formula2 <- ~ 1 + Size

dreamlet:::equalFormulas(formula1, formula2)
```

extractData

Description

Extract normalized expression and colData

Extract normalized (i.e. log2 CPM) expression and colData from dreamletProcessedData

Usage

```r
extractData(x, assay, cols = colnames(colData(x)), genes = rownames(x))
```

```r
## S4 method for signature 'dreamletProcessedData,character'
extractData(
  x,
  assay,
  cols = colnames(colData(x)),
  genes = rownames(assay(x, assay))
)
```
Arguments

- **x**
 dreamletProcessedData object

- **assay**
 assay to extract

- **cols**
 columns in colData(x) to extract. defaults to all columns as colnames(colData(x))

- **genes**
 genes to extract from assay(x, assay)$E. defaults to all genes as rownames(x)

Value

data.frame or DataFrame of merged expression and colData

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Extract all:
# Extract tibble of colData merged with expression.
# variables and genes are stored as columns, samples as rows
df_merge <- extractData(res.proc, "B cells")

# first few columns
df_merge[, 1:6]

# Extract subset:
df_merge <- extractData(res.proc, "B cells", cols = "group_id", genes = c("SSU72", "U2AF1"))

# Boxplot of expression
boxplot(SSU72 ~ group_id, df_merge)
```

fitVarPart
Variance Partition analysis for each assay

Description

Perform Variance Partition analysis for each assay

Usage

```r
fitVarPart(
  x, 
  formula, 
  data = colData(x), 
  assays = assayNames(x), 
  quiet = FALSE, 
  BPPARAM = SerialParam(), 
  ...
)
```

S4 method for signature 'dreamletProcessedData'

```r
fitVarPart(
  x, 
  formula, 
  data = colData(x), 
  assays = assayNames(x), 
  quiet = FALSE, 
  BPPARAM = SerialParam(), 
  ...
)
```

Arguments

- `x` SingleCellExperiment or dreamletProcessedData object
- `formula` regression formula for differential expression analysis
- `data` metadata used in regression formula
- `assays` array of assay names to include in analysis. Defaults to assayNames(x)
- `quiet` show messages
- `BPPARAM` parameters for parallel evaluation
- `...` other arguments passed to dream

Value

Object of class `vpDF` inheriting from `DataFrame` storing the variance fractions for each gene and cell type.
Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

# Show variance fractions at the gene-level for each cell type
genes <- vp$gene[2:4]
plotPercentBars(vp[vp$gene %in% genes, ])

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp)
```

getExprGeneNames
Get list of expressed genes for each assay

Description

Get list of expressed genes for each assay using same filters as `processAssays()`.

Usage

```r
getExprGeneNames(
    sceObj,
    assays = assayNames(sceObj),
    min.cells = 5,
    min.count = 5,
    min.samples = 4,
    min.prop = 0.4,
    min.total.count = 15,
    normalize.method = "TMM"
)
```
getExprGeneNames

Arguments

- **sceObj**: SingleCellExperiment object
- **assays**: array of assay names to include in analysis. Defaults to assayNames(sceObj)
- **min.cells**: minimum number of observed cells for a sample to be included in the analysis
- **min.count**: minimum number of reads for a gene to be considered expressed in a sample. Passed to edgeR::filterByExpr
- **min.samples**: minimum number of samples passing cutoffs for cell cluster to be retained
- **min.prop**: minimum proportion of retained samples with non-zero counts for a gene to be retained
- **min.total.count**: minimum total count required per gene for inclusion
- **normalize.method**: normalization method to be used by calcNormFactors

Examples

library(muscat)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts",
sample_id = "sample_id",
cluster_id = "cluster_id",
verbose = FALSE)

Gene expressed genes for each cell type
geneList = getExprGeneNames(pb)

Create precision weights for pseudobulk
By default, weights are set to cell count, which is the default in processAssays()
even when no weights are specified
weightsList <- pbWeights(example_sce,
 sample_id = "sample_id",
 cluster_id = "cluster_id",
 geneList = geneList)

voom-style normalization using initial weights
res.proc <- processAssays(pb, ~group_id, weightsList = weightsList)
getTreat.dreamletResult-method

Test if coefficient is different from a specified value

Description
Test if coefficient is different from a specified value

Usage
S4 method for signature 'dreamletResult'
getTreat(fit, lfc = log2(1.2), coef = NULL, number = 10, sort.by = "p")

Arguments
- **fit**: dreamletResult object
- **lfc**: a minimum log2-fold-change below which changes not considered scientifically meaningful
- **coef**: which coefficient to test
- **number**: number of genes to return
- **sort.by**: column to sort by

Value
DataFrame storing hypothesis test for each gene and cell type

See Also
limma::topTreat(), variancePartition::getTreat()

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)
Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

extract results using limma-style syntax
combines all cell types together
adj.P.Val gives study-wide FDR
getTreat(res.dl, coef = "group_idstim", number = 3)

meta_analysis
Meta-analysis across multiple studies

Description
Meta-analysis across multiple studies

Usage

```r  
meta_analysis(  
x,  
method = "FE",  
group = c("ID", "assay"),  
control = list(maxiter = 2000)  
)  
```

Arguments

- **x**: data.frame rbind'ing results across genes, cell types and datasets
- **method**: meta-analysis method. Values are fed into metafor::rma(), except for 'RE2C' which calls remaCor::RE2C().
- **group**: columns in x to group by. For results from dreamlet::topTable(), results are aggregated by gene and cell type (i.e. 'ID' and 'assay'). If x is not from this function, this argument allows the function to group results properly
- **control**: passed to rma(...,control)

Details
- 'FE': fixed effects meta-analysis
- 'REML': random effects meta-analysis
- 'RE2C': joint testing of fixed and random effects
Examples

