Package ‘dreamlet’

April 10, 2024

Type Package

Title Scalable differential expression analysis of single cell
transcriptomics datasets with complex study designs

Version 1.0.3

Date 2024-02-27

Description Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-friendly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample.

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL https://DiseaseNeurogenomics.github.io/dreamlet

BugReports https://github.com/DiseaseNeurogenomics/dreamlet/issues

Suggests BiocStyle, knitr, pander, rmarkdown, muscat, ExperimentHub, RUnit, scater, scuttle

biocViews RNASeq, GeneExpression, DifferentialExpression, BatchEffect, QualityControl, Regression, GeneSetEnrichment, GeneRegulation, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, SingleCell, Preprocessing, Sequencing, ImmunoOncology, Software

Depends R (>= 4.3.0), variancePartition (>= 1.32.3), SingleCellExperiment, ggplot2

Imports edgeR, SummarizedExperiment, DelayedMatrixStats, sparseMatrixStats, MatrixGenerics, Matrix, methods, purrr,
GSEABase, data.table, zenith (>= 1.1.2), mashr (>= 0.2.52),
ashr, dplyr, BiocParallel, ggbeeswarm, S4Vectors, IRanges,
irba, limma, metafor, remaCor, broom, tidyr, rlang,
BiocGenerics, DelayedArray, gtools, reshape2, ggrepel,
scattermore, Rcpp, lme4 (>= 1.1-33), MASS, Rdpack, utils, stats

RoxygenNote 7.2.3
RdMacros Rdpack
SystemRequirements C++11
LinkingTo Rcpp, beachmat
git_url https://git.bioconductor.org/packages/dreamlet
git_branch RELEASE_3_18
git_last_commit 0e59587
git_last_commit_date 2024-02-27
Repository Bioconductor 3.18
Date/Publication 2024-04-10
Author Gabriel Hoffman [aut, cre] (<https://orcid.org/0000-0002-0957-0224>)
Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

R topics documented:

aggregateNonCountSignal 4
aggregateToPseudoBulk 5
aggregateVar ... 7
as.dreamletResult ... 9
assay.dreamletResult,ANY-method 10
assayNames,dreamletResult-method 11
buildClusterTreeFromPB 11
cellCounts .. 12
cellSpecificityValues-class 13
cellTypeSpecificity ... 14
checkFormula ... 15
coeNames ... 16
colData,dreamletProcessedData-method 17
colData<-.dreamletProcessedData,ANY-method 17
compositePosteriorTest 18
computeCellCounts ... 19
computeLogCPM .. 20
computeNormCounts ... 21
details ... 22
diffVar,dreamletResult-method 23
dreamlet .. 25
dreamletCompareClusters 27
dreamletProcessedData-class 30
dreamletResult-class 31
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dreamlet_mash_result-class</td>
<td>31</td>
</tr>
<tr>
<td>dropRedundantTerms</td>
<td>32</td>
</tr>
<tr>
<td>equalFormulas</td>
<td>32</td>
</tr>
<tr>
<td>extractData</td>
<td>33</td>
</tr>
<tr>
<td>fitVarPart</td>
<td>34</td>
</tr>
<tr>
<td>getExprGeneNames</td>
<td>36</td>
</tr>
<tr>
<td>getTreat,dreamletResult-method</td>
<td>37</td>
</tr>
<tr>
<td>metadata,dreamletProcessedData-method</td>
<td>38</td>
</tr>
<tr>
<td>meta_analysis</td>
<td>39</td>
</tr>
<tr>
<td>outlier</td>
<td>40</td>
</tr>
<tr>
<td>outlierByAssay</td>
<td>41</td>
</tr>
<tr>
<td>pbWeights</td>
<td>42</td>
</tr>
<tr>
<td>plotBeeswarm</td>
<td>44</td>
</tr>
<tr>
<td>plotCellComposition</td>
<td>45</td>
</tr>
<tr>
<td>plotForest</td>
<td>46</td>
</tr>
<tr>
<td>plotGeneHeatmap</td>
<td>47</td>
</tr>
<tr>
<td>plotHeatmap</td>
<td>49</td>
</tr>
<tr>
<td>plotPCA</td>
<td>50</td>
</tr>
<tr>
<td>plotPercentBars,vpDF-method</td>
<td>52</td>
</tr>
<tr>
<td>plotProjection</td>
<td>53</td>
</tr>
<tr>
<td>plotVarPart,DataFrame-method</td>
<td>54</td>
</tr>
<tr>
<td>plotViolin</td>
<td>56</td>
</tr>
<tr>
<td>plotVolcano</td>
<td>57</td>
</tr>
<tr>
<td>plotVoom</td>
<td>59</td>
</tr>
<tr>
<td>print,dreamletResult-method</td>
<td>60</td>
</tr>
<tr>
<td>processAssays</td>
<td>61</td>
</tr>
<tr>
<td>processOneAssay</td>
<td>63</td>
</tr>
<tr>
<td>removeConstantTerms</td>
<td>64</td>
</tr>
<tr>
<td>residuals,dreamletResult-method</td>
<td>65</td>
</tr>
<tr>
<td>run_mash</td>
<td>66</td>
</tr>
<tr>
<td>seeErrors</td>
<td>68</td>
</tr>
<tr>
<td>show,dreamletResult-method</td>
<td>69</td>
</tr>
<tr>
<td>sortCols,vpDF-method</td>
<td>70</td>
</tr>
<tr>
<td>stackAssays</td>
<td>71</td>
</tr>
<tr>
<td>tabToMatrix</td>
<td>72</td>
</tr>
<tr>
<td>topTable,dreamletResult-method</td>
<td>73</td>
</tr>
<tr>
<td>vpDF-class</td>
<td>74</td>
</tr>
<tr>
<td>zenith_gsa,dreamletResult, GeneSetCollection-method</td>
<td>75</td>
</tr>
<tr>
<td>[.dreamletResult,ANY,ANY,ANY-method</td>
<td>77</td>
</tr>
</tbody>
</table>
aggregateNonCountSignal

Aggregation of single-cell signals

Description

Aggregation of single-cell to pseudobulk data for non-count data.

Usage

aggregateNonCountSignal(
 sce,
 assay = NULL,
 sample_id = NULL,
 cluster_id = NULL,
 min.cells = 10,
 min.signal = 0.01,
 min.samples = 4,
 min.prop = 0.4,
 verbose = TRUE,
 BPPARAM = SerialParam(progressbar = verbose)
)

Arguments

sce a SingleCellExperiment.
assay character string specifying the assay slot to use as input data. Defaults to the 1st available (assayNames(x)[1]).
sample_id character string specifying which variable to use as sample id
cluster_id character string specifying which variable to use as cluster id
min.cells minimum number of observed cells for a sample to be included in the analysis
min.signal minimum signal value for a gene to be considered expressed in a sample. Proper value for this cutoff depends on the type of signal value
min.samples minimum number of samples passing cutoffs for cell cluster to be retained
min.prop minimum proportion of retained samples with non-zero counts for a gene to be
verbose logical. Should information on progress be reported?
BPPARAM a BiocParallelParam object specifying how aggregation should be parallelized.

Details

The dreamlet workflow can also be applied to non-count data. In this case, a signal is averaged across all cells from a given sample and cell type. Here aggregateNonCountSignal() performs the roles of aggregateToPseudoBulk() followed by processAssays() but using non-count data.
For each cell cluster, samples with at least \texttt{min.cells} are retained. Only clusters with at least \texttt{min.samples} retained samples are kept. Features are retained if they have at least \texttt{min.signal} in at least \texttt{min.prop} fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights are computed as \(1/\text{sem}^2\), where \(\text{sem} = \text{sd(signal)} / \sqrt{n}\), \text{signal} stores the values averaged across cells, and \(n\) is the number of cells.

Value

\texttt{a dreamletProcessedData object}

Examples

\begin{verbatim}
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
using non-count signal
pb.signal <- aggregateNonCountSignal(example_sce, assay = "logcounts", cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(pb.signal, ~group_id)
\end{verbatim}
aggregateToPseudoBulk

```r
scale = FALSE,
verbose = TRUE,
BPPARAM = SerialParam(progressbar = verbose),
checkValues = TRUE,
h5adBlockSizes = 1e+09
)
```

Arguments

- `x` a `SingleCellExperiment`
- `assay` character string specifying the assay slot to use as input data. Defaults to the 1st available (`assayNames(x)[1]`).
- `sample_id` character string specifying which variable to use as sample id
- `cluster_id` character string specifying which variable to use as cluster id
- `fun` a character string. Specifies the function to use as summary statistic. Passed to `summarizeAssayByGroup2`.
- `scale` logical. Should pseudo-bulks be scaled with the effective library size & multiplied by 1M?
- `verbose` logical. Should information on progress be reported?
- `BPPARAM` a `BiocParallelParam` object specifying how aggregation should be parallelized.
- `checkValues` logical. Should we check that signal values are positive integers?
- `h5adBlockSizes` set the automatic block size block size (in bytes) for DelayedArray to read an H5AD file. Larger values use more memory but are faster.

Details

Adapted from `muscat::aggregateData` and has similar syntax and same results. This is much faster for `SingleCellExperiment` backed by H5AD files using DelayedMatrix because this summarizes counts using `DelayedMatrixStats`. But this function also includes optimizations for `sparseMatrix` used by Seurat by using `sparseMatrixStats`.

