Package ‘easier’

May 29, 2024

Title Estimate Systems Immune Response from RNA-seq data

Version 1.10.0

Description This package provides a workflow for the use of EaSleR tool, developed to assess patients' likelihood to respond to ICB therapies providing just the patients' RNA-seq data as input. We integrate RNA-seq data with different types of prior knowledge to extract quantitative descriptors of the tumor microenvironment from several points of view, including composition of the immune repertoire, and activity of intra- and extra-cellular communications. Then, we use multi-task machine learning trained in TCGA data to identify how these descriptors can simultaneously predict several state-of-the-art hallmarks of anti-cancer immune response. In this way we derive cancer-specific models and identify cancer-specific systems biomarkers of immune response. These biomarkers have been experimentally validated in the literature and the performance of EaSleR predictions has been validated using independent datasets form four different cancer types with patients treated with anti-PD1 or anti-PDL1 therapy.

License MIT + file LICENSE

Depends R (>= 4.2.0)

Imports progeny, easierData, dorothea (>= 1.6.0), decoupleR, quantiseqr, ROCR, grDevices, stats, graphics, ggplot2, ggrepur, DESeq2, utils, dplyr, tidyr, tibble, matrixStats, rlang, BiocParallel, reshape2, rstatix, ggrepel, magrittr, coin

Suggests knitr, rmarkdown, BiocStyle, testthat, SummarizedExperiment, viper

biocViews GeneExpression, Software, Transcription, SystemsBiology, Pathways, GeneSetEnrichment, ImmunoOncology, Epigenetics, Classification, BiomedicalInformatics, Regression, ExperimentHubSoftware

VignetteBuilder knitr

Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Config/testthat/edition 3

- **git_url** https://git.bioconductor.org/packages/easier
- **git_branch** RELEASE_3_19
- **git_last_commit** 8d040d9
- **git_last_commit_date** 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Oscar Lapuente-Santana [aut, cre]
 (<https://orcid.org/0000-0003-1995-8393>),
 Federico Marini [aut] (<https://orcid.org/0000-0003-3252-7758>),
 Arsenij Ustjanzew [aut] (<https://orcid.org/0000-0002-1014-4521>),
 Francesca Finotello [aut] (<https://orcid.org/0000-0003-0712-4658>),
 Federica Eduati [aut] (<https://orcid.org/0000-0002-7822-3867>)

Maintainer Oscar Lapuente-Santana <o.lapuente.santana@tue.nl>

Contents

- **assess_immune_response** 3
- **calc_z_score** .. 6
- **categorize_TMB** 7
- **compute_Ayers_expIS** 8
- **compute_CCpair_score** 8
- **compute_CC_pairs** 10
- **compute_cell_fractions** 11
- **compute_chemokines** 13
- **compute_CYT** .. 14
- **compute_Davoli_IS** 14
- **compute_IFNy** ... 15
- **compute_IMPRES_MSI** 16
- **compute_LR_pairs** 17
- **compute_pathway_activity** 18
- **compute_RIR** .. 19
- **compute_Roh_IS** 20
- **compute_scores_immune_response** 21
- **compute_Tcell_inflamed** 23
- **compute_TF_activity** 24
- **compute_TLS** ... 25
- **discretize** .. 25
- **easier-pkg** .. 27
- **explore_biomarkers** 27
- **get_OE_bulk** .. 30
- **get_semi_random_OE** 31
- **predict_immune_response** 33
assess_immune_response

predict_with_rmtlr .. 36
reannotate_genes ... 37
retrieve_easier_score .. 38
rmtlr_test ... 41

Index

43

assess_immune_response

Assess easier score as predictor of patients’ immune response

Description

Assess easier score as predictor of patients’ immune response. Evaluates the predictive performance of easier score as predictor of patients’ immune response. This is done for each quantitative descriptor, an ensemble descriptor based on the average of the individual ones, and the gold standard scores. If provided, tumor mutational burden (TMB) is also used as predictor for comparison. Since both immune response and TMB are essential for effective immunotherapy response, an integrated score is calculated given two different approaches based on applying either a weighted average or penalty to patients’ easier score depending on their TMB category.

Usage

assess_immune_response(
 predictions_immune_response = NULL,
 patient_response = NULL,
 RNA_tpm = NULL,
 select_gold_standard = NULL,
 TMB_values = NULL,
 easier_with_TMB = "none",
 weight_penalty = NULL,
 verbose = TRUE
)

Arguments

predictions_immune_response
 list containing the predictions for each quantitative descriptor and for each task. This is the output from predict_immune_response.

patient_response
 character vector with two factors (Non-responders = NR, Responders = R).

RNA_tpm
 numeric matrix of patients’ gene expression data as tpm values.

select_gold_standard
 character string with names of scores of immune response to be computed. Default scores are computed for: "CYT", "Roh_IS", "chemokines", "Davoli_IS", "IFNy", "Ayers_expIS", "Tcell_inflamed", "RIR", "TLS".

TMB_values
 numeric vector containing patients’ tumor mutational burden (TMB) values.
assess_immune_response

easier_with_TMB
character string indicating which approach should be used to integrate easier with TMB. If TMB_values provided, one of "weighted_average" (default) or "penalized_score". If TMB_values not provided, default is "none".

weight_penalty
integer value from 0 to 1, which is used to define the weight or penalty for combining easier and TMB scores based on a weighted average or penalized score, in order to derive a score of patient's likelihood of immune response. The default value is 0.5.

verbose
logical flag indicating whether to display messages about the process.

Value

When patient_response is provided, a roc curve plot and a bar plot that displays the average (across tasks) area under the ROC curve (AUC) values is returned. If patient_response is not provided, the easier score is represented as box plots (10 tasks) for each patient.

When patient_response is provided and easier_with_TMB = weighted_average or easier_with_TMB = penalized_score, an scatter plot that shows the AUC values of the integrated approach, easier score and TMB is returned. If in this case, patient_response is not provided, the integrated score is represented as a dot plot for each patient.