```r
library(dreamlet)
library(muscat)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
# just 'CD14+ Monocytes' for speed
res.proc <- processAssays(pb, ~group_id, assays = "CD14+ Monocytes")

# dreamlet
res.dl <- dreamlet(res.proc, ~group_id)

tab1 <- topTable(res.dl, coef = "group_idstim", number = Inf)
tab1$Dataset <- "1"

# Results from a second cohort
# Here, just a copy of the same results for simplicity
tab2 <- tab1
tab2$Dataset <- "2"

# rbind
tab_combined <- rbind(tab1, tab2)

# Perform fixed effects meta-analysis
res <- meta_analysis(tab_combined, method = "FE")
res[1:3, ]
```

metadata, dreamletProcessedData-method

Extract metadata from dreamletProcessedData

Description

Extract metadata from dreamletProcessedData

Usage

```r
## S4 method for signature 'dreamletProcessedData'
metadata(x)
```
outlier

Arguments

- `x` A dreamletProcessedData object

Value

- object from metadata field

outlier

Multivariate outlier detection

Description

Detect multivariate outliers using Mahalanobis distance using mean and covariance estimated either with standard or robust methods.

Usage

```r
outlier(data, robust = FALSE, ...)
```

Arguments

- `data` matrix of data
- `robust` use robust covariance method, defaults to `FALSE`
- `...` arguments passed to `MASS::cov.rob()`

Details

The distance follow a chisq distrubtion under the null with standard method for mean and covariance. It is approximate if the robust method is used. So use `qchisq(p = 0.999, df = k)` to get cutoff to keep 99.9% of samples under the null for data with k=2 columns.

Value

data.frame storing chisq and z-score for each entry indicating deviation from the mean. The z-score is computed by evaluating the p-value of chisq statistic and converting it into a z-score

Examples

```r
data <- matrix(rnorm(200), 100, 2)
res <- outlier(data)
res[1:4,]
```
outlierByAssay

Outlier analysis for each assay

Description

Compute outlier score for each sample in each assay using outlier() run on the top principal components. Mahalanobis distance is used for outlier detect and multivariate normal assumption is used to compute p-values.

Usage

outlierByAssay(object, assays = names(object), nPC = 2, robust = FALSE, ...)

Arguments

- `object`: dreamletProcessedData from processAssays()
- `assays`: assays / cell types to analyze
- `nPC`: number of PCs to uses for outlier score with outlier()
- `robust`: use robust covariance method, defaults to FALSE
- `...`: arguments passed to MASS::cov.rob()

Value

- ID: sample identifier
- assay: specify assay
- PCs: principal components
- chisq: mahalanobis distance that is distributed as chisq(k) k = nPC if the data is multivariate gaussian
- z: z-score corresponding to the chisq distance

See Also

outlier()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Compute PCs and outlier scores
outlierByAssay(res.proc, c("B cells", "CD14+ Monocytes"))

pbWeights

Compute precision weights for pseudobulk

Description

Compute precision weights for pseudobulk using the delta method to approximate the variance of the log2 counts per million considering variation in the number of cells and gene expression variance across cells within each sample. By default, used number of cells; if specified use delta method. Note that `processAssays()` uses number of cells as weights when no weights are specified.

Usage

```r
pbWeights(
  sce,
  sample_id,
  cluster_id,
  geneList = NULL,
  method = c("delta", "ncells"),
  shrink = TRUE,
  prior.count = 0.5,
  maxRatio = 20,
  h5adBlockSizes = 1e+09,
  details = FALSE,
  verbose = TRUE
)
```

Arguments

- **sce** \(\text{SingleCellExperiment}\) of where `counts(sce)` stores the raw count data at the single cell level
- **sample_id** character string specifying which variable to use as sample id
- **cluster_id** character string specifying which variable to use as cluster id
- **geneList** list of genes to be included for each cell type
- **method** select method to compute precision weights. ‘delta’ use the delta method based on normal approximation to a negative binomial model, slower but can increase power. ‘ncells’ use the number of cells, this is faster; Subsequent arguments are ignored. Included for testing
plotBeeswarm

Beeswarm plot of effect sizes for each assay

Description

Beeswarm plot of effect sizes for each assay, colored by sign and FDR

plotBeeswarm

shrink Defaults to TRUE. Use empirical Bayes variance shrinkage from limma to shrink estimates of expression variance across cells within each sample

prior.count Defaults to 0.5. Count added to each observation at the pseudobulk level. This is scaled but the number of cells before added to the cell level

maxRatio When computing precision as the reciprocal of variance $1/(x+\tau)$ select τ to have a maximum ratio between the largest and smallest precision

h5adBlockSizes Set the automatic block size block size (in bytes) for DelayedArray to read an H5AD file. Larger values use more memory but are faster.

details Include data frame of cell-level statistics as attr(., "details")

verbose Show messages, defaults to TRUE

Examples

library(muscat)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 sample_id = "sample_id",
 cluster_id = "cluster_id",
 verbose = FALSE
)

Gene expressed genes for each cell type
geneList = getExprGeneNames(pb)

Create precision weights for pseudobulk
By default, weights are set to cell count,
which is the default in processAssays()
even when no weights are specified
weightsList <- pbWeights(example_sce,
 sample_id = "sample_id",
 cluster_id = "cluster_id",
 geneList = geneList
)

voom-style normalization using initial weights
res.proc <- processAssays(pb, ~group_id, weightsList = weightsList)
plotCellComposition

Usage

plotBeeswarm(res.dl, coef, fdr.range = 4, assays = assayNames(res.dl))

Arguments

res.dl dreamletResult object from dreamlet()
coef coefficient name fed to topTable()
fdr.range range for coloring FDR
assays which assays to plot

Value

ggplot2 of logFC by assay

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cell_cluster",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Beeswarm plot of effect sizes for each assay,
colored by sign and FDR
plotBeeswarm(res.dl, "group_idstim")

plotCellComposition Bar plot of cell compositions

Description

Bar plot of cell compositions
plotCellComposition

Usage
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'SingleCellExperiment'
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'matrix'
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'data.frame'
plotCellComposition(obj, col, width = NULL)

Arguments

obj matrix of [cells] x [samples] or SingleCellExperiment from aggregateToPseudoBulk

col array of colors. If missing, use default colors. If names(col) is the same as
 arrayNames(obj), then colors will be assigned by assay name#

width specify width of bars

Value

Barplot showing cell fractions

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

show cell composition bar plots
plotCellComposition(pb)

extract cell counts
df_cellCounts <- cellCounts(pb)

show cell composition bar plots
plotCellComposition(df_cellCounts)
plotForest

Forest plot

Description
Forest plot

Usage
plotForest(x, gene, coef, ...)

S4 method for signature 'dreamletResult'
plotForest(x, gene, coef, assays = names(x), ylim = NULL)

S4 method for signature 'dreamlet_mash_result'
plotForest(x, gene, coef, assays = colnames(x$logFC.original), ylim = NULL)

Arguments
x result from dreamlet
gene gene to show results for
coef coefficient to test with topTable
... other arguments
assays array of assays to plot
ylim limits for the y axis

Value
Plot showing effect sizes

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)
Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

Show estimated log fold change with in each cell type
plotForest(res.dl, gene = "ISG20", coef = "group_idstim")

plotGeneHeatmap

Heatmap of genes and assays

Description
Heatmap of genes and assays

Usage
```
plotGeneHeatmap(
  x, 
  coef, 
  genes, 
  assays = assayNames(x), 
  zmax = NULL, 
  transpose = FALSE
)
```