Keeps variables from `colData()` that are constant within `sample_id`. For example, sex will be constant for all cells from the same `sample_id`, so it is retained as a variable in the pseudobulk result. But number of expressed genes varies across cells within each `sample_id`, so it is dropped from `colData()`. Instead the mean value per cell type is stored in `metadata(pb)$aggr_means`, and these can be included in regression formulas downstream. In that case, the value of the covariates used per sample will depend on the cell type analyzed.

Value

A `SingleCellExperiment`.

Aggregation parameters (assay, by, fun, scaled) are stored in `metadata()$agg_pars`, where `by = c(cluster_id, sample_id)`. The number of cells that were aggregated are accessible in `int_colData()$n_cells`.

Author(s)

Gabriel Hoffman, Helena L Crowell & Mark D Robinson
aggregateVar

References

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# pseudobulk data from each cell type
# is stored as its own assay
pb

# aggregate by cluster only,
# collapsing all samples into the same pseudobulk
pb2 <- aggregateToPseudoBulk(example_sce,
  cluster_id = "cluster_id",
  verbose = FALSE
)

pb2
```

aggregateVar

<table>
<thead>
<tr>
<th>Per-sample variance of single-cell counts</th>
</tr>
</thead>
</table>

Description

Aggregation function for single-cell log-normalized counts to calculate per-sample variance for dreamlet.

Usage

```r
aggregateVar(
  sce,
  assay = NULL,
  cluster_id = NULL,
  sample_id = NULL,
```
aggregateVar

min.cells = 10,
min.var = 0.01,
min.samples = 4,
min.prop = 0.4,
verbose = TRUE,
BPPARAM = SerialParam(progressbar = verbose)
)

Arguments
sce a SingleCellExperiment.
assay character string specifying the assay slot to use as input data. Defaults to the 1st available (assayNames(x)[1]).
cluster_id character string specifying which variable to use as cluster id
sample_id character string specifying which variable to use as sample id
min.cells minimum number of observed cells for a sample to be included in the analysis
min.var minimum variance for a gene to be considered expressed in a sample
min.samples minimum number of samples passing cutoffs for cell cluster to be retained
min.prop minimum proportion of retained samples with non-zero counts for a gene to be retained
verbose logical. Should information on progress be reported?
BPPARAM a BiocParallelParam object specifying how aggregation should be parallelized.

Details
The dreamlet workflow can also be applied to model gene expression variance. In this case, a per-sample per-gene variance is calculated across all cells from a given sample and cell type. Here aggregateVar() performs the roles of aggregateToPseudoBulk() followed by processAssays() but using log-normalized count data.

For each cell cluster, samples with at least min.cells are retained. Only clusters with at least min.samples retained samples are kept. Features are retained if they have at least min.var in at least min.prop fraction of the samples.

The precision of a measurement is the inverse of its sampling variance. The precision weights are computed as 1/sem^2, where sem = sd / sqrt(n) and n is the number of cells.

Value
a dreamletProcessedData object

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)

Compute variance for each sample and cell cluster
as.dreamletResult

Convert list of regression fits to dreamletResult for downstream analysis

Usage

as.dreamletResult(fitList, df_details = NULL)

Arguments

fitList list of regression fit with dream()
df_details data.frame storing assay details

Details

Useful for combining multiple runs of dreamletCompareClusters() into a single dreamletResult for downstream analysis

Value

object of class dreamletResult

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

first comparison
cp.pairs <- c("B cells", "CD14+ Monocytes")
```r
fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

# second comparison
c.t.pairs2 <- c("B cells", "CD8 T cells")
fit2 <- dreamletCompareClusters(pb, ct.pairs2, method = "fixed")

# Make a list storing each result with a meaningful name
fitList <- list()
id <- paste0("[", ct.pairs[1], "]_vs_[", ct.pairs[2], "]")
fitList[[id]] <- fit

id <- paste0("[", ct.pairs2[1], "]_vs_[", ct.pairs2[2], "]")
fitList[[id]] <- fit2

# create a dreamletResult form this list
res.compare <- as.dreamletResult(fitList)
res.compare
```

assay, dreamletResult, ANY-method

Get assay

Description

- Get assay
- Get assay
- Get assays by name

Usage

```
## S4 method for signature 'dreamletResult,ANY'
assay(x, i, withDimnames = TRUE, ...)

## S4 method for signature 'dreamletProcessedData,ANY'
assay(x, i, withDimnames = TRUE, ...)

## S4 method for signature 'vpDF,ANY'
assay(x, i, withDimnames = TRUE, ...)
```

Arguments

- `x`: vpDF object
- `i`: number indicating index, or string indicating assay
- `withDimnames`: not used
- `...`: other arguments
assayNames, dreamletResult-method

Value

return ith assay

assayNames, dreamletResult-method

Description

Get assayNames

Get assayNames

Get assayNames

Usage

S4 method for signature 'dreamletResult'
assayNames(x, ...)

S4 method for signature 'dreamletProcessedData'
assayNames(x, ...)

S4 method for signature 'vpDF'
assayNames(x, ...)

Arguments

x

vpDF object

...

additional arguments

Value

array of assay names

buildClusterTreeFromPB

Hierarchical clustering on cell types from pseudobulk

Description

Perform hierarchical clustering on cell types from pseudobulk by aggregating read counts from each cell type.
Usage

buildClusterTreeFromPB(
 pb,
 method = c("complete", "ward.D", "single", "average", "mcquitty", "median", "centroid", "ward.D2"),
 dist.method = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
 assays = assayNames(pb)
)

Arguments

pb SingleCellObject storing pseudobulk for each cell type in assay() field
method clustering method for hclust()
dist.method distance metric
assays which assays to include

Value

hierarchical clustering object of class hclust

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Hierarchical clustering of cell types
hcl <- buildClusterTreeFromPB(pb)
plot(hcl)

cellCounts

Description

Extract matrix of cell counts from SingleCellExperiment
Usage

\texttt{cellCounts(x)}

Arguments

\texttt{x} \hspace{1cm} \texttt{a SingleCellExperiment}

Value

matrix of cell counts with samples as rows and cell types as columns

See Also

\texttt{computeCellCounts()}

Examples

\begin{verbatim}
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

get matrix of cell counts for each sample
cellCounts(pb)
\end{verbatim}
cellTypeSpecificity

Get cell type specificity of gene expression

Description

For each gene, compute fraction of overall expression attributable to each cell type

Usage

cellTypeSpecificity(pb, ...)

Arguments

 pb SingleCellExperiment of pseudobulk data where easy assay is a cell type.
 ... other arguments passed to edgeR::calcNormFactors()

Details

Sum counts for each cell type, and compute the fraction of counts-per-million attributable to each cell type for each gene

Value

matrix of the fraction of expression attributable to each cell type for each gene.

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

Violin plot of specificity scores for each cell type
Dashed line indicates genes that are equally expressed
across all cell types. For K cell types, this is 1/K
plotViolin(df)

Compute the maximum specificity score for each gene
scoreMax <- apply(df, 1, max)
head(scoreMax)

For each cell type, get most specific gene
genes <- rownames(df)[apply(df, 2, which.max)]

Barplot of 5 genes
plotPercentBars(df, genes = genes)

Heatmap of 5 genes that are most cell type specific
dreamlet::plotHeatmap(df, genes = genes)

checkFormula

Check variables in a formula

Description

Check that variables in formula are present in the data

Usage

checkFormula(formula, data)

Arguments

- formula: formula of variables to check
- data: data.frame storing variables in the formula

Value

If formula is valid, return TRUE. Else throw error

Examples

Valid formula
dreamlet:::checkFormula(~speed, cars)

Not valid formula
dreamlet:::checkFormula(~speed + a, cars)
coefNames

Description

Get coefficient names

Usage

coefNames(obj)

S4 method for signature 'dreamletResult'
coefNames(obj)

Arguments

obj A dreamletResult object

Value

array storing names of coefficients

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)
Description

Extract `colData` from `dreamletProcessedData`

Usage

```r
## S4 method for signature 'dreamletProcessedData'
colData(x, ...)
```

Arguments

- `x` A `dreamletProcessedData` object
- `...` other arguments

Value

object from `colData` field

Description

Set `colData` of `dreamletProcessedData`, and check for same dimensions and rownames

Usage

```r
## S4 replacement method for signature 'dreamletProcessedData,ANY'
colData(x, ...) <- value
```

Arguments

- `x` `dreamletProcessedData` object
- `...` other arguments
- `value` data.frame or object that can be coerced to it

Value

none
compositePosteriorTest

Perform composite test on results from mashr

Description

The posterior probabilities for all genes and conditions is obtained as \(1-lFSR\). Let \(\text{prob}\) be an array storing results for one gene. The probability that _no_ conditions in the exclusion set are non-zero is \(\text{prod}(1 - \text{prob[exclude]})\). The probability that _all_ conditions in the inclusion set are non-zero is \(\text{prod}(\text{prob[include]})\). The probability that _at least one_ condition in the inclusion set is non-zero is \(1 - \text{prod}(1 - \text{prob[include]})\). The composite test is the product of the probabilities computed from the inclusion and exclusion sets.

Usage

```r
compositePosteriorTest(
  x,
  include,
  exclude = NULL,
  test = c("at least 1", "all")
)
```

Arguments

- **x**: "dreamlet_mash_result" from run_mash()
- **include**: array of conditions in the inclusion set
- **exclude**: array of conditions in the exclusion set. Defaults to NULL for no exclusion
- **test**: evaluate the posterior probability of a non-zero effect in "at least 1" or "all" conditions

Details

Perform composite test evaluating the specificity of an effect. Evaluate the posterior probability that an a non-zero effect present in _all_ or _at least one_ condition in the inclusion set, but _no conditions_ in the exclusion set.

See Also

run_mash()

Examples