Examples

using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e", "SAMba1a34b5a860", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]

Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activities <- compute_TF_activity(
 RNA_tpm = RNA_tpm
)

Predict patients' immune response
predictions <- predict_immune_response(
 tfs = tf_activities,
 cancer_type = cancer_type,
 verbose = TRUE
)
retrieve clinical response
patient_ICBresponse <- colData(dataset_mariathasan)["BOR"]
names(patient_ICBresponse) <- colData(dataset_mariathasan)["pat_id"]

retrieve TMB
TMB <- colData(dataset_mariathasan)["TMB"]
names(TMB) <- colData(dataset_mariathasan)["pat_id"]

patient_ICBresponse <- patient_ICBresponse[match(names(patient_ICBresponse), pat_subset)]
TMB <- TMB[match(names(TMB), pat_subset)]

Assess patient-specific likelihood of response to ICB therapy
output_eval_with_resp <- assess_immune_response(
 predictions_immune_response = predictions,
 patient_response = patient_ICBresponse,
 RNA_tpm = RNA_tpm,
 select_gold_standard = "IFNy",
 TMB_values = TMB,
 easier_with_TMB = "weighted_average",
)

RNA_counts <- assays(dataset_mariathasan)["counts"]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]

Computation of cell fractions (Finotello et al., Genome Med, 2019)
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)

Computation of pathway scores (Holland et al., BBAGRM, 2019; Schubert et al., Nat Commun, 2018)
pathway_activities <- compute_pathway_activity(
 RNA_counts = RNA_counts,
 remove_sig_genes_immune_response = TRUE
)

Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
 RNA_tpm = RNA_tpm,
 cancer_type = "pancan"
)

Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
 lrpairs = lrpair_weights,
 cancer_type = "pancan"
)

Predict patients' immune response
predictions <- predict_immune_response(
 pathways = pathway_activities,
 immunecells = cell_fractions,
 tfs = tf_activities,
calc_z_score

Perform matrix Z-score normalization

description

Applies z-score normalization on a numeric matrix per column. Z-score values are calculated based on the input matrix. If mean and standard deviation values are provided, these are used instead.

Usage

calc_z_score(X, mean, sd)

Arguments

- **X**: numeric matrix.
- **mean**: numeric vector with mean values.
- **sd**: numeric vector with standard deviation values.

Value

A numeric matrix with values as z-scores.

Examples

using a SummarizedExperiment object
library(SummarizedExperiment)

Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

lrpairs = lrpair_weights,
ccpairs = ccpair_scores,
cancer_type = cancer_type,
verbose = TRUE

Assess patient-specific likelihood of response to ICB therapy
output_eval_with_resp <- assess_immune_response(
 predictions_immune_response = predictions,
 patient_response = patient_ICBresponse,
 RNA_tpm = RNA_tpm,
 TMB_values = TMB,
 easier_with_TMB = "weighted_average",
)
Select a subset of patients to reduce vignette building time.
pat_subset <- c(
 "SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a060", "SAM18a4dabc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

apply z-score normalization
tpm_zscore <- calc_z_score(t(RNA_tpm))

categorize_TMB

Define tumor mutational burden (TMB) categories.

Description
Encodes tumor mutational burden (TMB) from numerical into categorical variable.

Usage

categorize_TMB(TMB, thresholds = NULL)

Arguments

TMB numeric vector with tumor mutational burden values.
thresholds numeric vector to specify thresholds to be used. Default thresholds are low (<100), moderate (100-400) and high TMB (>400).

Value

A numeric vector assigning each sample a class from 1 (low TMB) to 3 (high TMB).

Examples

using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
TMB <- colData(dataset_mariathasan)[["TMB"]]
names(TMB) <- colData(dataset_mariathasan)[["pat_id"]]

Convert TMB continuous values into categories
TMB_cat <- categorize_TMB(TMB = TMB)
compute_Ayers_expIS
Compute Expanded Immune signature (Ayers_expIS) score

Description
Calculates Ayers_expIS score as the average expression of its signature genes, as defined in Ayers et al., J. Clin. Invest, 2017.

Usage
```r
compute_Ayers_expIS(matches, RNA_tpm)
```

Arguments
- `matches` numeric vector indicating the index of signature genes in RNA_tpm.
- `RNA_tpm` numeric matrix with rows=genes and columns=samples.

Value
A numeric matrix with rows=samples and columns=Expanded Immune signature score.

References

compute_CCpair_score
Compute cell-cell pair score

Description
Derives a score for each cell-cell pair feature.

Usage
```r
compute_CCpair_score(  
  celltype1,  
  celltype2,  
  intercell_network,  
  lrpairs_binary,  
  lr_frequency,  
  compute_log = TRUE)
)```
compute_CCpair_score

Arguments

- **celltype1**: string character with first cell type involved in the interaction.
- **celltype2**: string character with second cell type involved in the interaction.
- **intercell_network**: matrix with data on cell types interaction network. This is available from easierData package through `easierData::get_intercell_networks()`.
- **lrpairs_binary**: binary vector displaying LR pairs with non-zero frequency.
- **lr_frequency**: numeric vector with LR pairs frequency across the whole TCGA database. This is available from easierData package through `easierData::get_lr_frequency_TCGA()`.
- **compute_log**: boolean variable indicating whether the log of the weighted score should be returned.

Value

A numeric vector with weighted scores.

Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)["tpm"]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
RNA_tpm = RNA_tpm,
 cancer_type = "pancan"
)

remove ligand receptor pairs that are always NA
na_lrpairs <- apply(lrpairs_binary, 2, function(x) {
 all(is.na(x))
})
lrpairs_binary <- ifelse(lrpair_weights > log2(10 + 1), 1, 0)
```
# keep only the LR.pairs for which I have (non-zero) frequencies in the TCGA
lr_frequency <- suppressMessages(easierData::get_lr_frequency_TCGA())
llrpairs_binary <- lrpairs_binary[, colnames(llrpairs_binary) %in% names(lr_frequency)]