```
## S4 method for signature 'dreamletResult'
plotGeneHeatmap(
  x, 
  coef, 
  genes, 
  assays = assayNames(x), 
  zmax = NULL, 
  transpose = FALSE
)
```

Arguments
- **x**: A dreamletResult object
- **coef**: column number or column name specifying which coefficient or contrast of the linear model is of interest.
- **genes**: array of genes to include in plot
- **assays**: array of assay names to include in analysis. Defaults to assayNames(x)
plotHeatmap

zmax maximum z.std value
transpose (default: FALSE) Use `coord_flip()` to flip axies

Value

Heatmap plot for specified genes and assays

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Heatmap for specified subset of genes
plotGeneHeatmap(res.dl, coef = "group_idstim", genes = rownames(pb)[1:15])

plotHeatmap

Plot heatmap

Description

Plot heatmap

Usage

plotHeatmap(
 x,
 genes = rownames(x),
 color = "darkblue",
 assays = colnames(x),
 useFillScale = TRUE
)
S4 method for signature 'cellSpecificityValues'

```r
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)
```

S4 method for signature 'data.frame'

```r
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)
```

S4 method for signature 'matrix'

```r
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)
```

Arguments

- `x` fractions for each gene
- `genes` name of genes to plot
- `color` color of heatmap
- `assays` array of assays to plot
- `useFillScale` default TRUE. add `scale_fill_gradient()` to plot

Value

heatmap

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)
```
create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

For each cell type, get most specific gene
genes <- rownames(df)[apply(df, 2, which.max)]

heatmap of 5 genes that are most cell type specific
dreamlet::plotHeatmap(df, genes = genes)

plotPCA

Plot PCA of gene expression for an assay

Compute PCA of gene expression for an assay, and plot samples coloring by outlier score

Description

Compute PCA of gene expression for an assay, and plot samples coloring by outlier score

Usage

```r
## S4 method for signature 'list'
plotPCA(
  object,
  assays = names(object),
  nPC = 2,
  robust = FALSE,
  ...
)
```

Arguments

- **object**: dreamletProcessedData from processAssays() or a list from residuals()
- **assays**: assays / cell types to analyze
- **nPC**: number of PCs to use for outlier score with outlier()
- **robust**: use robust covariance method, defaults to FALSE
- **...**: arguments passed to MASS::cov.rob()
- **maxOutlierZ**: cap outlier z-scores at this value for plotting to maintain consistent color scale
nrow

Number of rows in plot

size

Size passed to `geom_point()`

fdr.cutoff

FDR cutoff to determine outlier

See Also

`outlierByAssay()`

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# PCA to identify outliers
# from normalized expression
plotPCA(res.proc, c("B cells", "CD14+ Monocytes"))

# Run on regression residuals
#-----------------------------

# Regression analysis
fit = dreamlet(res.proc, ~ group_id)

# Extract regression residuals
residsObj = residuals(fit)

# PCA on residuals
plotPCA(residsObj, c("B cells", "CD14+ Monocytes"))
```

Description

Bar plot of variance fractions for a subset of genes
Usage

S4 method for signature 'vpDF'
plotPercentBars(
 x,
 col = c(ggColorHue(ncol(x) - 3), "grey85"),
 genes = unique(x$gene),
 width = NULL,
 ncol = 3,
 ...
)

S4 method for signature 'cellSpecificityValues'
plotPercentBars(
 x,
 col = ggColorHue(ncol(x)),
 genes = rownames(x),
 width = NULL,
 ...
)

Arguments

- **x**: vpDF object returned by `fitVarPart()`
- **col**: color of bars for each variable
- **genes**: name of genes to plot
- **width**: specify width of bars
- **ncol**: number of columns in the plot
- **...**: other arguments

Value

Bar plot showing variance fractions for each gene

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE)
```
voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Show variance fractions at the gene-level for each cell type
plotPercentBars(vp, genes = vp$gene[2:4], ncol = 2)

plotProjection
Plot 2D projection

Description
Plot 2D projection (i.e. UMAP, tSNE) for millions of cells efficiently