```r
library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)
```
create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce[1:100,],
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

run MASH model
This can take 10s of minutes on real data
This small datasets should take ~30s
res_mash <- run_mash(res.dl, "group_idstim")

Composite test based on posterior probabilities
to identify effect present in *at least 1* monocyte type
and *NO* T-cell type.
include <- c("CD14+ Monocytes", "FCGR3A+ Monocytes")
exclude <- c("CD4 T cells", "CD8 T cells")

Perform composite test
prob <- compositePosteriorTest(res_mash, include, exclude)

examine the lFSR for top gene
get_lfsr(res_mash$model)[which.max(prob), , drop = FALSE]

Test if *all* cell types have non-zero effect
prob <- compositePosteriorTest(res_mash, assayNames(res.dl))

computeCellCounts
Get cell counts with metadata

Description
Get cell counts with metadata for each sample

Usage
computeCellCounts(sce, annotation, sampleIDs)

Arguments
sce SingleCellExperiment
computeLogCPM

annotation string indicating column in colData(sce) storing cell type annotations
sampleIDs string indicating column in colData(sce) storing sample identifiers

Value
matrix storing cell counts

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)
counts <- computeCellCounts(example_sce, "cluster_id", "sample_id")
counts[1:4, 1:4]

calculateLogCPM

Compute log normalized counts

Description
Compute normalized counts as log2 counts per million

Usage
computeLogCPM(
sce,
lib.size = colSums2(counts(sce)),
prior.count = 2,
scaledByLib = FALSE
)

Arguments
sce SingleCellExperiment with counts stored as counts(sce)
lib.size library size for each cell
prior.count average count to be added to each observation to avoid taking log of zero
scaledByLib if TRUE, scale pseudocount by lib.size. Else do standard constant pseudocount addition

Details
This function gives same result as edgeR::cpm(counts(sce), log=TRUE)
computeNormCounts

Value
matrix of log CPM values

See Also
also edgeR::cpm()

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)
logcounts(example_sce) <- computeLogCPM(example_sce)

computeNormCounts Compute normalized counts

Description
Compute normalized counts as counts per million

Usage
computeNormCounts(sce)

Arguments
sce SingleCellExperiment with counts stored as counts(sce)

Details
This function gives same result as edgeR::cpm(counts(sce), log=FALSE)

Value
matrix of CPM values

See Also
also edgeR::cpm()
Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

normcounts(example_sce) <- computeNormCounts(example_sce)
```

details

Extract details from `dreamletProcessedData`

Description

Extract details from `dreamletProcessedData`

Usage

```r
details(object)
## S4 method for signature 'dreamletProcessedData'
details(object)
## S4 method for signature 'dreamletResult'
details(object)
## S4 method for signature 'vpDF'
details(object)
```

Arguments

- object: A `dreamletProcessedData` object

Value

Extract detailed information from some classes

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
                           assay = "counts",
                           cluster_id = "cluster_id",
                           sample_id = "sample_id",
```
diffVar,dreamletResult-method

verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

For each cell type, number of samples retained,
and variables retained
details(res.proc)

diffVar,dreamletResult-method

Test differential variance

Description

Test the association between a covariate of interest and the response’s deviation from expectation.

Usage

S4 method for signature 'dreamletResult'
diffVar(
 fit,
 method = c("AD", "SQ"),
 scale = c("leverage", "none"),
 BPPARAM = SerialParam(),
 ...
)

Arguments

fit model fit from dream()
method transform the residuals using absolute deviation ("AD") or squared deviation ("SQ").
scale scale each observation by "leverage", or no scaling ("none")
BPPARAM parameters for parallel evaluation
...
other parameters passed to dream()

Details

This method performs a test of differential variance between two subsets of the data, in a way
that generalizes to multiple categories, continuous variables and metrics of spread beyond variance. For the two category test, this method is similar to Levene’s test. This model was adapted from Phipson, et al (2014), extended to linear mixed models, and adapted to be compatible with variancePartition::dream() and dreamlet::dreamlet().
This method is composed of multiple steps where 1) a typical linear (mixed) model is fit with `dreamlet()`, 2) residuals are computed and transformed based on an absolute value or squaring transform, 3) a second regression is performed with `dreamlet()` to test if a variable is associated with increased deviation from expectation. Both regression take advantage of the `dreamlet()` linear (mixed) modelling framework followed by empirical Bayes shrinkage that extends the `limma::voom()` framework.

Note that `diffVar()` takes the results of the first regression as a parameter to use as a starting point.

References

See Also

`variancePartition::diffVar()`, `variancePartition::diffVar()`, `missMethyl::diffVar()`

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   cluster_id = "cluster_id",
   sample_id = "sample_id",
   verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# Differential variance analysis
# result is a dreamlet fit
res.dvar <- diffVar(res.dl)

# Examine results
res.dvar

# Examine details for each assay
details(res.dvar)

# show coefficients estimated for each cell type
```
extract results using limma-style syntax
combines all cell types together
adj.P.Val gives study-wide FDR
topTable(res.dvar, coef = "group_idstim", number = 3)

Plot top hit to see differential variance
Note that this is a toy example with only 4 samples
cellType <- "CD4 T cells"
gene <- "DYNLRB1"

y <- res.proc[[cellType]]$E[gene,]
x <- colData(res.proc)$group_id

boxplot(y ~ x,
 xlab = "Stimulation status",
 ylab = "Gene expression",
 main = paste(cellType, gene)
)

#

dreamlet

Differential expression for each assay

Description

Perform differential expression for each assay using linear (mixed) models

Usage

dreamlet(
 x,
 formula,
 data = colData(x),
 assays = assayNames(x),
 contrasts = NULL,
 min.cells = 10,
 robust = FALSE,
 quiet = FALSE,
 BPPARAM = SerialParam(),
 use.eBayes = TRUE,
 ...)

S4 method for signature 'dreamletProcessedData'
dreamlet(
 x,
 formula,
data = colData(x),
assays = assayNames(x),
contrasts = NULL,
min.cells = 10,
robust = FALSE,
quiet = FALSE,
BPPARAM = SerialParam(),
use.eBayes = TRUE,
...
)

Arguments

- **x** SingleCellExperiment or dreamletProcessedData object
- **formula** regression formula for differential expression analysis
- **data** metadata used in regression formula
- **assays** array of assay names to include in analysis. Defaults to assayNames(x)
- **contrasts** character vector specifying contrasts specifying linear combinations of fixed effects to test. This is fed into makeContrastsDream(formula, data, contrasts=contrasts)
- **min.cells** minimum number of observed cells for a sample to be included in the analysis
- **robust** logical, use eBayes method that is robust to outlier genes
- **quiet** show messages
- **BPPARAM** parameters for parallel evaluation
- **use.eBayes** should eBayes be used on result? (default: TRUE)
- ... other arguments passed to dream

Details

Fit linear (mixed) model on each cell type separately. For advanced use of contrasts see variancePartition::makeContrastsDream() and vignette https://gabrielhoffman.github.io/variancePartition/articles/dream.html#advanced-hypothesis-testing-1.

Value

Object of class dreamletResult storing results for each cell type

See Also

variancePartition::dream(), variancePartition::makeContrastsDream()

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)
create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Examine results
res.dl

Examine details for each assay
details(res.dl)

show coefficients estimated for each cell type
coeffNames(res.dl)

extract results using limma-style syntax
combines all cell types together
adj.P.Val gives study-wide FDR
topTable(res.dl, coef = "group_idstim", number = 3)

dreamletCompareClusters

Differential expression between pair of assays

Description

Perform differential expression between a pair of assays using linear (mixed) models

Usage

dreamletCompareClusters(
 pb,
 assays,
 method = c("fixed", "random", "none"),
 formula = ~0,
 collapse = TRUE,
 min.cells = 10,
 min.count = 10,
 min.samples = 4,
isCounts = TRUE,
normalize.method = "TMM",
robust = FALSE,
quiet = FALSE,
contrasts = c(compare = paste("cellClustertest - cellClusterbaseline")),
BPPARAM = SerialParam(),
errorsAsWarnings = FALSE,
}

Arguments

- **pb**: pseudobulk data as SingleCellExperiment object
- **assays**: array of two entries specifying assays (i.e. cell clusters) to compare, or a list of two sets of assays.
- **method**: account for repeated measures from donors using a "random" effect, a "fixed" effect, or "none".
- **formula**: covariates to include in the analysis.
- **collapse**: if TRUE (default), combine all cell clusters within the test set, and separately the baseline set. If FALSE, estimate coefficient for each cell cluster and then identify differential expression using linear contrasts with variancePartition::makeContrastsDream()
- **min.cells**: minimum number of observed cells for a sample to be included in the analysis
- **min.count**: minimum number of reads for a gene to be consider expressed in a sample. Passed to edgeR::filterByExpr
- **min.samples**: minimum number of samples passing cutoffs for cell cluster to be retained
- **isCounts**: logical, indicating if data is raw counts
- **normalize.method**: normalization method to be used by calcNormFactors
- **robust**: logical, use eBayes method that is robust to outlier genes
- **quiet**: show messages
- **contrasts**: cell type is encoded in variable cellCluster with levels test and baseline. contrasts specifies contrasts passed to variancePartition::makeContrastsDream(). Note, advanced users only.
- **BPPARAM**: parameters for parallel evaluation
- **errorsAsWarnings**: if TRUE, convert error to a warning and return NULL
- **...**: other arguments passed to dream

Details

Analyze pseudobulk data to identify differential gene expression between two cell clusters or sets of clusters while modeling the cross-donor expression variation and other aspects of the study design. dreamletCompareClusters() is useful for finding genes that are differentially expressed between cell clusters and estimating their fold change. However, the p-values and number of differentially expressed genes are problematic for two reasons, so users must be careful not to overinterpret them:
dreamletCompareClusters

1. Cell clusters are typically identified with the same gene expression data used for this differential expression analysis between clusters. The same data is used both for discovery and testing, and this means that the p-values from the differential expression analysis will not be uniform under the null. This will produce a lot of findings with small p-values even in the absence of true biological differences.