# cancer type specific network
intercell_networks <- suppressMessages(easierData::get_intercell_networks())
intercell_network_pancan <- intercell_networks["pancan"]
celltypes <- unique(c(
  as.character(intercell_network_pancan$cell1),
  as.character(intercell_network_pancan$cell2)
))
celltype1 <- celltypes[1]
celltype2 <- celltypes[1]

# compute the CC score for each patient
CCpair_score <- compute_CCpair_score(celltype1, celltype2,
                                      intercell_network_pancan,
                                      lrpairs_binary, lr_frequency,
                                      compute_log = TRUE)

---

compute_CC_pairs

Compute cell-cell interactions scores using computed ligand-receptor weights

Description

Infers scores of cell-cell interactions in the tumor microenvironment (Lapuente-Santana et al., Patterns, 2021) using the ligand-receptor weights obtained from compute_LR_pairs as input.

Usage

```r
compute_CC_pairs(lrpairs = NULL, cancer_type = "pancan", verbose = TRUE)
```

Arguments

- `lrpairs`: output of the compute_LR_pairs function. A matrix of log2(TPM +1) weights with samples in rows and ligand-receptor pairs in columns. This is the output from compute_LR_pairs.
- `cancer_type`: string detailing the cancer type whose cell-cell interaction network will be used. By default, a pan-cancer network is selected whose network represents the union of all ligand-receptor pairs present across the 18 cancer types studied in Lapuente-Santana et al., Patterns, 2021.
- `verbose`: logical value indicating whether to display informative messages about the process.
compute_cell_fractions

**Value**

A matrix of scores with samples in rows and cell-cell pairs in columns.

**References**


**Examples**

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a060", "SAM18a4dabc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
 RNA_tpm = RNA_tpm,
 cancer_type = "pancan"
)

Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
 lrpairs = lrpair_weights,
 cancer_type = "pancan"
)
```

**Description**

Estimates cell fractions from TPM bulk gene expression using quanTIseq method from Finotello et al., Genome Med, 2019.
compute_cell_fractions

Usage

compute_cell_fractions(RNA_tpm = NULL, verbose = TRUE)

Arguments

RNA_tpm     data.frame containing TPM values with HGNC symbols in rows and samples in columns.
verbose     logical value indicating whether to display messages about the number of immune cell signature genes found in the gene expression data provided.

Value

A numeric matrix of normalized enrichment scores with samples in rows and cell types in columns.

References


Examples

# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)["tpm"]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996935", "SAMd3601288319e", "SAMba1a34b5a5a60", "SAM18a4dabbc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Some genes are causing issues due to approved symbols matching more than one gene
genes_info <- easier::reannotate_genes(cur_genes = rownames(RNA_tpm))
## Remove non-approved symbols
non_na <- !is.na(genes_info$new_names)
RNA_tpm <- RNA_tpm[non_na, ]
genes_info <- genes_info[non_na, ]
## Remove entries that are withdrawn
RNA_tpm <- RNA_tpm[-which(genes_info$new_names == "entry withdrawn")]
genes_info <- genes_info[-which(genes_info$new_names == "entry withdrawn")]
## Identify duplicated new genes
newnames_dup <- unique(genes_info$new_names[duplicated(genes_info$new_names)])
newnames_dup_ind <- do.call(c, lapply(newnames_dup, function(X) which(genes_info$new_names == X)))
newnames_dup <- genes_info$new_names[newnames_dup_ind]

## Retrieve data for duplicated genes
tmp <- RNA_tpm[genes_info$old_names[genes_info$new_names %in% newnames_dup],]
## Remove data for duplicated genes
RNA_tpm <- RNA_tpm[-which(rownames(RNA_tpm) %in% rownames(tmp)),]
## Aggregate data of duplicated genes
dup_genes <- genes_info$new_names[which(genes_info$new_names %in% newnames_dup)]
names(dup_genes) <- rownames(tmp)
if (anyDuplicated(newnames_dup)){
tmp2 <- stats::aggregate(tmp, by = list(dup_genes), FUN = "mean")
rownames(tmp2) <- tmp2$Group.1
tmp2$Group.1 <- NULL
}
# Put data together
RNA_tpm <- rbind(RNA_tpm, tmp2)

# Computation of cell fractions (Finotello et al., Genome Med, 2019)
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)

compute_chemokines  Compute chemokine signature (chemokines) score

Description
Calculates chemokines score as the PC1 score that results from applying PCA to the expression of its signature genes, defined in Messina et al., Sci. Rep., 2012.

Usage
compute_chemokines(matches, RNA_tpm)

Arguments
matches numeric vector indicating the index of signature genes in RNA_tpm.
RNA_tpm data.frame containing TPM values with HGNC symbols in rows and samples in columns.

Value
A numeric matrix with samples in rows and chemokines score in a column.

References
**compute_CYT**  
*Compute cytolytic activity (CYT) score*

**Description**
Calculates the CYT score using the geometric mean of its signature genes, as defined in Rooney et al., Cell, 2015.

**Usage**
```r
compute_CYT(matches, RNA_tpm)
```

**Arguments**
- `matches` numeric vector indicating the index of signature genes in `RNA_tpm`.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

**Value**
A numeric matrix with samples in rows and CTY score in a column.

**References**

---

**compute_Davoli_IS**  
*Compute Davoli immune signature (Davoli_IS) score*

**Description**
Calculates Davoli_IS score as the average of the expression of its signature genes after applying rank normalization, as defined in Davoli et al., Science, 2017.

**Usage**
```r
compute_Davoli_IS(matches, RNA_tpm)
```

**Arguments**
- `matches` numeric vector indicating the index of signature genes in `RNA_tpm`.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.
compute_IFN\text{y}

Value

A numeric matrix with samples in rows and Davoli_IS score in a column.

References


| compute_IFN\text{y} | Compute IFN\text{y} signature (IFN\text{y}) score |

Description

Calculates IFN\text{y} signature score as the average expression of its signature genes, as defined in Ayers et al., J. Clin. Invest, 2017.

Usage

compute_IFN\text{y}(\text{matches, RNA}\_\text{tpm})

Arguments

| matches | numeric vector indicating the index of signature genes in RNA\_\text{tpm}. |
| RNA\_\text{tpm} | data.frame containing TPM values with HGNC symbols in rows and samples in columns. |

Value

A numeric matrix with samples in rows and IFN\text{y} score in a column.

References

compute_IMPRES_MSI

Compute Immuno-Predictive Score (IMPRES) and Micro Satellite Instability (MSI) status score

Description

Calculates IMPRES score by logical comparison of checkpoint gene pairs expression, as defined in Auslander et al., Nat. Med., 2018.

Usage

   compute_IMPRES_MSI(sig, len, match_F_1, match_F_2, RNA_tpm)

Arguments

  - `sig` can be either 'IMPRES' or 'MSI'.
  - `len` the length of gene_1 vector.
  - `match_F_1` numeric vector indicating the index of signature genes defined in 'gene_1' in RNA_tpm.
  - `match_F_2` numeric vector indicating the index of signature genes defined in 'gene_2' in RNA_tpm.
  - `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

Details

Calculates MSI status score by logical comparison of MSI-related gene pairs, as defined in Fu et al., BMC Genomics, 2019.

Value

A numeric matrix with samples in rows and IMPRES score in a column.

References


compute_LR_pairs

**Description**

Quantifies ligand-receptor interactions in the tumor microenvironment from TPM bulk gene expression (Lapuente-Santana et al., Patterns, 2021) by using prior knowledge coming from ligand-receptor pair annotations from the database of Ramilowski (Ramilowski et al., Nat Commun, 2015). Each ligand-receptor weight is defined as the minimum of the log2(TPM+1) expression of the ligand and the receptor.

**Usage**