Usage
```r
plotProjection(
  sce,            
  type,           
  annotation,     
  pointsize = 0,  
  pixels = c(512, 512),
  legend.position = "none",
  text = TRUE,    
  order
)
```

Arguments
- **sce** `SingleCellExperiment`
- **type** field in `reducedDims(sce)` to plot
- **annotation** column in `colData(sce)` to annotate each cell
- **pointsize** Radius of rasterized point. Use 0 for single pixels (fastest).
- **pixels** Vector with X and Y resolution of the raster, default `c(512, 512)`
- **legend.position** legend.position: the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
- **text** show annotation as text. Default TRUE
- **order** specify order of levels for annotation

Details
Uses `scattermore::geom_scattermore()` to plot millions of points efficiently
Value

ggplot2 plot of the projection

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

plotProjection(example_sce, "TSNE", "cluster_id", 1)
```

plotVarPart,DataFrame-method

Violin plot of variance fractions

Description

Violin plot of variance fraction for each gene and each variable

Usage

```r
## S4 method for signature 'DataFrame'
plotVarPart(
  obj,
  col = c(ggColorHue(base::ncol(obj) - 3), "grey85"),
  label.angle = 20,
  main = "",
  ylab = "",
  convertToPercent = TRUE,
  ncol = 3,
  ...
)
```

Arguments

- `obj` varParFrac object returned by `fitExtractVarPart` or `extractVarPart`
- `col` vector of colors
- `label.angle` angle of labels on x-axis
- `main` title of plot
- `ylab` text on y-axis
- `convertToPercent` multiply fractions by 100 to convert to percent values
- `ncol` number of columns in the plot
- `...` additional arguments
Violin plot showing variance fractions

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   cluster_id = "cluster_id",
   sample_id = "sample_id",
   verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp)
```

plotViolin

Plot Violins

Description

Plot Violins

Usage

```r
plotViolin(x, ...)
```

```r
## S4 method for signature 'cellSpecificityValues'
plotViolin(x, assays = colnames(x))
```

Arguments

- `x` : fractions for each gene
- `...` : other arguments
- `assays` : array of assays to plot
Value

Violin plot

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

# Violin plot of specificity scores for each cell type
# Dashed line indicates genes that are equally expressed
# across all cell types. For K cell types, this is 1/K
plotViolin(df)
```

plotVolcano
Volcano plot for each cell type

Description

Volcano plot for each cell type

Usage

```r
plotVolcano(
  x,
  coef,
  nGenes = 5,
  size = 12,
  minp = 9.99999999999997e-311,
  cutoff = 0.05,
  ncol = 3,
  ...
)
```

S4 method for signature 'list'

```r
plotVolcano(
```

```r
```
plotVolcano

x,
coef,
nGenes = 5,
size = 12,
minp = 9.99999999999997e-311,
cutoff = 0.05,
col = 3,
assays = names(x),
...)

S4 method for signature 'MArrayLM'
plotVolcano(
x,
coef,
nGenes = 5,
size = 12,
minp = 9.99999999999997e-311,
cutoff = 0.05,
col = 3,
...)

S4 method for signature 'dreamlet_mash_result'
plotVolcano(
x,
coef,
nGenes = 5,
size = 12,
minp = 1e-16,
cutoff = 0.05,
col = 3,
assays = colnames(x$logFC.original),
...)

Arguments

x result from dreamlet
coef coefficient to test with topTable
nGenes number of genes to highlight in each volcano plot
size text size
minp minimum p-value to show on the y-axis
cutoff adj.P.Val cutoff to distinguish significant from non-significant genes
col number of columns in the plot
assays which assays to plot
Value

Volcano plot for each cell type

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

volcano plot for each cell type
plotVolcano(res.dl, coef = "group_idstim")

volcano plot for first two cell types
plotVolcano(res.dl[1:2], coef = "group_idstim")

Description

Plot voom curves from each cell type

Usage

plotVoom(x, ncol = 3, alpha = 0.5, ...)

S4 method for signature 'dreamletProcessedData'
plotVoom(x, ncol = 3, alpha = 0.5, assays = names(x))
S4 method for signature 'EList'

```r
plotVoom(x, ncol = 3, alpha = 0.5)
```

Arguments

- `x`: `dreamletProcessedData`
- `ncol`: number of columns in the plot
- `alpha`: transparency of points
- `...`: other arguments
- `assays`: which assays to plot

Value

Plot of mean-variance trend

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Show mean-variance trend from voom
plotVoom(res.proc)

# plot for first two cell types
plotVoom(res.proc[1:2])
```

Description

Print object

Print object
processAssays

Usage

S4 method for signature 'dreamletResult'
print(x, ...)

S4 method for signature 'dreamletProcessedData'
print(x, ...)

Arguments

x dreamletProcessedData object
...

other arguments

Value

print data stored in object

Description

For raw counts, estimate precision weights using linear mixed model weighting by number of cells observed for each sample. For normalized data, only weight by number of cells.