2. The dreamlet package is designed for large datasets with many subjects. The sample sizes from cohort studies are an order of magnitude larger than typical single cell studies. This means that these analyses have huge power to detect even subtle difference in expression between cell clusters. While cluster-specific marker genes are often discovered from an handful of samples, the dreamlet package is applicable to 100s or 1000s of subjects.

method indicates the regression method used to test differential expression between sets of cell clusters. Since the same biosample will usually be represented in both sets of cell clusters, method determines how the paired design is modeled. For method = "mixed", the sample is modeled as a random effect: \(\sim (1|\text{Sample}) + \ldots \). For method = "fixed", the sample is modeled as a fixed effect: \(\sim \text{Sample} + \ldots \). For method = "none", the pairing is ignored.

When collapse=TRUE (default) combine all cell clusters within the test set, and separately the baseline set, and estimate a coefficient indicating the differential expression between sets for a given gene. If collapse=FALSE, estimate a coefficient for each cell type and then identify differential expression using linear contrasts with variancePartition::makeContrastsDream().

Value

Object of class dreamletResult storing results for each comparison

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE)

Evaluate the specificity of each gene for each cluster
df_cts <- cellTypeSpecificity(pb)

compare first two assays (i.e. cell types)
ct.pairs <- c("B cells", "CD14+ Monocytes")

run comparison
use method = 'fixed' here since it is faster
fit <- dreamletCompareClusters(pb, ct.pairs, method = "fixed")

Extract top 10 differentially expressed genes
The coefficient 'compare' is the value logFC between test and baseline:
compare = cellClustertest - cellClusterbaseline
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
B cells compared to CD14+ Monocytes
head(res)
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[1:5])

compare B cells versus the rest of the cell types
'rest' is a keyword indicating all other assays
fit <- dreamletCompareClusters(pb, c("B cells", "rest"), method = "fixed")
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
B cells compared to all others
head(res)

Get genes upregulated in B cells
idx <- with(res, which(logFC > 0))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])

lst <- list(
 test = c("CD14+ Monocytes", "FCGR3A+ Monocytes"),
 baseline = c("CD4 T cells", "CD8 T cells")
)

compare 2 monocyte clusters to two T cell clusters
fit <- dreamletCompareClusters(pb, lst, method = "fixed")
res <- topTable(fit, coef = "compare", number = 10)

genes with highest logFC are most highly expressed in
monocytes compared to T cells
head(res)

Get genes upregulated in monocytes
idx <- with(res, which(logFC > 0))[1:5]
dreamlet::plotHeatmap(df_cts, genes = rownames(res)[idx])

dreamletProcessedData-class

Class dreamletProcessedData

Description

Class dreamletProcessedData
dreamletResult-class

Value

none

none

Description

Class `dreamletResult` stores results produced by `dreamlet()` to give a standard interface for downstream analysis.

Class `dreamletResult` stores results produced by `dreamlet()` to give a standard interface for downstream analysis.

Value

none

none

dreamlet_mash_result-class

Class dreamlet_mash_result

Description

Class `dreamlet_mash_result`

Value

dreamlet_mash_result class
dropRedundantTerms

Drop redundant terms from the model

Description

Detect co-linear fixed effects and drop the last one

Usage

```r
dropRedundantTerms(formula, data, tol = 0.001)
```

Arguments

- `formula`: original formula
- `data`: data.frame
- `tol`: tolerance to test difference of correlation from 1 or -1

Value

a formula, possibly with terms omitted.

Examples

```r
# Valid formula
dropRedundantTerms(~ group + extra, sleep)
```

equalFormulas

Check if two formulas are equal

Description

Check if two formulas are equal by evaluating the formulas and extracting terms

Usage

```r
equalFormulas(formula1, formula2)
```

Arguments

- `formula1`: first formula
- `formula2`: second formula

Value

boolean value indicating if formulas are equivalent
Examples

These formulas are equivalent
formula1 <- ~ Size + 1
formula2 <- ~ 1 + Size

dreamlet:::equalFormulas(formula1, formula2)

extractData

Extract normalized expression and colData

Description

Extract normalized expression and colData

Extract normalized (i.e. log2 CPM) expression and colData from dreamletProcessedData

Usage

extractData(x, assay, cols = colnames(colData(x)), genes = rownames(x))

S4 method for signature 'dreamletProcessedData,character'
extractData(
 x,
 assay,
 cols = colnames(colData(x)),
 genes = rownames(assay(x, assay))
)

Arguments

x dreamletProcessedData object
assay assay to extract
cols columns in colData(x) to extract. defaults to all columns as colnames(colData(x))
genes genes to extract from assay(x, assay)$E. defaults to all genes as rownames(x)

Value

data.frame or DataFrame of merged expression and colData

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Extract all:
Extract tibble of colData merged with expression.
variables and genes are stored as columns, samples as rows
df_merge <- extractData(res.proc, "B cells")

first few columns
df_merge[, 1:6]

Extract subset:
df_merge <- extractData(res.proc, "B cells", cols = "group_id", genes = c("SSU72", "U2AF1"))

df_merge

Boxplot of expression
boxplot(SSU72 ~ group_id, df_merge)
#

fitVarPart

Variance Partition analysis for each assay

Description

Perform Variance Partition analysis for each assay

Usage

fitVarPart(
 x,
 formula,
 data = colData(x),
 assays = assayNames(x),
 quiet = FALSE,
 BPPARAM = SerialParam(),
 ...
)

S4 method for signature 'dreamletProcessedData'
fitVarPart(
 x,
fitVarPart

formula,
data = colData(x),
assays = assayNames(x),
quiet = FALSE,
BPPARAM = SerialParam(),
...
)

Arguments

x SingleCellExperiment or dreamletProcessedData object
formula regression formula for differential expression analysis
data metadata used in regression formula
assays array of assay names to include in analysis. Defaults to assayNames(x)
quiet show messages
BPPARAM parameters for parallel evaluation
... other arguments passed to dream

Value

Object of class vpDF inheriting from DataFrame storing the variance fractions for each gene and cell type.

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Show variance fractions at the gene-level for each cell type
genes <- vp$gene[2:4]
plotPercentBars(vp[vp$gene %in% genes,])

Summarize variance fractions genome-wide for each cell type
getExprGeneNames

Get list of expressed genes for each assay

Description

Get list of expressed genes for each assay using same filters as processAssays().

Usage

getExprGeneNames(
 sceObj,
 assays = assayNames(sceObj),
 min.cells = 5,
 min.count = 5,
 min.samples = 4,
 min.prop = 0.4,
 min.total.count = 15,
 normalize.method = "TMM"
)

Arguments

 sceObj SingleCellExperiment object
 assays array of assay names to include in analysis. Defaults to assayNames(sceObj)
 min.cells minimum number of observed cells for a sample to be included in the analysis
 min.count minimum number of reads for a gene to be considered expressed in a sample. Passed to edgeR::filterByExpr
 min.samples minimum number of samples passing cutoffs for cell cluster to be retained
 min.prop minimum proportion of retained samples with non-zero counts for a gene to be retained
 min.total.count minimum total count required per gene for inclusion
 normalize.method normalization method to be used by calcNormFactors

Examples

library(muscat)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
```r
assay = "counts",
sample_id = "sample_id",
cluster_id = "cluster_id",
verbose = FALSE
)

# Gene expressed genes for each cell type
geneList = getExprGeneNames(pb)

# Create precision weights for pseudobulk
# By default, weights are set to cell count,
# which is the default in processAssays()
# even when no weights are specified
weightsList <- pbWeights(example_sce,
sample_id = "sample_id",
cluster_id = "cluster_id",
genelist = geneList
)

# voom-style normalization using initial weights
res.proc <- processAssays(pb, ~group_id, weightsList = weightsList)
```

getTreat, dreamletResult-method

Description

Test if coefficient is different from a specified value

Usage

```r
## S4 method for signature 'dreamletResult'
getTreat(fit, lfc = log2(1.2), coef = NULL, number = 10, sort.by = "p")
```

Arguments

- **fit**: dreamletResult object
- **lfc**: a minimum log2-fold-change below which changes not considered scientifically meaningful
- **coef**: which coefficient to test
- **number**: number of genes to return
- **sort.by**: column to sort by

Value

DataFrame storing hypothesis test for each gene and cell type
See Also

limma::topTreat(), variancePartition::getTreat()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coeffNames(res.dl)

extract results using limma-style syntax
combines all cell types together
adj.P.Val gives study-wide FDR
getTreat(res.dl, coef = "group_idstim", number = 3)

metadata, dreamletProcessedData-method

Extract metadata from dreamletProcessedData

Description

Extract metadata from dreamletProcessedData

Usage

```r
## S4 method for signature 'dreamletProcessedData'
metadata(x)
```

Arguments

- `x`: A dreamletProcessedData object
Value

object from metadata field

meta_analysis
Meta-analysis across multiple studies

Description

Meta-analysis across multiple studies

Usage

```r
meta_analysis(
  x,  
  method = "FE",  
  group = c("ID", "assay"),  
  control = list(maxiter = 2000)
)
```

Arguments

- **x**
 data.frame rbind'ing results across genes, cell types and datasets

- **method**
 meta-analysis method. Values are fed into metafor::rma(), except for 'RE2C' which calls remaCor::RE2C().