```
compute_LR_pairs(RNA_tpm = NULL, cancer_type = "pancan", verbose = TRUE)
```

**Arguments**

- **RNA_tpm**: A data.frame containing TPM values with HGNC symbols in rows and samples in columns.
- **cancer_type**: A string detailing the cancer type whose ligand-receptor pairs network will be used. A pan-cancer network is selected by default, whose network represents the union of all ligand-receptor pairs present across the 18 cancer types studied in Lapuente-Santana et al., Patterns, 2021.
- **verbose**: A logical value indicating whether to display messages about the number of ligand-receptor genes found in the gene expression data provided.

**Value**

A matrix of weights with samples in rows and ligand-receptor pairs in columns.

**References**


**Examples**

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")
```
```r
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)["tpm"]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabbc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
 RNA_tpm = RNA_tpm,
 cancer_type = "pancan"
)
lrpair_weights[1:5, 1:5]
```

---

**Description**


**Usage**

```r
compute_pathway_activity(
 RNA_counts = NULL,
 remove_sig_genes_immune_response = TRUE,
 verbose = TRUE
)
```

**Arguments**

- **RNA_counts**
  data.frame containing raw counts values with HGNC gene symbols as row names and samples identifiers as column names.
- **remove_sig_genes_immune_response**
  logical value indicating whether to remove signature genes involved in the derivation of hallmarks of immune response. This list is available from easierData::get_cor_scores_genes().
- **verbose**
  logical value indicating whether to display messages about the number of pathway signature genes found in the gene expression data provided.

**Value**

A matrix of activity scores with samples in rows and pathways in columns.
References


Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_counts <- assays(dataset_mariathasan)[["counts"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a060", "SAM18a4dabbc557")
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]

Computation of pathway activity
(Holland et al., BBAGRM, 2019; Schubert et al., Nat Commun, 2018)
pathway_activity <- compute_pathway_activity(
 RNA_counts = RNA_counts,
 remove_sig_genes_immune_response = TRUE
)
```

**compute_RIR**

Compute three scores from the immune resistance program:
resF_down (RIR), resF_up, resF (resF_up - resF_down)

**Description**

Calculates RIR score by combining a set of gene signatures associated with upregulation and down-regulation of T cell exclusion, post-treatment and functional resistance. We used the original approach defined in Jerby-Arnon et al., Cell, 2018.

**Usage**

```r
compute_RIR(RNA_tpm, RIR_program)
```
compute_Roh_IS

**Description**


**Usage**

```r
compute_Roh_IS(matches, RNA_tpm)
```

**Arguments**

- `matches` numeric vector indicating the index of signature genes in `RNA_tpm`.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

**Value**

A numeric matrix with samples in rows and Roh_IS score in a column.

**compute_Roh_IS**

`Compute Roh immune score (Roh_IS)`

**Arguments**

- `matches` numeric vector indicating the index of signature genes in `RNA_tpm`.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

**Value**

A numeric matrix with samples in rows and three RIR scores as columns: "resF_up" (upregulated score), "resF_down" (downregulated score) and "resF" (upregulated score - downregulated score).

**Details**

The gene signatures were provided by original work: https://github.com/livnatje/ImmuneResistance

**Value**

A numeric matrix with samples in rows and three RIR scores as columns: "resF_up" (upregulated score), "resF_down" (downregulated score) and "resF" (upregulated score - downregulated score).

**References**

References


---

**compute_scoresimmune_response**

*Compute published scores of immune response*

**Description**

Calculates the transcriptomics-based scores of hallmarks of anti-cancer immune response.

**Usage**

```r
compute_scoresimmune_response(
 RNA_tpm = NULL,
 selected_scores = c("CYT", "Roh_IS", "chemokines", "Davoli_IS", "IFNy", "Ayers_expIS", "Tcell_inflamed", "RIR", "TLS"),
 verbose = TRUE
)
```

**Arguments**

- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.
- `selected_scores` character string with names of scores of immune response to be computed. Default scores are computed for: "CYT", "Roh_IS", "chemokines", "Davoli_IS", "IFNy", "Ayers_expIS", "Tcell_inflamed", "RIR", "TLS".
- `verbose` logical variable indicating whether to display informative messages.

**Value**

A numeric matrix with samples in rows and published scores (gold standards) in columns.

**References**


Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)$cancertype

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a860", "SAM18a4dabc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
```
# Computation of different hallmarks of anti-cancer immune responses

```r
hallmarks_of_immune_response <- c("CYT", "Roh_IS", "chemokines", "Davoli_IS", "IFNy"
)

scores_immune_response <- compute_scores_immune_response(
 RNA_tpm = RNA_tpm,
 selected_scores = hallmarks_of_immune_response
)
```

**compute_Tcell_inflamed**

*Compute T cell-inflamed signature (Tcell_inflamed) score*

**Description**

Calculates Tcell_inflamed score using a weighted sum of housekeeping normalized expression of its signature genes, as defined in Cristescu et al., Science, 2018.