Usage

processAssays(
sceObj,
formula,
assays = assayNames(sceObj),
min.cells = 5,
min.count = 5,
min.samples = 4,
min.prop = 0.4,
isCounts = TRUE,
normalize.method = "TMM",
span = "auto",
quiet = FALSE,
weightsList = NULL,
BPPARAM = SerialParam(),
...
)
Arguments

- **sceObj**: SingleCellExperiment object
- **formula**: regression formula for differential expression analysis
- **assays**: array of assay names to include in analysis. Defaults to `assayNames(sceObj)`
- **min.cells**: minimum number of observed cells for a sample to be included in the analysis
- **min.count**: minimum number of reads for a gene to be considered expressed in a sample. Passed to `edgeR::filterByExpr`
- **min.samples**: minimum number of samples passing cutoffs for cell cluster to be retained
- **min.prop**: minimum proportion of retained samples with non-zero counts for a gene to be retained
- **isCounts**: logical, indicating if data is raw counts
- **normalize.method**: normalization method to be used by `calcNormFactors`
- **span**: Lowess smoothing parameter using by `variancePartition::voomWithDreamWeights()`
- **quiet**: show messages
- **weightsList**: list storing matrix of precision weights for each cell type. If NULL precision weights are set to 1
- **BPPARAM**: parameters for parallel evaluation
- **...**: other arguments passed to `dream`

Details

For each cell cluster, samples with at least `min.cells` are retained. Only clusters with at least `min.samples` retained samples are kept. Genes are retained if they have at least `min.count` reads in at least `min.prop` fraction of the samples. Current values are reasonable defaults, since genes that don’t pass these cutoffs are very underpowered for differential expression analysis and only increase the multiple testing burden. But values of `min.cells = 2` and `min.count = 2` are also reasonable to include more genes in the analysis.

The precision weights are estimated using the residuals fit from the specified formula. These weights are robust to changes in the formula as long as the major variables explaining the highest fraction of the variance are included.

If `weightsList` is NULL, precision weights are set to 1 internally.

Value

Object of class `dreamletProcessedData` storing voom-style normalized expression data

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)
```
create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

processOneAssay

Processing expression data from assay

Description

For raw counts, filter genes and samples, then estimate precision weights using linear mixed model weighting by number of cells observed for each sample. For normalized data, only weight by number of cells.

Usage

processOneAssay(
 y,
 formula,
 data,
 n.cells,
 min.cells = 5,
 min.count = 5,
 min.samples = 4,
 min.prop = 0.4,
 min.total.count = 15,
 isCounts = TRUE,
 normalize.method = "TMM",
 span = "auto",
 quiet = TRUE,
 weights = NULL,
 BPPARAM = SerialParam(),
 ...
)
removeConstantTerms

Arguments

- \(y \) matrix of counts or log2 CPM
- formula regression formula for differential expression analysis
- data metadata used in regression formula
- n.cells array of cell count for each sample
- min.cells minimum number of observed cells for a sample to be included in the analysis
- min.count minimum number of reads for a gene to be considered expressed in a sample. Passed to edgeR::filterByExpr
- min.samples minimum number of samples passing cutoffs for cell cluster to be retained
- min.prop minimum proportion of retained samples with non-zero counts
- min.total.count minimum total count required per gene for inclusion
- isCounts logical, indicating if data is raw counts
- normalize.method normalization method to be used by calcNormFactors
- span Lowess smoothing parameter using by variancePartition::voomWithDreamWeights()
- quiet show messages
- weights matrix of precision weights
- BPPARAM parameters for parallel evaluation
- ... other arguments passed to dream

Value

EList object storing log2 CPM and precision weights

See Also

processAssays()

removeConstantTerms Remove constant terms from formula

Description

Remove constant terms from formula. Also remove categorical variables with a max of one example per category

Usage

removeConstantTerms(formula, data)
residuals.dreamletResult-method

Arguments

- formula: original formula
- data: data.frame

Details

Adapted from MoEClust::drop_constants

Value

A formula, possibly with terms omitted.

Examples

Valid formula
removeConstantTerms(~ group + extra, sleep)

there is no variation in 'group' in this dataset
removeConstantTerms(~ group + extra, sleep[1:3,])

residuals.dreamletResult-method

Extract residuals from dreamletResult

Description

Extract residuals from dreamletResult

Usage

S4 method for signature 'dreamletResult'
residuals(object, y, ..., type = c("response", "pearson"))

Arguments

- object: dreamletResult object
- y: dreamletProcessedData object
- ...: other arguments
- type: compute either "response" residuals or "pearson" residuals.

Details

"response" residuals are the typical residuals returned from lm(). "pearson" residuals divides each residual value by its estimated standard error. This requires specifying y
Value
	residuals from model fit

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay, # evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

extract typical residuals for each assay (i.e. cell type)
Return list with entry for each assay with for retained samples and genes
resid.lst <- residuals(res.dl)

Get Pearson residuals:
typical residuals scaled by the standard deviation
residPearson.lst <- residuals(res.dl, res.proc, type = "pearson")

run_mash

Run mash analysis on dreamlet results

Description

Run mash analysis on dreamlet results

Usage

run_mash(fit, coefList)

Arguments

fit
result from dreamlet()

coefList
coefficient to be analyzed
Details

Apply `mashr` analysis (Urbut et al. 2019) on the joint set of coefficients for each gene and cell type. `mashr` is a Bayesian statistical method that borrows strength across tests (i.e. genes and cell types) by learning the distribution of non-zero effects based on observed logFC and standard errors. The method then estimates the posterior distributions of each coefficient based on the observed value and the genome-wide empirical distribution.

`mashr` has been previously applied to differential expression in GTEx data using multiple tissues from the same set of donors (Oliva et al. 2020).

In single cell data, a given gene is often not sufficiently expressed in all cell types. So it is not evaluated in a subset of cell types, and its coefficient value is `NA`. Since `mashr` assumes coefficients and standard errors for every gene and cell type pair, entries with these missing values are set to have `coef = 0` and `se = 1e6`. The output of `mashr` is then modified to set the corresponding values to `NA`, to avoid nonsensical results downstream.

Value

a list storing the `mashr` model as `model` and the original coefficients as `logFC.original`

References

See Also

`mashr::mash_estimate_corr_em()`, `mashr::cov_canonical`, `mashr::mash_set_data`

Examples