- **group**
 columns in x to group by. For results from dreamlet::topTable(), results are aggregated by gene and cell type (i.e. 'ID' and 'assay'). If x is not from this function, this argument allows the function to group results properly.

- **control**
 passed to rma(.,control)

Details

- 'FE': fixed effects meta-analysis
- 'REML': random effects meta-analysis
- 'RE2C': joint testing of fixed and random effects

Examples

```r
library(dreamlet)
library(muscat)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,  
  assay = "counts",  
  cluster_id = "cluster_id",
```
outlier

Multivariate outlier detection

Description

Detect multivariate outliers using Mahalanobis distance using mean and covariance estimated either with standard or robust methods.

Usage

outlier(data, robust = FALSE, ...)

Arguments

data matrix of data
robust use robust covariance method, defaults to FALSE
... arguments passed to MASS::cov.rob()

Details

The distance follow a chisq distribution under the null with standard method for mean and covariance. It is approximate if the robust method is used. So use qchisq(p = 0.999, df = k) to get cutoff to keep 99.9% of samples under the null for data with k=2 columns.
Value

Data frame storing chisq and z-score for each entry indicating deviation from the mean. The z-score is computed by evaluating the p-value of chisq statistic and converting it into a z-score.

Examples

```r
data <- matrix(rnorm(200), 100, 2)
res <- outlier(data)
res[1:4,]
```

outlierByAssay

Outlier analysis for each assay

Description

Compute outlier score for each sample in each assay using outlier() run on the top principal components. Mahalanobis distance is used for outlier detect and multivariate normal assumption is used to compute p-values.

Usage

```r
outlierByAssay(object, assays = names(object), nPC = 2, robust = FALSE, ...)
```

Arguments

- `object`: `dreamletProcessedData` from `processAssays()`
- `assays`: assays / cell types to analyze
- `nPC`: number of PCs to uses for outlier score with `outlier()`
- `robust`: use robust covariance method, defaults to FALSE
- `...`: arguments passed to `MASS::cov.rob()`

Value

- ID: sample identifier
- assay: specify assay
- PCs: principal components
- chisq: mahalanobis distance that is distributed as chisq(k) k = nPC if the data is multivariate gaussian
- z: z-score corresponding to the chisq distance

See Also

`outlier()`
Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Compute PCs and outlier scores
outlierByAssay(res.proc, c("B cells", "CD14+ Monocytes"))
```

pbWeights

Compute precision weights for pseudobulk

Description

Compute precision weights for pseudobulk using the delta method to approximate the variance of the log2 counts per million considering variation in the number of cells and gene expression variance across cells within each sample. By default, used number of cells; if specified use delta method. Note that `processAssays()` uses number of cells as weights when no weights are specified.

Usage

```r
pbWeights(
sce, sample_id, cluster_id, geneList = NULL, method = c("delta", "ncells"), shrink = TRUE, prior.count = 0.5, maxRatio = 20, h5adBlockSizes = 1e+09, details = FALSE, verbose = TRUE)
```
Arguments

- **sce** SingleCellExperiment of where `counts(sce)` stores the raw count data at the single cell level
- **sample_id** character string specifying which variable to use as sample id
- **cluster_id** character string specifying which variable to use as cluster id
- **geneList** list of genes to be included for each cell type
- **method** select method to compute precision weights. 'delta' use the delta method based on normal approximation to a negative binomial model, slower but can increase power. 'ncells' use the number of cells, this is faster; Subsequent arguments are ignored. Included for testing
- **shrink** Defaults to TRUE. Use empirical Bayes variance shrinkage from limma to shrink estimates of expression variance across cells within each sample
- **prior.count** Defaults to 0.5. Count added to each observation at the pseudobulk level. This is scaled but the number of cells before added to the cell level
- **maxRatio** When computing precision as the reciprocal of variance $1/(x+\tau)$ select τ to have a maximum ratio between the largest and smallest precision
- **h5adBlockSizes** set the automatic block size block size (in bytes) for DelayedArray to read an H5AD file. Larger values use more memory but are faster.
- **details** include data.frame of cell-level statistics as attr(. , "details")
- **verbose** Show messages, defaults to TRUE

Examples

```r
library(muscat)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
   assay = "counts",
   sample_id = "sample_id",
   cluster_id = "cluster_id",
   verbose = FALSE)

# Gene expressed genes for each cell type
geneList = getExprGeneNames(pb)

# Create precision weights for pseudobulk
# By default, weights are set to cell count, # which is the default in processAssays()
# even when no weights are specified
weightsList <- pbWeights(example_sce,
   sample_id = "sample_id",
   cluster_id = "cluster_id",
   geneList = geneList)
```
voom-style normalization using initial weights
res.proc <- processAssays(pb, ~group_id, weightsList = weightsList)

plotBeeswarm

Beeswarm plot of effect sizes for each assay

Description
Beeswarm plot of effect sizes for each assay, colored by sign and FDR

Usage

```r
plotBeeswarm(res.dl, coef, fdr.range = 4, assays = assayNames(res.dl))
```

Arguments

- `res.dl`: dreamletResult object from `dreamlet()`
- `coef`: coefficient name fed to `topTable()`
- `fdr.range`: range for coloring FDR
- `assays`: which assays to plot

Value

`ggplot2` of logFC by assay

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# Beeswarm plot of effect sizes for each assay,
```
plotCellComposition

colored by sign and FDR
plotBeeswarm(res.dl, "group_idstim")

plotCellComposition
Bar plot of cell compositions

Description

Bar plot of cell compositions

Usage

plotCellComposition(obj, col, width = NULL)

S4 method for signature 'SingleCellExperiment'
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'matrix'
plotCellComposition(obj, col, width = NULL)

S4 method for signature 'data.frame'
plotCellComposition(obj, col, width = NULL)

Arguments

obj matrix of [cells] x [samples] or SingleCellExperiment from aggregateToPseudoBulk
col array of colors. If missing, use default colors. If names(col) is the same as
arrayNames(obj), then colors will be assigned by assay name#
width specify width of bars

Value

Barplot showing cell fractions

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
```r

plotForest

Forest plot

Description
Forest plot

Usage
plotForest(x, gene, coef, ...)

## S4 method for signature 'dreamletResult'
plotForest(x, gene, coef, assays = names(x), ylim = NULL)

## S4 method for signature 'dreamlet_mash_result'
plotForest(x, gene, coef, assays = colnames(x$logFC.original), ylim = NULL)

Arguments
- `x`: result from dreamlet
- `gene`: gene to show results for
- `coef`: coefficient to test with topTable
- `...`: other arguments
- `assays`: array of assays to plot
- `ylim`: limits for the y axis

Value
Plot showing effect sizes
plotGeneHeatmap

**Examples**

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

show coefficients estimated for each cell type
coefNames(res.dl)

Show estimated log fold change with in each cell type
plotForest(res.dl, gene = "ISG20", coef = "group_idstim")
```

---

**plotGeneHeatmap**

Heatmap of genes and assays

**Description**

Heatmap of genes and assays

**Usage**

```r
plotGeneHeatmap(
 x,
 coef,
 genes,
 assays = assayNames(x),
 zmax = NULL,
 transpose = FALSE
)
```

## S4 method for signature 'dreamletResult'

```r
plotGeneHeatmap(
 x,
```
Arguments

**x**
A dreamletResult object

**coef**
column number or column name specifying which coefficient or contrast of the linear model is of interest.

**genes**
array of genes to include in plot

**assays**
array of assay names to include in analysis. Defaults to assayNames(x)

**zmax**
maximum z.std value

**transpose**
(default: FALSE) Use ‘coord_flip()’ to flip axes

Value
Heatmap plot for specified genes and assays
Heatmap plot for specified genes and assays