**Usage**

```r
compute_Tcell_inflamed(housekeeping, predictors, weights, RNA_tpm)
```

**Arguments**

- `housekeeping` numeric vector indicating the index of housekeeping genes in `RNA_tpm`
- `predictors` numeric vector indicating the index of predictor genes in `RNA_tpm`
- `weights` numeric vector containing the weights.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

**Details**


**Value**

A numeric matrix with samples in rows and Tcell_inflamed score in a column.

**References**

compute_TF_activity  

Compute transcription factor activity from gene expression using DoRothEA

Description

Infers transcription factor (TF) activity from TPM bulk gene expression using DoRothEA method from Garcia-Alonso et al., Genome Res, 2019.

Usage

```r
compute_TF_activity(RNA_tpm = NULL, verbose = TRUE)
```

Arguments

- **RNA_tpm**: data.frame containing TPM values with HGNC symbols in rows and samples in columns.
- **verbose**: logical value indicating whether to display messages about the number of regulated genes found in the gene expression data provided.

Value

A numeric matrix of activity scores with samples in rows and TFs in columns.

References


Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a860", "SAM18a4dabbc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
```
# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)

tf_activity <- compute_TF_activity(
  RNA_tpm = RNA_tpm
)

---

### compute_TLS

**Computation of tertiary lymphoid structures signature (TLS) score**

**Description**

Calculates TLS score using the geometric-mean of the expression of its signature genes, as defined in Cabrita et al., Nature, 2020.

**Usage**

```r
compute_TLS(matches, RNA_tpm)
```

**Arguments**

- `matches` numeric vector indicating the index of signature genes in `RNA_tpm`.
- `RNA_tpm` data.frame containing TPM values with HGNC symbols in rows and samples in columns.

**Value**

A numeric matrix with samples in rows and TLS score in a column.

**References**


---

### discretize

**Converts a continuous variable into categorical**

**Description**

It is used to bin continuous gene expression values from a given gene signature into categories.

**Usage**

```r
discretize(v, n_cat)
```
discretize

Arguments

- \( v \) numeric vector with gene mean expression across samples.
- \( n_{\text{cat}} \) number of categories to bin continuous values, here gene expression values.

Details

The source code was provided by original work: https://github.com/livnatje/ImmuneResistance

Value

A numeric vector providing an integer value (e.g. category) for each gene.

References


Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e", "SAMba1a34b5a060", "SAM18a4dabc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

Log2 transformation:
log2_RNA_tpm <- log2(RNA_tpm + 1)

Prepare input data
r <- list()
r$tpm <- log2_RNA_tpm

Gene signature of immune resistance program
score_signature_genes <- suppressMessages(easierData::get_scores_signature_genes())
RIR_gene_signature <- score_signature_genes$RIR

Compute gene average expression across samples
r$genes_dist <- r$genes_mean <- rowMeans(r$tpm)
```
# Bin genes into 50 expression bins according to their average
r$genes_dist_q <- discretize(r$genes_dist, n_cat = 50)

easier: predicting immune response by using quantitative descriptors of the tumor microenvironment extracted from RNA-seq data.

Description
This package streamlines the assessment of patients' likelihood of immune response using EaSIeR approach.

References

explore_biomarkers Explore biomarkers of immune response

Description
Provides a good overview of the computed features (biomarkers) including the corresponding weights from the trained model. If patient_response is provided, this function shows statistically significant biomarkers between responders (R) and non-responders (NR) patients.

Usage
```r
explore_biomarkers(
 pathways = NULL,
 immunecells = NULL,
 tfs = NULL,
 lrpairs = NULL,
 ccpairs = NULL,
 cancer_type,
 patient_label = NULL,
 verbose = TRUE
)
```
explore_biomarkers

Arguments

- **pathways**: numeric matrix with pathways activity (rows = samples; columns = pathways). This is the output from `compute_pathway_activity`.
- **immunecells**: numeric matrix with immune cell quantification (rows = samples; columns = cell types). This is the output from `compute_cell_fractions`.
- **tfs**: numeric matrix with transcription factors activity (rows = samples; columns = transcription factors). This is the output from `compute_TF_activity`.
- **lrpairs**: numeric matrix with ligand-receptor weights (rows = samples; columns = ligand-receptor pairs). This is the output from `compute_LR_pairs`.
- **ccpairs**: numeric matrix with cell-cell scores (rows = samples; columns = cell-cell pairs). This is the output from `compute_CC_pairs`.
- **cancer_type**: character string indicating which cancer-specific model should be used to compute the predictions. This should be available from the cancer-specific models. The following cancer types have a corresponding model available: "BLCA", "BRCA", "CESC", "CRC", "GBM", "HNSC", "KIRC", "KIRP", "LIHC", "LUAD", "LUSC", "NSCLC", "OV", "PAAD", "PRAD", "SKCM", "STAD", "THCA" and "UCEC".
- **patient_label**: character vector with two factor levels, e.g. NR (Non-responders) vs R (Responders), pre- vs on- treatment.
- **verbose**: logical flag indicating whether to display messages about the process.