```r
library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce[1:100, ],
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE)

# voom-style normalization
```
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res_dl <- dreamlet(res.proc, ~group_id)

run MASH model
This can take 10s of minutes on real data
This small datasets should take ~30s
res_mash <- run_mash(res_dl, "group_idstim")

extract statistics from mashr model
NA values indicate genes not sufficiently expressed
in a given cell type

original logFC
head(res_mash$logFC.original)

posterior mean for logFC
head(get_pm(res_mash$model))

how many gene-by-celltype tests are significant
i.e. if a gene is significant in 2 celltypes, it is counted twice
table(get_lfsr(res_mash$model) < 0.05, useNA = "ifany")

how many genes are significant in at least one cell type
table(apply(get_lfsr(res_mash$model), 1, min, na.rm = TRUE) < 0.05)

how many genes are significant in each cell type
apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm = TRUE))

examine top set of genes
which genes are significant in at least 1 cell type
sort(names(get_significant_results(res_mash$model)))[1:10]

Lets examine ENO1
There is a lot of variation in the raw logFC
res_mash$logFC.original["ENO1",]

posterior mean after borrowing across cell type and genes
get_pm(res_mash$model)["ENO1",]

forest plot based on mashr results
plotForest(res_mash, "ENO1")

volcano plot based on mashr results
yaxis uses local false sign rate (lfsr)
plotVolcano(res_mash)

Comment out to reduce package runtime
gene set analysis using mashr results
library(zenith)
go.gs = get_GeneOntology("CC", to="SYMBOL")
df_gs = zenith_gsa(res_mash, go.gs)

Heatmap of results
plotZenithResults(df_gs, 2, 1)

seeErrors
Get error text

Description
Get error text

Usage

```r
seeErrors(obj)
```

S4 method for signature 'dreamletResult'

```r
seeErrors(obj)
```

S4 method for signature 'dreamletProcessedData'

```r
seeErrors(obj)
```

S4 method for signature 'vpDF'

```r
seeErrors(obj)
```

Arguments

- **obj**
 A dreamletResult object

Value

tibble storing error text

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE
)
# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay, # evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# show errors
# but none are reported
res.err = seeErrors(res.dl)

---

**show, dreamletResult-method**

*Show object*

---

**Description**

Show object
Show object

**Usage**

```r
S4 method for signature 'dreamletResult'
show(object)
```

```r
S4 method for signature 'dreamletProcessedData'
show(object)
```

**Arguments**

- `object` dreamletProcessedData object

**Value**

show data stored in object

---

**sortCols, vpDF-method**  *Sort variance partition statistics*

---

**Description**

Sort variance partition statistics
### Usage

```r
S4 method for signature 'vpDF'
sortCols(
x,
FUN = sum,
decreasing = TRUE,
last = c("Residuals", "Measurement.error"),
...
)
```

### Arguments

- **x**: object returned by `fitVarPart()`
- **FUN**: function giving summary statistic to sort by. Defaults to `sum`
- **decreasing**: logical. Should the sorting be increasing or decreasing?
- **last**: columns to be placed on the right, regardless of values in these columns
- **...**: other arguments to sort

### Value

data.frame with columns sorted by mean value, with Residuals in last column

### Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Summarize variance fractions genome-wide for each cell type
plotVarPart(sortCols(vp))
```
stackAssays  

*Stack assays from pseudobulk*

**Description**

Stack assays from pseudobulk to perform analysis across cell types

**Usage**

```
stackAssays(pb, assays = assayNames(pb))
```

**Arguments**

- `pb`  
pseudobulk SingleCellExperiment from `aggregateToPseudoBulk()`
- `assays`  
array of assay names to include in analysis. Defaults to `assayNames(pb)`

**Value**

pseudobulk SingleCellExperiment cbind'ing expression values and rbind'ing colData. The column `stackedAssay` in `colData()` stores the assay information of the stacked data.

**Examples**

```
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Stack assays for joint analysis
pb.stack <- stackAssays(pb)

voom-style normalization
assay (i.e. cell type) can now be included as a covariate
res.proc <- processAssays(pb.stack, ~ group_id + stackedAssay)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~ group_id + stackedAssay)

Summarize variance fractions across cell types
plotVarPart(sortCols(vp))
```
# Interaction analysis allows group_id to have a different effect within each stackedAssay
vp2 <- fitVarPart(res.proc, ~ group_id * stackedAssay)
plotVarPart(sortCols(vp2))

# Interaction model using random effects
form <- ~ (1 | group_id) + (1 | stackedAssay) + (1 | group_id:stackedAssay)

---

**tabToMatrix** Convert results table to matrix

**Description**

Convert results table to matrix

**Usage**

`tabToMatrix(tab, col, rn = "ID", cn = "assay")`

**Arguments**

- `tab`: results table from `topTable()`
- `col`: which column to extract
- `rn`: column id storing rownames
- `cn`: column id storing colnames

**Value**

matrix storing values of column `col` in rows defined by `rn` and columns defined by `cn`