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts", cluster_id = "cluster_id", sample_id = "sample_id", verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay, evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Heatmap for specified subset of genes
plotGeneHeatmap(res.dl, coef = "group_idstim", genes = rownames(pb)[1:15])
```
plotHeatmap

Description

Plot heatmap

Usage

plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)

## S4 method for signature 'cellSpecificityValues'
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)

## S4 method for signature 'data.frame'
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)

## S4 method for signature 'matrix'
plotHeatmap(
  x,
  genes = rownames(x),
  color = "darkblue",
  assays = colnames(x),
  useFillScale = TRUE
)

Arguments

  x  fractions for each gene
genes: name of genes to plot  
color: color of heatmap  
assays: array of assays to plot  
useFillScale: default TRUE. add scale_fill_gradient() to plot

Value

heatmap

Examples

library(muscat)  
library(SingleCellExperiment)  
data(example_sce)  
# create pseudobulk for each sample and cell cluster  
pb <- aggregateToPseudoBulk(example_sce,  
  assay = "counts",  
  cluster_id = "cluster_id",  
  sample_id = "sample_id",  
  verbose = FALSE  
)  
# Compute cell type specificity of each gene  
df <- cellTypeSpecificity(pb)  
# For each cell type, get most specific gene  
genes <- rownames(df)[apply(df, 2, which.max)]  
# heatmap of 5 genes that are most cell type specific  
dreamlet::plotHeatmap(df, genes = genes)

plotPCA

Plot PCA of gene expression for an assay

Description

Compute PCA of gene expression for an assay, and plot samples coloring by outlier score

Usage

## S4 method for signature 'list'  
plotPCA(  
  object,  
  assays = names(object),  
  nPC = 2,  
  robust = FALSE,
plotPCA

....
maxOutlierZ = 20,
nrow = 2,
size = 2,
fdr.cutoff = 0.05
)

Arguments

object  dreamletProcessedData from processAssays() or a list from residuals()
assays  assays / cell types to analyze
nPC    number of PCs to uses for outlier score with outlier()
robust use robust covariance method, defaults to FALSE
... arguments passed to MASS::cov.rob()
maxOutlierZ cap outlier z-scores at this value for plotting to maintain consistent color scale
nrow    number of rows in plot
size    size passed to geom_point()
fdr.cutoff FDR cutoff to determine outlier

See Also

outlierByAssay()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# PCA to identify outliers
# from normalized expression
plotPCA( res.proc, c("B cells", "CD14+ Monocytes"))

# Run on regression residuals
#---------------------------

# Regression analysis
```r
fit = dreamlet(res.proc, ~ group_id)

Extract regression residuals
residsObj = residuals(fit)

PCA on residuals
plotPCA(residsObj, c("B cells", "CD14+ Monocytes"))
```

---

**Description**

Bar plot of variance fractions for a subset of genes

**Usage**

```r
S4 method for signature 'vpDF'
plotPercentBars(x,
 col = c(ggColorHue(ncol(x) - 3), "grey85"),
 genes = unique(x$gene),
 width = NULL,
 ncol = 3,
 ...
)

S4 method for signature 'cellSpecificityValues'
plotPercentBars(x,
 col = ggColorHue(ncol(x)),
 genes = rownames(x),
 width = NULL,
 ...
)
```

**Arguments**

- `x` vpDF object returned by `fitVarPart`
- `col` color of bars for each variable
- `genes` name of genes to plot
- `width` specify width of bars
- `ncol` number of columns in the plot
- `...` other arguments
plotProjection

Value

Bar plot showing variance fractions for each gene

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

Show variance fractions at the gene-level for each cell type
plotPercentBars(vp, genes = vp$gene[2:4], ncol = 2)
```

Description

Plot 2D projection (i.e. UMAP, tSNE) for millions of cells efficiently

Usage

```r
plotProjection(
 sce,
 type,
 annotation,
 pointsize = 0,
 pixels = c(512, 512),
 legend.position = "none",
 text = TRUE,
 order
)```
plotVarPart,DataFrame-method

Arguments

- `sce` SingleCellExperiment
- `type` field in `reducedDims(sce)` to plot
- `annotation` column in `colData(sce)` to annotate each cell
- `pointsize` Radius of rasterized point. Use 0 for single pixels (fastest).
- `pixels` Vector with X and Y resolution of the raster, default c(512, 512)
- `legend.position` legend.position: the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
- `text` show annotation as text. Default TRUE
- `order` specify order of levels for annotation

Details

Uses `scattermore::geom_scattermore()` to plot millions of points efficiently

Value

ggplot2 plot of the projection

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)
plotProjection(example_sce, "TSNE", "cluster_id", 1)
```

plotVarPart,DataFrame-method

Violin plot of variance fractions

Description

Violin plot of variance fraction for each gene and each variable

Usage

```r
## S4 method for signature 'DataFrame'
plotVarPart(
  obj,
  col = c(ggColorHue(base::ncol(obj) - 3), "grey85"),
  label.angle = 20,
  main = "",
```

Arguments

- **obj**: varParFrac object returned by fitExtractVarPart or extractVarPart
- **col**: vector of colors
- **label.angle**: angle of labels on x-axis
- **main**: title of plot
- **ylab**: text on y-axis
- **convertToPercent**: multiply fractions by 100 to convert to percent values
- **ncol**: number of columns in the plot
- **...**: additional arguments

Value

Violin plot showing variance fractions

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp)
```
plotViolin

Plot Violins

Description
Plot Violins

Usage
plotViolin(x, ...)

S4 method for signature 'cellSpecificityValues'
plotViolin(x, assays = colnames(x))

Arguments
x fractions for each gene
... other arguments
assays array of assays to plot

Value
Violin plot

Examples
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)

Compute cell type specificity of each gene
df <- cellTypeSpecificity(pb)

Violin plot of specificity scores for each cell type
Dashed line indicates genes that are equally expressed
across all cell types. For K cell types, this is 1/K
plotViolin(df)
plotVolcano

Volcano plot for each cell type

Description

Volcano plot for each cell type

Usage

plotVolcano(
 x,
 coef,
 nGenes = 5,
 size = 12,
 minp = 9.99999999999997e-311,
 cutoff = 0.05,
 ncol = 3,
 ...
)

S4 method for signature 'list'
plotVolcano(
 x,
 coef,
 nGenes = 5,
 size = 12,
 minp = 9.99999999999997e-311,
 cutoff = 0.05,
 ncol = 3,
 assays = names(x),
 ...
)

S4 method for signature 'MArrayLM'
plotVolcano(
 x,
 coef,
 nGenes = 5,
 size = 12,
 minp = 9.99999999999997e-311,
 cutoff = 0.05,
 ncol = 3,
 ...
)

S4 method for signature 'dreamlet_mash_result'
plotVolcano(

plotVolcano

x, coef, nGenes = 5, size = 12, minp = 1e-16, cutoff = 0.05, ncol = 3, assays = colnames(x$logFC.original), ...
)

Arguments

x result from dreamlet
coef coefficient to test with topTable
nGenes number of genes to highlight in each volcano plot
size text size
minp minimum p-value to show on the y-axis
cutoff adj.P.Val cutoff to distinguish significant from non-significant genes
ncol number of columns in the plot
... arguments passed to facet_wrap(). Useful for specifying scales = "free_y"
assays which assays to plot

Value

Volcano plot for each cell type

Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)
show coefficients estimated for each cell type
coeFNames(res.dl)

volcano plot for each cell type
plotVolcano(res.dl, coef = "group_idstim")

volcano plot for first two cell types
plotVolcano(res.dl[1:2], coef = "group_idstim")

plotVoom

Plot voom curves from each cell type

Description

Plot voom curves from each cell type

Usage

```r
plotVoom(x, ncol = 3, alpha = 0.5, ...)
```

S4 method for signature 'dreamletProcessedData'

```r
plotVoom(x, ncol = 3, alpha = 0.5, assays = names(x))
```

S4 method for signature 'EList'

```r
plotVoom(x, ncol = 3, alpha = 0.5)
```

Arguments

- `x` : dreamletProcessedData
- `ncol` : number of columns in the plot
- `alpha` : transparency of points
- `...` : other arguments
- `assays` : which assays to plot

Value

Plot of mean-variance trend

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
```
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE
)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Show mean-variance trend from voom
plotVoom(res.proc)

plot for first two cell types
plotVoom(res.proc[1:2])

print,dreamletResult-method

Print object

Description
Print object
Print object

Usage

```r
## S4 method for signature 'dreamletResult'
print(x, ...)

## S4 method for signature 'dreamletProcessedData'
print(x, ...)
```

Arguments

- `x` dreamletProcessedData object
- `...` other arguments

Value
print data stored in object
processAssays

Processing SingleCellExperiment to dreamletProcessedData

Description

For raw counts, estimate precision weights using linear mixed model weighting by number of cells observed for each sample. For normalized data, only weight by number of cells.

Usage

```r
processAssays(
  sceObj,
  formula,
  assays = assayNames(sceObj),
  min.cells = 5,
  min.count = 5,
  min.samples = 4,
  min.prop = 0.4,
  isCounts = TRUE,
  normalize.method = "TMM",
  span = "auto",
  quiet = FALSE,
  weightsList = NULL,
  BPPARAM = SerialParam(),
  ...
)
```

Arguments

- `sceObj`: SingleCellExperiment object
- `formula`: regression formula for differential expression analysis
- `assays`: array of assay names to include in analysis. Defaults to `assayNames(sceObj)`
- `min.cells`: minimum number of observed cells for a sample to be included in the analysis
- `min.count`: minimum number of reads for a gene to be considered expressed in a sample. Passed to `edgeR::filterByExpr`
- `min.samples`: minimum number of samples passing cutoffs for cell cluster to be retained
- `min.prop`: minimum proportion of retained samples with non-zero counts for a gene to be retained
- `isCounts`: logical, indicating if data is raw counts
- `normalize.method`: normalization method to be used by `calcNormFactors`
- `span`: Loess smoothing parameter using by `variancePartition::voomWithDreamWeights()`
- `quiet`: show messages
weightsList list storing matrix of precision weights for each cell type. If NULL precision weights are set to 1
BPPARAM parameters for parallel evaluation
... other arguments passed to dream

Details

For each cell cluster, samples with at least \textit{min.cells} are retained. Only clusters with at least \textit{min.samples} retained samples are kept. Genes are retained if they have at least \textit{min.count} reads in at least \textit{min.prop} fraction of the samples. Current values are reasonable defaults, since genes that don’t pass these cutoffs are very underpowered for differential expression analysis and only increase the multiple testing burden. But values of \textit{min.cells} = 2 and \textit{min.count} = 2 are also reasonable to include more genes in the analysis.