Value

- A combined plot for each type of quantitative descriptors, showing the original distribution of the features and the importance of these features for the trained models #'
- Volcano plot displaying relevant biomarkers differentiating responders vs non-responders patients.

Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]

Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
 "SAMba1a34b5a860", "SAM18a4dabbc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]
```
# Computation of TF activity
tf_activity <- compute_TF_activity(
  RNA_tpm = RNA_tpm
)

# retrieve clinical response
patient_ICBresponse <- colData(dataset_mariathasan)[["BOR"]]
names(patient_ICBresponse) <- colData(dataset_mariathasan)[["pat_id"]]
patient_ICBresponse <- patient_ICBresponse[ names(patient_ICBresponse) %in% pat_subset ]

# Investigate possible biomarkers
output_biomarkers <- explore_biomarkers(
  tfs = tf_activity,
  cancer_type = cancer_type,
  patient_label = patient_ICBresponse
)

RNA_counts <- assays(dataset_mariathasan)[["counts"]]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]

# Computation of cell fractions
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)

# Computation of pathway scores
pathway_activity <- compute_pathway_activity(
  RNA_counts = RNA_counts,
  remove_sig_genes_immune_response = TRUE
)

# Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
  RNA_tpm = RNA_tpm,
  cancer_type = "pancan"
)

# Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
  lrpairs = lrpair_weights,
  cancer_type = "pancan"
)

# Investigate possible biomarkers
output_biomarkers <- explore_biomarkers(
  pathways = pathway_activity,
  immunecells = cell_fractions,
  lrpairs = lrpair_weights,
  tfs = tf_activity,
  ccpairs = ccpair_scores,
  cancer_type = cancer_type,
  patient_label = patient_ICBresponse
)
get_OE_bulk

Compute overall expression (OE) of the immune resistance program used in the computation of repressed immune resistance signature (RIR) score.

Description
This function calculates the overall expression of the immune resistance program which is based on a set of gene signatures associated with T cell exclusion, post-treatment and functional resistance.

Usage
get_OE_bulk(
  r,
  gene_sign = NULL,
  num_rounds = 1000,
  full_flag = FALSE,
  verbose = TRUE
)

Arguments
  r         list containing a numeric matrix with bulk RNA-Seq data (tpm values) and a character string with the available gene names.
  gene_sign list containing different character strings associated with subsets of the resistance program.
  num_rounds integer value related to the number of random gene signatures samples to be computed for normalization. Original work indicates that 1000 random signatures were sufficient to yield an estimate of the expected value.
  full_flag logical flag indicating whether to return also random scores.
  verbose   logical flag indicating whether to display messages about the process.

Details
The source code was provided by original work: https://github.com/livnatje/ImmuneResistance

Value
A numeric matrix with computed scores for each sample and subset of signatures included in the immune resistance program (rows = samples; columns = gene signatures)
get_semi_random_OE

References

Examples
# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd679996035", "SAMd3601288319e",
                "SAMba1a34b5a606", "SAM18a4dabbc557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Log2 transformation:
log2_RNA_tpm <- log2(RNA_tpm + 1)

# Prepare input data
r <- list()
r$tpm <- log2_RNA_tpm
r$genes <- rownames(log2_RNA_tpm)

# Gene signature of immune resistance program
score_signature_genes <- suppressMessages(easierData::get_scores_signature_genes())
RIR_gene_signature <- score_signature_genes$RIR

# Apply function to calculate OE:
res_scores <- get_OE_bulk(r, gene_sign = RIR_gene_signature, verbose = TRUE)

get_semi_random_OE

Compute random scores of the immune resistance program used in the computation of repressed immune resistance signature (RIR) score.

Description
Calculates random scores to yield a robust estimate of the immune resistance program values. This is used by get_OE_bulk function.
Usage

get_semi_random_OE(
  r,
  genes_dist_q,
  b_sign,
  num_rounds = 1000,
  full_flag = FALSE,
  random_seed = 1234
)

Arguments

- `r`: list containing a numeric matrix with bulk RNA-Seq data (tpm values) and a character string with the available gene names.
- `genes_dist_q`: factor variable obtained as output from the function discretize. Original work binned genes into 50 expression bins according their average gene expression across samples.
- `b_sign`: logical vector representing whether signature genes were found in bulk tpm matrix.
- `num_rounds`: integer value related to the number of random gene signatures samples to be computed for normalization. Original work indicates that 1000 random signatures were sufficient to yield an estimate of the expected value.
- `full_flag`: logical flag indicating whether to return also random scores.
- `random_seed`: integer value to set a seed for the selection of random genes used to generate a random score.

Details

The source code was provided by original work: https://github.com/livnatje/ImmuneResistance

Value

A numeric vector containing the estimated random score for each sample.

References


Examples

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")
```
predict_immune_response

(dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment())
RNA_tpm <- assays(dataset_mariathasan)["tpm"]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c("SAM76a431ba6ce1", "SAMd3bd67996835", "SAMd3601288319e",
"SAMba1a34b5a060", "SAM18a4dabb557")
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Log2 transformation:
log2_RNA_tpm <- log2(RNA_tpm + 1)

# Prepare input data
r <- list()
r$tpm <- log2_RNA_tpm
r$genes <- rownames(log2_RNA_tpm)

# Gene signature of immune resistance program
score_signature_genes <- suppressMessages(easierData::get_scores_signature_genes())
RIR_gene_signature <- score_signature_genes$RIR

# Compute gene average expression across samples
r$genes_dist <- r$genes_mean <- rowMeans(r$tpm)

# Center gene expression matrix
r$zscores <- sweep(r$tpm, 1, r$genes_mean, FUN = "+")

# Bin genes into 50 expression bins according to their average
r$genes_dist_q <- discretize(r$genes_dist, n.cat = 50)

# Match genes from exc.down signature with genes from expression matrix
b_sign <- is.element(r$genes, RIR_gene_signature["exc.down"])