---

**topTable,dreamletResult-method** Table of Top Genes from dreamlet fit

**Description**

Extract a table of the top-ranked genes from a dreamlet fit.
Usage

```r
S4 method for signature 'dreamletResult'
topTable(
 fit,
 coef = NULL,
 number = 10,
 genelist = NULL,
 adjust.method = "BH",
 sort.by = "p",
 resort.by = NULL,
 p.value = 1,
 lfc = 0,
 confint = FALSE
)
```

Arguments

- `fit`: dreamletResult object
- `coef`: coef
- `number`: number
- `genelist`: genelist
- `adjust.method`: adjust.method
- `sort.by`: sort.by
- `resort.by`: resort.by
- `p.value`: p.value
- `lfc`: lfc
- `confint`: confint

Value

data.frame storing hypothesis test for each gene and cell type

See Also

limma::topTable(), variancePartition::topTable()

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 ...)
```r
    sample_id = "sample_id",
    verbose = FALSE
  )

  # voom-style normalization
  res.proc <- processAssays(pb, ~group_id)

  # Differential expression analysis within each assay,
  # evaluated on the voom normalized data
  res.dl <- dreamlet(res.proc, ~group_id)

  # show coefficients estimated for each cell type
  coefNames(res.dl)

  # extract results using limma-style syntax
  # combines all cell types together
  # adj.P.Val gives study-wide FDR
  topTable(res.dl, coef = "group_idstim", number = 3)
```

vpDF-class

Class vpDF

Description

Class `vpDF` stores results for each gene for each assay

Value

```r
none
```

zenith_gsa, dreamletResult, GeneSetCollection-method

Perform gene set analysis using zenith

Description

Perform a competitive gene set analysis accounting for correlation between genes.
Usage

```r
## S4 method for signature 'dreamletResult,GeneSetCollection'
zenith_gsa(
  fit,
  geneSets,
  coefs,
  use.ranks = FALSE,
  n_genes_min = 10,
  inter.gene.cor = 0.01,
  progressbar = TRUE,
  ...
)
```

```r
## S4 method for signature 'dreamlet_mash_result,GeneSetCollection'
zenith_gsa(
  fit,
  geneSets,
  coefs,
  use.ranks = FALSE,
  n_genes_min = 10,
  inter.gene.cor = 0.01,
  progressbar = TRUE,
  ...
)
```

Arguments

- **fit**: results from `dreamlet()`
- **geneSets**: `GeneSetCollection`
- **coefs**: coefficients to test using `topTable(fit, coef=coefs[i])`
- **use.ranks**: do a rank-based test `TRUE` or a parametric test `FALSE`? default: `FALSE`
- **n_genes_min**: minimum number of genes in a geneset
- **inter.gene.cor**: if `NA`, estimate correlation from data. Otherwise, use specified value
- **progressbar**: if `TRUE`, show progress bar
- **...**: other arguments

Details

This code adapts the widely used `camera()` analysis (Wu and Smyth 2012) in the `limma` package (Ritchie et al. 2015) to the case of linear (mixed) models used by `variancePartition::dream()`.

Value

- `data.frame` of results for each gene set and cell type
- `data.frame` of results for each gene set and cell type
Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
    assay = "counts",
    cluster_id = "cluster_id",
    sample_id = "sample_id",
    verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# Load Gene Ontology database
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_MSigDB() to load MSigDB
library(zenith)
go.gs <- get_GeneOntology("CC", to = "SYMBOL")

# Run zenith gene set analysis on result of dreamlet
res_zenith <- zenith_gsa(res.dl, go.gs, "group_idstim", progressbar = FALSE)

# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluated because
# to few genes were represented
plotZenithResults(res_zenith, 3, 1)
```
Index

[,dreamletProcessedData,ANY,ANY,ANY-method assayNames,dreamletResult-method, 11
 ([,dreamletResult,ANY,ANY,ANY-method).assayNames, vpDF, vpDF-method
4
[,dreamletProcessedData,dreamletProcessedData-method 11
 ([,dreamletResult,ANY,ANY,ANY-method).assayNames, vpDF-method
4
[,dreamletResult,ANY,ANY,ANY-method, 4
[,dreamletResult,dreamletResult-method
 ([,dreamletResult,ANY,ANY,ANY-method)
4
aggregateNonCountSignal, 4
aggregateToPseudoBulk, 6
aggregateVar, 8
as.dreamletResult, 9
assay,dreamletProcessedData,ANY-method
 (assay,dreamletResult,ANY-method), 11
assay,dreamletProcessedData,dreamletProcessedData-method
 (assay,dreamletResult,ANY-method), 11
assay,dreamletResult,ANY-method, 11
assay,dreamletResult,dreamletResult-method
 (assay,dreamletResult,ANY-method), 11
assay,vpDF, ANY-method
 (assay,dreamletResult,ANY-method), 11
assay,vpDF, vpDF-method
 (assay,dreamletResult,ANY-method), 11
assayNames,dreamletProcessedData, dreamletProcessedData-method
 (assayNames,dreamletResult-method), 11
assayNames,dreamletProcessedData-method
 (assayNames,dreamletResult-method), 11
assayNames,dreamletProcessedData-method
 (assayNames,dreamletResult-method), 11
assayNames,dreamletResult,dreamletResult-method
 (assayNames,dreamletResult-method), 11
assayNames,dreamletResult, dreamletResult-method
 (assayNames,dreamletResult-method), 11

BiocParallelParam, 5, 6, 9
buildClusterTreeFromPB, 12
cellCounts, 13
cellSpecificityValues-class, 14
cellTypeSpecificity, 14
checkFormula, 15
coeffNames, 16
coeffNames,dreamletResult-method
 (CoeffNames), 16
colData,dreamletProcessedData-method
 (colData), 17
colData<-, dreamletProcessedData,ANY-method, 18
compositePosteriorTest, 18
computeCellCounts, 20
computeLogCPM, 21
computeNormCounts, 22

DelayedMatrixStats, 7
details, 22
details,dreamletProcessedData-method
 (details), 22
details,dreamletResult-method
 (details), 22
details,vpDF-method (details), 22
diffVar,dreamletResult,dreamletResult-method
 (diffVar,dreamletResult-method), 23
diffVar,dreamletResult, dreamletResult-method
 (diffVar,dreamletResult-method), 23
dreamlet, 26
INDEX

dreamlet, dreamletProcessedData-method (dreamlet), 26

dreamlet_mash_result-class, 28

dreamletCompareClusters, 28
dreamletProcessedData-class, 31
dreamletResult-class, 32
dropRedundantTerms, 32

equalFormulas, 33
extractData, 33
extractData, dreamletProcessedData, character-method
(extractData), 33
extractData, dreamletProcessedData-method
(extractData), 33

fitVarPart, 35
fitVarPart, dreamletProcessedData-method
(fitVarPart), 35

getExprGeneNames, 36
getTreat, dreamletResult, dreamletResult-method
(getTreat, dreamletResult-method), 38
getTreat, dreamletResult-method, 38

meta_analysis, 39
metadata, dreamletProcessedData, dreamletProcessedData-method
(metadata, dreamletProcessedData-method), 40
metadata, dreamletProcessedData-method, 40

outlier, 41
outlierByAssay, 42

pbWeights, 43
plotBeeswarm, 44
plotCellComposition, 45
plotCellComposition, data.frame-method
(plotCellComposition), 45
plotCellComposition, matrix-method
(plotCellComposition), 45
plotCellComposition, SingleCellExperiment-method
(plotCellComposition), 45
plotForest, 47
plotForest, dreamlet_mash_result-method
(plotForest), 47
plotForest, dreamletResult-method
(plotForest), 47
plotGeneHeatmap, 48

plotGeneHeatmap, dreamletResult, dreamletResult-method
(plotGeneHeatmap), 48
plotGeneHeatmap, dreamletResult-method
(plotGeneHeatmap), 48
plotHeatmap, 49
plotHeatmap, cellsSpecificityValues, cellsSpecificityValues-method
(plotHeatmap), 49
plotHeatmap, cellsSpecificityValues-method
(plotHeatmap), 49
plotHeatmap, data.frame, data.frame-method
(plotHeatmap), 49
plotHeatmap, data.frame-method
(plotHeatmap), 49
plotHeatmap, matrix, matrix-method
(plotHeatmap), 49
plotHeatmap, matrix-method
(plotHeatmap), 49
plotPCA, 51
plotPCA, list-method (plotPCA), 51
plotPercentBars, cellsSpecificityValues, cellsSpecificityValues-method
(plotPercentBars, vpDF-method), 52
plotPercentBars, cellsSpecificityValues-method
(plotPercentBars, vpDF-method), 52
plotPercentBars, vpDF-method, 52
plotPercentBars, vpDF-method, 52
plotProjection, 54
plotVarPart, DataFrame, DataFrame-method
(plotVarPart, DataFrame-method), 55
plotVarPart, DataFrame-method, 55
plotVolcano, 57
plotVolcano, dreamlet_mash_result, dreamlet_mash_result-method
(plotVolcano), 57
plotVolcano, dreamlet_mash_result-method
(plotVolcano), 57
plotVolcano, list, list-method
(plotVolcano), 57
plotVolcano, list-method (plotVolcano), 57
plotVolcano,MArrayLM,MArrayLM-method
(plotVolcano), 57
plotVolcano,MArrayLM-method
(plotVolcano), 57
plotVoom, 59
plotVoom,dreamletProcessedData,dreamletProcessedData-method
(plotVoom), 59
plotVoom,dreamletProcessedData-method
(plotVoom), 59
plotVoom,EList-method(plotVoom), 59
plotVoom,list,list-method(plotVoom), 59
print,dreamletProcessedData,dreamletProcessedData-method
(print,dreamletResult-method), 60
print,dreamletProcessedData-method
(print,dreamletResult-method), 60
print,dreamletResult,dreamletResult-method
(print,dreamletResult-method), 60
print,dreamletResult-method, 60
processAssays, 61
processOneAssay, 63
removeConstantTerms, 64
residuals,dreamletResult,dreamletResult-method
(residuals,dreamletResult-method), 65
residuals,dreamletResult-method, 65
run_mash, 66
seeErrors, 69
seeErrors,dreamletProcessedData-method
(seeErrors), 69
seeErrors,dreamletResult-method
(seeErrors), 69
seeErrors, vpDF-method (seeErrors), 69
Seurat, 7
show,dreamletProcessedData,dreamletProcessedData-method
(show,dreamletResult-method), 70
show,dreamletProcessedData-method
(show,dreamletResult-method), 70
show,dreamletResult,dreamletResult-method
(show,dreamletResult-method), 70
show,dreamletResult-method, 70
SingleCellExperiment, 5–8
sortCols,vpDF-method, 70
stackAssays, 72
tabToMatrix, 73
topTable,dreamletResult,dreamletResult-method
(topTable,dreamletResult-method), 73
topTable,dreamletResult-method, 73
vpDF-class, 75
zenith_gsa,dreamlet_mash_result,GeneSetCollection,ANY-method
(zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamlet_mash_result,GeneSetCollection-method
(zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection,ANY-method
(zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75