The precision weights are estimated using the residuals fit from the specified formula. These weights are robust to changes in the formula as long as the major variables explaining the highest fraction of the variance are included.

If \texttt{weightsList} is NULL, precision weights are set to 1 internally.

Value

Object of class \texttt{dreamletProcessedData} storing voom-style normalized expression data

Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce, 
assay = "counts", 
cluster_id = "cluster_id", 
sample_id = "sample_id", 
verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)
#```
processOneAssay

ProcessOneAssay

Processing expression data from assay

Description

For raw counts, filter genes and samples, then estimate precision weights using linear mixed model weighting by number of cells observed for each sample. For normalized data, only weight by number of cells.

Usage

processOneAssay(
  y,
  formula,
  data,
  n.cells,
  min.cells = 5,
  min.count = 5,
  min.samples = 4,
  min.prop = 0.4,
  min.total.count = 15,
  isCounts = TRUE,
  normalize.method = "TMM",
  span = "auto",
  quiet = TRUE,
  weights = NULL,
  BPPARAM = SerialParam(),
  ...
)

Arguments

y                     matrix of counts or log2 CPM
formula               regression formula for differential expression analysis
data                  metadata used in regression formula
n.cells               array of cell count for each sample
min.cells             minimum number of observed cells for a sample to be included in the analysis
min.count             minimum number of reads for a gene to be considered expressed in a sample. Passed to edgeR::filterByExpr
min.samples           minimum number of samples passing cutoffs for cell cluster to be retained
min.prop              minimum proportion of retained samples with non-zero counts
min.total.count       minimum total count required per gene for inclusion
isCounts             logical, indicating if data is raw counts
removeConstantTerms

Arguments

Value

Examples

# Valid formula
removeConstantTerms(~ group + extra, sleep)

# there is no variation in 'group' in this dataset
removeConstantTerms(~ group + extra, sleep[1:3, ])

Description

Remove constant terms from formula. Also remove categorical variables with a max of one example per category

Usage

removeConstantTerms(formula, data)

Arguments

formula original formula
data data.frame

Details

Adapted from MoEClust::drop_constants

Value

a formula, possibly with terms omitted.

See Also

processAssays()
residuals.dreamletResult-method

Extract residuals from dreamletResult

Description

Extract residuals from dreamletResult

Usage

## S4 method for signature 'dreamletResult'
residuals(object, y, ..., type = c("response", "pearson"))

Arguments

- **object**: dreamletResult object
- **y**: dreamletProcessedData object
- **...**: other arguments
- **type**: compute either "response" residuals or "pearson" residuals.

Details

"response" residuals are the typical residuals returned from \texttt{lm()}. "pearson" residuals divides each residual value by its estimated standard error. This requires specifying \texttt{y}

Value

residuals from model fit

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay,
```
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# extract typical residuals for each assay (i.e. cell type)
# Return list with entry for each assay with for retained samples and genes
resid.lst <- residuals(res.dl)

# Get Pearson residuals:
# typical residuals scaled by the standard deviation
residPearson.lst <- residuals(res.dl, res.proc, type = "pearson")

---

**run_mash**  
*Run mash analysis on dreamlet results*

**Description**

Run mash analysis on dreamlet results.

**Usage**

```r
run_mash(fit, coefList)
```

**Arguments**

- `fit`: result from `dreamlet()`
- `coefList`: coefficient to be analyzed

**Details**

Apply **mashr** analysis (Urbut et al. 2019) on the joint set of coefficients for each gene and cell type. **mashr** is a Bayesian statistical method that borrows strength across tests (i.e. genes and cell types) by learning the distribution of non-zero effects based the observed logFC and standard errors. The method then estimates the posterior distributions of each coefficient based on the observed value and the genome-wide empirical distribution.

*mashr* has been previously applied to differential expression in GTEx data using multiple tissues from the same set of donors (Oliva et al. 2020).

In single cell data, a given gene is often not sufficiently expressed in all cell types. So it is not evaluated in a subsets of cell types, and its coefficient value is NA. Since mashr assumes coefficients and standard errors for every gene and cell type pair, entries with these missing values are set to have `coef = 0`, and `se = 1e6`. The output of mashr is then modified to set the corresponding values to NA, to avoid nonsensical results downstream.

**Value**

A list storing the **mashr** model as `model` and the original coefficients as `logFC.original`.
run_mash

References


See Also

mashr::mash_estimate_corr_em(), mashr::cov_canonical, mashr::mash_set_data

Examples

library(muscat)
library(mashr)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudobulk(example_sce[1:100, ],
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay, # evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# run MASH model
# This can take 10s of minutes on real data
# This small datasets should take ~30s
res_mash <- run_mash(res.dl, "group_idstim")

# extract statistics from mashr model
# NA values indicate genes not sufficiently expressed
# in a given cell type

# original logFC
head(res_mash$logFC.original)

# posterior mean for logFC
head(get_pm(res_mash$model))
# how many gene-by-celltype tests are significant
# i.e. if a gene is significant in 2 celltypes, it is counted twice
table(get_lfsr(res_mash$model) < 0.05, useNA = "ifany")

# how many genes are significant in at least one cell type
table(apply(get_lfsr(res_mash$model), 1, min, na.rm = TRUE) < 0.05)

# how many genes are significant in each cell type
apply(get_lfsr(res_mash$model), 2, function(x) sum(x < 0.05, na.rm = TRUE))

# examine top set of genes
# which genes are significant in at least 1 cell type
sort(names(get_significant_results(res_mash$model)))[1:10]

# Lets examine ENO1
# There is a lot of variation in the raw logFC
res_mash$logFC.original["ENO1", ]

# posterior mean after borrowing across cell type and genes
get_pm(res_mash$model)["ENO1", ]

# forest plot based on mashr results
plotForest(res_mash, "ENO1")

# volcano plot based on mashr results
# yaxis uses local false sign rate (lfsr)
plotVolcano(res_mash)

# Comment out to reduce package runtime
# gene set analysis using mashr results
# library(zenith)
# go.gs = get_GeneOntology("CC", to="SYMBOL")
# df_gs = zenith_gsa(res_mash, go.gs)

# Heatmap of results
# plotZenithResults(df_gs, 2, 1)

---

**seeErrors**

*Get error text*

**Description**

Get error text

**Usage**

```r
seeErrors(obj)
```

## S4 method for signature 'dreamletResult'
seeErrors(obj)

## S4 method for signature 'dreamletProcessedData'
seeErrors(obj)

## S4 method for signature 'vpDF'
seeErrors(obj)

### Arguments

obj  
A dreamletResult object

### Value

tibble storing error text

### Examples

library(muscat)
library(SingleCellExperiment)
data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# show errors
# but none are reported
res.err = seeErrors(res.dl)
sortCols, vpDF-method

Sort variance partition statistics

Description
Sort variance partition statistics

Usage
## S4 method for signature 'vpDF'
sortCols(x, FUN = sum, decreasing = TRUE, last = c("Residuals", "Measurement.error"), ...)

Arguments
x object returned by fitVarPart()
FUN function giving summary statistic to sort by. Defaults to sum
decreasing logical. Should the sorting be increasing or decreasing?
last columns to be placed on the right, regardless of values in these columns
...
other arguments to sort
stackAssays

Value

data.frame with columns sorted by mean value, with Residuals in last column

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# variance partitioning analysis
vp <- fitVarPart(res.proc, ~group_id)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(sortCols(vp))

stackAssays  Stack assays from pseudobulk

Description

Stack assays from pseudobulk to perform analysis across cell types

Usage

stackAssays(pb, assays = assayNames(pb))

Arguments

pb  pseudobulk SingleCellExperiment from aggregateToPseudoBulk()
assays  array of assay names to include in analysis. Defaults to assayNames(pb)

Value

cbind'ing expression values and rbind'ing colData. The column stackedAssay in colData() stores the assay information of the stacked data.
Examples

```r
library(muscat)
library(SingleCellExperiment)

data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

Stack assays for joint analysis
pb.stack <- stackAssays(pb)

voom-style normalization
assay (i.e. cell type) can now be included as a covariate
res.proc <- processAssays(pb.stack, ~ group_id + stackedAssay)

variance partitioning analysis
vp <- fitVarPart(res.proc, ~ group_id + stackedAssay)

Summarize variance fractions across cell types
plotVarPart(sortCols(vp))

Interaction analysis allows group_id
to have a different effect within each stackedAssay
vp2 <- fitVarPart(res.proc, ~ group_id * stackedAssay)

plotVarPart(sortCols(vp2))

Interaction model using random effects
form <- ~ (1 | group_id) + (1 | stackedAssay) + (1 | group_id:stackedAssay)
```

---

**tabToMatrix**

Convert results table to matrix

**Description**

Convert results table to matrix

**Usage**

```r
tabToMatrix(tab, col, rn = "ID", cn = "assay")
```
### Arguments

- **tab**: results table from `topTable()`
- **col**: which column to extract
- **rn**: column id storing rownames
- **cn**: column id storing colnames

### Value

matrix storing values of column `col` in rows defined by `rn` and columns defined by `cn`
vpDF-class

Value
data.frame storing hypothesis test for each gene and cell type

See Also
limma::topTable(), variancePartition::topTable()

Examples
library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# Differential expression analysis within each assay,
# evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

# show coefficients estimated for each cell type
coefNames(res.dl)

# extract results using limma-style syntax
# combines all cell types together
# adj.P.Val gives study-wide FDR
topTable(res.dl, coef = "group_idstim", number = 3)

---

vpDF-class

Class vpDF

Description
Class vpDF stores results for each gene for each assay

Value
none

none
Perform gene set analysis using zenith

Description

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