# Compute random score:
rand_scores <- get_semi_random_OE(r, r$genes_dist_q, b_sign)

---

predict_immune_response

*Compute predicted immune response*

---

**Description**

Calculates predictions of patients’ immune response using the quantitative descriptors data as input features and the optimized model parameters derived from the trained models. These models are available from easierData package through easierData::get_opt_models().
predict_immune_response

Usage

predict_immune_response(
  pathways = NULL,
  immunecells = NULL,
  tfs = NULL,
  lrpairs = NULL,
  ccpairs = NULL,
  cancer_type,
  verbose = TRUE
)

Arguments

pathways numeric matrix with pathways activity (rows = samples; columns = pathways).

immunecells numeric matrix with immune cell quantification (rows = samples; columns = cell types).

tfs numeric matrix with transcription factors activity (rows = samples; columns = transcription factors).

lrpairs numeric matrix with ligand-receptor weights (rows = samples; columns = ligand-receptor pairs).

ccpairs numeric matrix with cell-cell scores (rows = samples; columns = cell-cell pairs).

cancer_type character string indicating which cancer-specific model should be used to compute the predictions. This should be available from the cancer-specific models. The following cancer types have a corresponding model available: "BLCA", "BRCA", "CESC", "CRC", "GBM", "HNSC", "KIRC", "KIRP", "LIHC", "LUAD", "LUSC", "NSCLC", "OV", "PAAD", "PRAD", "SKCM", "STAD", "THCA" and "UCEC".

verbose logical flag indicating whether to display messages about the process.

Value

A list containing the predictions for each quantitative descriptor and for each task. Given that the model training was repeated 100 times with randomized-cross validation, a set of 100 predictions is returned.

Examples

# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMVigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
    "SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
    "SAMba1a34b5a060", "SAM18a4dabbcc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activity <- compute_TF_activity(
    RNA_tpm = RNA_tpm
)

# Predict patients' immune response
predictions_immune_response <- predict_immune_response(
    tfs = tf_activity,
    cancer_type = cancer_type
)

RNA_counts <- assays(dataset_mariathasan)[["counts"]]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]

# Computation of cell fractions (Finotello et al., Genome Med, 2019)
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)

# Computation of pathway scores (Holland et al., BBAGRM, 2019; Schubert et al., Nat Commun, 2018)
pathway_activity <- compute_pathway_activity(
    RNA_counts = RNA_counts,
    remove_sig_genes_immune_response = TRUE
)

# Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
    RNA_tpm = RNA_tpm,
    cancer_type = "pancan"
)

# Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
    lrpairs = lrpair_weights,
    cancer_type = "pancan"
)

# Predict patients' immune response
predictions_immune_response <- predict_immune_response(
    pathways = pathway_activity,
    immunecells = cell_fractions,
    tfs = tf_activity,
    lrpairs = lrpair_weights,
    ccpairs = ccpair_scores,
    cancer_type = cancer_type
)
predict_with_rmtlr

**Predict single-view immune response**

**Description**

Obtains predictions of immune response for individual quantitative descriptors by using a cancer-specific model learned with Regularized Multi-Task Linear Regression algorithm (RMTLR).

**Usage**

```r
predict_with_rmtlr(
 view_name,
 view_info,
 view_data,
 opt_model_cancer_view_spec,
 opt_xtrain_stats_cancer_view_spec,
 verbose = TRUE
)
```

**Arguments**

- `view_name` character string containing the name of the input view.
- `view_info` character string informing about the family of the input data.
- `view_data` list containing the data for each input view.
- `opt_model_cancer_view_spec` cancer-view-specific model feature parameters learned during training. These are available from easierData package through `easierData::get_opt_models()`.
- `opt_xtrain_stats_cancer_view_spec` cancer-view-specific features mean and standard deviation of the training set. These are available from easierData package through `easierData::get_opt_xtrain_stats()`.
- `verbose` logical flag indicating whether to display messages about the process.

**Value**

A list of predictions, one for each task, in a matrix format (rows = samples; columns = [runs]).

**Examples**

```r
using a SummarizedExperiment object
library(SummarizedExperiment)
Using example exemplary dataset (Mariathasan et al., Nature, 2018)
from easierData. Original processed data is available from
IMvigor210CoreBiologies package.
library("easierData")
```
reannotate_genes

Gene re-annotation using HGNC symbols

Description

Performs gene re-annotation using curated data from the HGNC.
retrieve_easier_score

Usage

reannotate_genes(cur_genes)

Arguments

cur_genes character string containing gene HGNC symbols to be consider for re-annotation.

Details

Source code adapted from quanTIseq helper function mapGenes from quantiseqr package.

Value

A data.frame with the old gene HGNC symbol and the new corresponding gene HGNC symbol.

Examples

# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)["tpm"]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c( 
  "SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e", 
  "SAMba1a34b5a060", "SAM18a4dabbc557" 
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Select some genes to check possible updated gene names
genes_to_check <- rownames(RNA_tpm)[400:450]
genesis_info <- reannotate_genes(cur_genes = genes_to_check)

---

retrieve_easier_score Retrieve easier scores of immune response

Description

Calculates easier score and if applicable, both weighted average and penalized score based on the combination of easier score and TMB.
Usage

retrieve_easier_score(
    predictions_immune_response = NULL,
    TMB_values = NULL,
    easier_with_TMB = c("weighted_average", "penalized_score"),
    weight_penalty,
    verbose = TRUE
)

Arguments

predictions_immune_response
  list containing the predictions for each quantitative descriptor and for each task. 
  This is the output from predict_immune_response.

TMB_values
  numeric vector containing patients’ tumor mutational burden (TMB) values.

easier_with_TMB
  character string indicating which approach should be used to integrate easier 
  with TMB: "weighted_average" (default) and "penalized_score".

weight_penalty
  integer value from 0 to 1, which is used to define the weight or penalty for 
  combining easier and TMB scores based on a weighted average or penalized 
  score, in order to derive a score of patient’s likelihood of immune response. 
  The default value is 0.5.

verbose
  logical flag indicating whether to display messages about the process.

Value

A data.frame with samples in rows and easier scores in columns.

Examples

# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from 
# IMvigor210CoreBiologies package.
library("easierData")
dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]
cancer_type <- metadata(dataset_mariathasan)[["cancertype"]]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
    "SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd3601288319e",
    "SAMba1a34b5a060", "SAM18a4dabb557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activities <- compute_TF_activity(
  RNA_tpm = RNA_tpm
)

# Predict patients' immune response
predictions <- predict_immune_response(
  tfs = tf_activities,
  cancer_type = cancer_type,
  verbose = TRUE
)

# retrieve clinical response
patient_ICBresponse <- colData(dataset_mariathasan)[["BOR"]]
names(patient_ICBresponse) <- colData(dataset_mariathasan)[["pat_id"]]

# retrieve TMB
TMB <- colData(dataset_mariathasan)[["TMB"]]
names(TMB) <- colData(dataset_mariathasan)[["pat_id"]]

patient_ICBresponse <- patient_ICBresponse[names(patient_ICBresponse) %in% pat_subset]
TMB <- TMB[names(TMB) %in% pat_subset]
easier_derived_scores <- retrieve_easier_score(
  predictions_immune_response = predictions,
  TMB_values = TMB,
  easier_with_TMB = c("weighted_average", "penalized_score"),
  weight_penalty = 0.5
)

RNA_counts <- assays(dataset_mariathasan)[["counts"]]
RNA_counts <- RNA_counts[, colnames(RNA_counts) %in% pat_subset]

# Computation of cell fractions (Finotello et al., Genome Med, 2019)
cell_fractions <- compute_cell_fractions(RNA_tpm = RNA_tpm)

# Computation of pathway scores (Holland et al., BBAGRM, 2019;
# Schubert et al., Nat Commun, 2018)
pathway_activities <- compute_pathway_activity(
  RNA_counts = RNA_counts,
  remove_sig_genes_immune_response = TRUE
)

# Computation of ligand-receptor pair weights
lrpair_weights <- compute_LR_pairs(
  RNA_tpm = RNA_tpm,
  cancer_type = "pancan"
)

# Computation of cell-cell interaction scores
ccpair_scores <- compute_CC_pairs(
  lrpairs = lrpair_weights,
  cancer_type = "pancan"
# Predict patients' immune response
predictions <- predict_immune_response(
  pathways = pathway_activities,
  immunecells = cell_fractions,
  tfs = tf_activities,
  lrpairs = lrpair_weights,
  ccpairs = ccpair_scores,
  cancer_type = cancer_type,
  verbose = TRUE
)

easier Derived scores <- retrieve_easier_score(
  predictions_immune_response = predictions,
  TMB_values = TMB,
  easier_with_TMB = c("weighted_average", "penalized_score"),
  weight_penalty = 0.5
)

---

**rmtrlr_test**

*Regularized Multi-Task Linear Regression (RMTLR) model predictions*

**Description**

Computes the predictions as a matrix multiplication using both the features input data and the features estimated weights.

**Usage**

```
rmtrlr_test(x_test, coef_matrix)
```

**Arguments**

- **x_test**: numeric matrix containing features values (rows = samples; columns = features).
- **coef_matrix**: numeric matrix containing the parameters values derived from model training (rows = features; columns = tasks).

**Value**

Numeric matrix of predicted values (rows = samples; columns = tasks).
Examples

# using a SummarizedExperiment object
library(SummarizedExperiment)
# Using example exemplary dataset (Mariathasan et al., Nature, 2018)
# from easierData. Original processed data is available from
# IMvigor210CoreBiologies package.
library("easierData")

dataset_mariathasan <- easierData::get_Mariathasan2018_PDL1_treatment()
RNA_tpm <- assays(dataset_mariathasan)[["tpm"]]

# Select a subset of patients to reduce vignette building time.
pat_subset <- c(
  "SAM76a431ba6ce1", "SAMd3bd67996035", "SAMd36012883199e",
  "SAMba1a34b5a060", "SAM18a4dabbc557"
)
RNA_tpm <- RNA_tpm[, colnames(RNA_tpm) %in% pat_subset]

# Computation of TF activity (Garcia-Alonso et al., Genome Res, 2019)
tf_activities <- compute_TF_activity(
  RNA_tpm = RNA_tpm
)

# Parameters values should be defined as a matrix
# with features as rows and tasks as columns
estimated_parameters <- matrix(rnorm(n = (ncol(tf_activities) + 1) * 10),
  nrow = ncol(tf_activities) + 1, ncol = 10)
rownames(estimated_parameters) <- c("(Intercept)", colnames(tf_activities))
colnames(estimated_parameters) <- c(
  "CYT", "Ock_IS", "Roh_IS", "chemokines",
  "Davoli_IS", "IFNy", "Ayers_expIS", "Tcell_inflamed", "RIR", "TLS"
)

# Compute predictions using parameters values
pred_test <- rmtlr_test(
  x_test = tf_activities,
  coef_matrix = estimated_parameters
)
Index

assess_immune_response, 3

calc_z_score, 6
categorize_TMB, 7
compute_Ayers_expIS, 8
compute_CC_pairs, 10
compute_CCpair_score, 8
compute_cell_fractions, 11
compute_chemokines, 13
compute_CYT, 14
compute_Davoli_IS, 14
compute_IFNy, 15
compute_IMPRES_MSI, 16
compute_LR_pairs, 17
compute_pathway_activity, 18
compute_RIR, 19
compute_Roh_IS, 20
compute_scores_immune_response, 21
compute_Tcell_inflamed, 23
compute_TF_activity, 24
compute_TLS, 25
discretize, 25
easier-pkg, 27
explore_biomarkers, 27

get_OE_bulk, 30
get_semi_random_OE, 31

predict_immune_response, 33
predict_with_rmtlr, 36

reannotate_genes, 37
retrieve_easier_score, 38
rmtlr_test, 41