```r
S4 method for signature 'dreamletResult,GeneSetCollection'
zenith_gsa(
 fit,
 geneSets,
 coefs,
 use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
 ...
)
```

```r
S4 method for signature 'dreamlet_mash_result,GeneSetCollection'
zenith_gsa(
 fit,
 geneSets,
 coefs,
 use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
 ...
)
```

Arguments

- `fit`: results from `dreamlet()`
- `geneSets`: `GeneSetCollection`
- `coefs`: coefficients to test using `topTable(fit, coef=coefs[i])`
- `use.ranks`: do a rank-based test `TRUE` or a parametric test `FALSE`? default: `FALSE`
- `n_genes_min`: minimum number of genes in a geneset
- `inter.gene.cor`: if NA, estimate correlation from data. Otherwise, use specified value
- `progressbar`: if `TRUE`, show progress bar
- `...`: other arguments
Details

This code adapts the widely used `camera()` analysis (Wu and Smyth 2012) in the `limma` package (Ritchie et al. 2015) to the case of linear (mixed) models used by `variancePartition::dream()`.

Value

data.frame of results for each gene set and cell type
data.frame of results for each gene set and cell type

Examples

```r
library(muscat)
library(SingleCellExperiment)
data(example_sce)

create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
 assay = "counts",
 cluster_id = "cluster_id",
 sample_id = "sample_id",
 verbose = FALSE)

voom-style normalization
res.proc <- processAssays(pb, ~group_id)

Differential expression analysis within each assay, # evaluated on the voom normalized data
res.dl <- dreamlet(res.proc, ~group_id)

Load Gene Ontology database
use gene 'SYMBOL', or 'ENSEMBL' id
use `get_MSigDB()` to load MSigDB
library(zenith)
go.gs <- get_GeneOntology("CC", to = "SYMBOL")

Run zenith gene set analysis on result of dreamlet
res_zenith <- zenith_gsa(res.dl, go.gs, "group_idstim", progressbar = FALSE)

for each cell type select 3 genesets with largest t-statistic
and 1 geneset with the lowest
Grey boxes indicate the gene set could not be evaluated because
to few genes were represented
plotZenithResults(res_zenith, 3, 1)
```
### S4 method for signature 'dreamletResult,ANY,ANY,ANY'

```r
x[i]
```

### S4 method for signature 'dreamletProcessedData,ANY,ANY,ANY'

```r
x[i]
```

#### Arguments

- **x**: dreamletProcessedData object
- **i**: indices to extract

#### Value

entries stored at specified index
Index

[.dreamletProcessedData, ANY, ANY, ANY-method] 11
  (.[.dreamletResult, ANY, ANY, ANY-method], assayNames, dreamletResult-method, 11
   assayNames, vpDF, vpDF-method
[[.dreamletProcessedData, dreamletProcessedData-method (assayNames, dreamletResult-method).
  (.[.dreamletResult, ANY, ANY, ANY-method), assayNames, vpDF-method]
[[.dreamletResult, ANY, ANY-method, (assayNames, dreamletResult-method),
  77]
[[.dreamletResult, dreamletResult-method
  ([.dreamletResult, ANY, ANY, ANY-method), BiocParallelParam, 4, 6, 8
   buildClusterTreeFromPB, 11
aggregateNonCountSignal, 4
cellCounts, 12
aggregateToPseudoBulk, 5
cellSpecificityValues-class, 13
aggregateVar, 7
cellTypeSpecificity, 14
as.dreamletResult, 9
checkFormula, 15
assay, dreamletProcessedData, ANY-method
coeffNames, 16
(assay, dreamletResult, ANY-method),
  10
coeffNames, dreamletResult-method
colData, dreamletProcessedData-method,
colData<-, dreamletProcessedData, ANY-method,
  17
data, dreamletProcessedData-method,
details, any, ANY-method, 10
compositePosteriorTest, 18
computeCellCounts, 19
computeLogCPM, 20
computeNormCounts, 21
DelayedMatrixStats, 6
details, 22
details, dreamletProcessedData-method
details, dreamletResult-method
details, vpDF-method (details), 22
diffVar, dreamletResult, dreamletResult-method
diffVar, dreamletResult-method, 23
INDEX

dreamlet, dreamletProcessedData-method (dreamlet), 25
dreamlet_mash_result-class, 31
dreamletCompareClusters, 27
dreamletProcessedData-class, 30
dreamletResult-class, 31
dropRedundantTerms, 32
equalFormulas, 32
extractData, 33
extractData, dreamletProcessedData, character-method (extractData), 33
extractData, dreamletProcessedData-method (extractData), 33
fitVarPart, 34
fitVarPart, dreamletProcessedData-method (fitVarPart), 34
getExprGeneNames, 36
getTreat, dreamletResult, dreamletResult-method (getTreat, dreamletResult-method), 37
getTreat, dreamletResult-method, 37
meta_analysis, 39
metadata, dreamletProcessedData, dreamletProcessedData-method (metadata, dreamletProcessedData-method), 38
metadata, dreamletProcessedData-method, 38
outlier, 40
outlierByAssay, 41
pbWeights, 42
plotBeeswarm, 44
plotCellComposition, 45
plotCellComposition, data.frame-method (plotCellComposition), 45
plotCellComposition, matrix-method (plotCellComposition), 45
plotCellComposition, SingleCellExperiment-method (plotCellComposition), 45
plotForest, 46
plotForest, dreamlet_mash_result-method (plotForest), 46
plotForest, dreamletResult-method (plotForest), 46
plotGeneHeatmap, 47
plotGeneHeatmap, dreamletResult, dreamletResult-method (plotGeneHeatmap), 47
plotGeneHeatmap, dreamletResult-method (plotGeneHeatmap), 47
plotHeatmap, 49
plotHeatmap, cellSpecificityValues, cellSpecificityValues-method (plotHeatmap), 49
plotHeatmap, cellSpecificityValues-method (plotHeatmap), 49
plotHeatmap, data.frame-method (plotHeatmap), 49
plotHeatmap, matrix-method (plotHeatmap), 49
plotHeatmap, matrix-method (plotHeatmap), 49
plotPCA, 50
plotPCA, list-method (plotPCA), 50
plotPercentBars, cellSpecificityValues-method (plotPercentBars, cellSpecificityValues-method), 52
plotPercentBars, cellSpecificityValues-method (plotPercentBars, vpDF-method), 52
plotPercentBars, cellSpecificityValues-method (plotPercentBars, vpDF-method), 52
plotPercentBars, vpDF-method, 52
plotProjection, 53
plotVarPart, DataFrame, DataFrame-method (plotVarPart), 54
plotVarPart, DataFrame-method, 54
plotVolcano, 57
plotVolcano, cellSpecificityValues-method (plotVolcano), 57
plotVolcano, cellSpecificityValues-method (plotVolcano), 57
plotVolcano, list-method (plotVolcano), 57
plotVolcano, list-method (plotVolcano), 57
plotVolcano,MArrayLM,MArrayLM-method
  (plotVolcano), 57
plotVolcano,MArrayLM-method
  (plotVolcano), 57
plotVoom, 59
plotVoom,dreamletProcessedData,dreamletProcessedData-method
  (plotVoom), 59
plotVoom,dreamletProcessedData-method
  (plotVoom), 59
plotVoom,EList-method(plotVoom), 59
plotVoom,list,list-method(plotVoom), 59
print,dreamletProcessedData,dreamletProcessedData-method
  (print,dreamletResult-method), 60
print,dreamletProcessedData-method
  (print,dreamletResult-method), 60
print,dreamletResult,dreamletResult-method
  (print,dreamletResult-method), 60
print,dreamletResult-method, 60
processAssays, 61
processOneAssay, 63
removeConstantTerms, 64
residuals,dreamletResult,dreamletResult-method
  (residuals,dreamletResult-method), 65
residuals,dreamletResult-method, 65
run_mash, 66
seeErrors, 68
seeErrors,dreamletProcessedData-method
  (seeErrors), 68
seeErrors,dreamletResult-method
  (seeErrors), 68
seeErrors,vpDF-method (seeErrors), 68
Seurat, 6
show,dreamletProcessedData,dreamletProcessedData-method
  (show,dreamletResult-method), 69
show,dreamletProcessedData-method
  (show,dreamletResult-method), 69
show,dreamletResult,dreamletResult-method
  (show,dreamletResult-method), 69
show,dreamletResult-method, 69
SingleCellExperiment, 4, 6, 8
sortCols,vpDF-method, 70
stackAssays, 71
tabToMatrix, 72
topTable,dreamletResult,dreamletResult-method
  (topTable,dreamletResult-method), 73
topTable,dreamletResult-method, 73
vpDF-class, 74
zenith_gsa,dreamlet_mash_result,GeneSetCollection,ANY-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamlet_mash_result,GeneSetCollection-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection,ANY-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75

sortCols,vpDF-method, 70
stackAssays, 71
seeErrors, 68
zenith_gsa,dreamlet_mash_result,GeneSetCollection,ANY-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamlet_mash_result,GeneSetCollection-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection,ANY-method
  (zenith_gsa,dreamletResult,GeneSetCollection-method), 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75
zenith_gsa,dreamletResult,GeneSetCollection-method, 75