Package ‘enrichplot’

March 22, 2024

Title Visualization of Functional Enrichment Result
Version 1.22.0
Description The ‘enrichplot’ package implements several visualization methods for interpreting functional enrichment results obtained from ORA or GSEA analysis. It is mainly designed to work with the ‘clusterProfiler’ package suite. All the visualization methods are developed based on ‘ggplot2’ graphics.

Depends R (>= 3.5.0)
Imports aplot (>= 0.2.1), DOSE (>= 3.16.0), ggfun (>= 0.1.3), ggnewscale, ggplot2, ggraph, graphics, grid, igraph, methods, plyr, purrr, RColorBrewer, reshape2, rlang, stats, utils, scatterpie, shadowtext, GOSemSim, magrittr, ggtree, yulab.utils (> = 0.0.8)
Suggests clusterProfiler, dplyr, europepmc, ggapset, knitr, rmarkdown, org.Hs.eg.db, prettydoc, tibble, tidyr, ggforce, AnnotationDbi, ggplotify, ggridges, grDevices, gridExtra, ggrepel (> = 0.9.0), ggstar, scales, ggtreeExtra, tidydr
Remotes YuLab-SMU/tidyr
VignetteBuilder knitr
License Artistic-2.0
BugReports https://github.com/GuangchuangYu/enrichplot/issues
biocViews Annotation, GeneSetEnrichment, GO, KEGG, Pathways, Software, Visualization
Encoding UTF-8
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/enrichplot
git_branch RELEASE_3_18
git_last_commit 6277b76
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
autofacet automatically split barplot or dotplot into several facets

Description

automatically split barplot or dotplot into several facets
barplot.enrichResult

Usage

autofacet(by = "row", scales = "free", levels = NULL)

Arguments

by one of 'row' or 'column'
scales wether 'fixed' or 'free'
levels set facet levels

Value

a ggplot object

barplot.enrichResult barplot

Description

barplot of enrichResult

Usage

S3 method for class 'enrichResult'
barplot(
 height,
 x = "Count",
 color = "p.adjust",
 showCategory = 8,
 font.size = 12,
 title = "",
 label_format = 30,
 ...
)

Arguments

height enrichResult object
x one of 'Count' and 'GeneRatio'
color one of 'pvalue', 'p.adjust' and 'qvalue'
showCategory number of categories to show
font.size font size
title plot title
label_format a numeric value sets wrap length, alternatively a custom function to format axis labels. by default wraps names longer that 30 characters
...
other parameter, ignored
Value

ggplot object

Examples

library(DOSE)
data(geneList)
de <- names(geneList)[1:100]
x <- enrichDO(de)
barplot(x)
use `showCategory` to select the displayed terms. It can be a number of a vector of terms.
barplot(x, showCategory = 10)
categories <- c("pre-malignant neoplasm", "intestinal disease",
 "breast ductal carcinoma", "non-small cell lung carcinoma")
barplot(x, showCategory = categories)

cnetplot

cnetplot

description

Gene-Concept Network

Usage

cnetplot(x, ...)
S4 method for signature 'enrichResult'
cnetplot(x, ...)
S4 method for signature 'list'
cnetplot(x, ...)
S4 method for signature 'gseaResult'
cnetplot(x, ...)
S4 method for signature 'compareClusterResult'
cnetplot(x, ...)

cnetplot.enrichResult(
 x,
 showCategory = 5,
 foldChange = NULL,
 layout = "kk",
 colorEdge = FALSE,
 circular = FALSE,
 node_label = "all",
 ...)
Arguments

x
Enrichment result.

...
Additional parameters

showCategory
A number or a vector of terms. If it is a number, the first n terms will be displayed. If it is a vector of terms, the selected terms will be displayed.

foldChange
Fold Change of nodes, the default value is NULL. If the user provides the Fold Change value of the nodes, it can be used to set the color of the gene node. Will be removed in the next version.

layout
Layout of the map, e.g. 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'.

colorEdge
Logical, whether coloring edge by enriched terms, the default value is FALSE. Will be removed in the next version.

circular
Logical, whether using circular layout, the default value is FALSE. Will be removed in the next version.

node_label
Select which labels to be displayed. one of 'category', 'gene', 'all'(the default) and 'none'.

cex_category
Number indicating the amount by which plotting category nodes should be scaled relative to the default, the default value is 1. Will be removed in the next version.

cex_gene
Number indicating the amount by which plotting gene nodes should be scaled relative to the default, the default value is 1. Will be removed in the next version.

cex_label_category
Scale of category node label size, the default value is 1. Will be removed in the next version.

cex_label_gene
Scale of gene node label size, the default value is 1. Will be removed in the next version.

color_category
Color of category node. Will be removed in the next version.

color_gene
Color of gene node. Will be removed in the next version.

shadowtext
select which node labels to use shadow font, one of 'category', 'gene', 'all' and 'none', default is 'all'.
color.params list, the parameters to control the attributes of highlighted nodes and edges. see the color.params in the following. color.params control the attributes of highlight, it can be referred to the following parameters:

- foldChange Fold Change of nodes for enrichResult, or size of nodes for compareClusterResult, the default value is NULL.
- edge Logical, whether coloring edge by enriched terms, the default value is FALSE.
- category Color of category node.
- gene Color of gene node.

cex.params list, the parameters to control the size of nodes and labels. see the cex.params in the following. cex.params control the attributes of highlight, it can be referred to the following parameters:

- foldChange only used in compareClusterResult object, fold Change of nodes, the default value is NULL. If the user provides the Fold Change value of the nodes, it can be used to set the size of the gene node.
- category_node Number indicating the amount by which plotting category nodes should be scaled relative to the default, the default value is 1.
- gene_node Number indicating the amount by which plotting gene nodes should be scaled relative to the default, the default value is 1.
- category_label Scale of category node label size, the default value is 1.
- gene_label Scale of gene node label size, the default value is 1.

hilight.params list, the parameters to control the attributes of highlighted nodes and edges. see the hilight.params in the following. hilight.params control the attributes of highlight, it can be referred to the following parameters:

- category category nodes to be highlight.
- alpha_hilight alpha of highlighted nodes.
- alpha_no_hilight alpha of unhighlighted nodes.

Details
plot linkages of genes and enriched concepts (e.g. GO categories, KEGG pathways)

Value
ggplot object

Author(s)
Guangchuang Yu

Examples
Not run:
library(DOSE)
data(geneList)
de <- names(geneList)[1:100]
x <- enrichDO(de)
x2 <- pairwise_termsim(x)
cnetplot(x2)
use `layout` to change the layout of map
cnetplot(x2, layout = "star")
use `showCategory` to select the displayed terms. It can be a number of a vector of terms.
cnetplot(x2, showCategory = 10)
categories <- c("pre-malignant neoplasm", "intestinal disease", "breast ductal carcinoma", "non-small cell lung carcinoma")
cnetplot(x2, showCategory = categories)
'compareClusterResult' object is also supported.
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichGO", OrgDb="org.Hs.eg.db")
xx2 <- pairwise_termsim(xx)
cnetplot(xx2)
End(Not run)

color_palette

Description
create color palette for continuous data

Usage
color_palette(colors)

Arguments
colors colors of length >=2

Value
color vector

Author(s)
guangchuang yu

Examples
color_palette(c("red", "yellow", "green"))
Description

`dotplot` for enrichment result

Usage

```r
dotplot(object, ...)
```  

```r  
## S4 method for signature 'enrichResult'
dotplot(
  object,
  x = "GeneRatio",
  color = "p.adjust",
  showCategory = 10,
  size = NULL,
  split = NULL,
  font.size = 12,
  title = "",
  orderBy = "x",
  label_format = 30,
  ...
)
```  

```r  
## S4 method for signature 'gseaResult'
dotplot(
  object,
  x = "GeneRatio",
  color = "p.adjust",
  showCategory = 10,
  size = NULL,
  split = NULL,
  font.size = 12,
  title = "",
  orderBy = "x",
  label_format = 30,
  ...
)
```  

```r  
## S4 method for signature 'compareClusterResult'
dotplot(
  object,
  x = "Cluster",
  color = "p.adjust",
  showCategory = 5,
```
dotplot

split = NULL,
font.size = 12,
title = "",
by = "geneRatio",
size = NULL,
includeAll = TRUE,
label_format = 30,
...
)

S4 method for signature 'enrichResultList'
dotplot(
 object,
 x = "GeneRatio",
 color = "p.adjust",
 showCategory = 10,
 size = NULL,
 split = NULL,
 font.size = 12,
 title = "",
 orderBy = "x",
 label_format = 30,
 ...
)

S4 method for signature 'gseaResultList'
dotplot(
 object,
 x = "GeneRatio",
 color = "p.adjust",
 showCategory = 10,
 size = NULL,
 split = NULL,
 font.size = 12,
 title = "",
 orderBy = "x",
 label_format = 30,
 ...
)

dotplot.enrichResult(
 object,
 x = "geneRatio",
 color = "p.adjust",
 showCategory = 10,
 size = NULL,
 split = NULL,
 font.size = 12,
dotplot

```r
title = "", orderBy = "x",
label_format = 30,
decreasing = TRUE
)
dotplot.compareClusterResult(
  object,
x = "Cluster",
colorBy = "p.adjust",
showCategory = 5,
by = "geneRatio",
size = "geneRatio",
split = NULL,
includeAll = TRUE,
font.size = 12,
title = "",
label_format = 30,
group = FALSE,
shape = FALSE,
facet = NULL,
strip_width = 15
)
```

Arguments

- **object**: compareClusterResult object
- **...**: additional parameters
- **x**: variable for x-axis, one of 'GeneRatio' and 'Count'
- **color**: variable that used to color enriched terms, e.g. 'pvalue', 'p.adjust' or 'qvalue'
- **showCategory**: A number or a list of terms. If it is a number, the first n terms will be displayed. If it is a list of terms, the selected terms will be displayed.
- **size**: variable that used to scale the sizes of categories, one of 'geneRatio', 'Percentage' and 'count'
- **split**: apply 'showCategory' to each category specified by the 'split', e.g., 'ONTOL-OGY', 'category' and 'intersect'. Default is NULL and do nothing
- **font.size**: font size
- **title**: figure title
- **orderBy**: The order of the Y-axis
- **label_format**: a numeric value sets wrap length, alternatively a custom function to format axis labels. by default wraps names longer that 30 characters
- **by**: one of 'geneRatio', 'Percentage' and 'count'
- **includeAll**: logical
- **decreasing**: logical. Should the orderBy order be increasing or decreasing?
- **colorBy**: variable that used to color enriched terms, e.g. 'pvalue', 'p.adjust' or 'qvalue'
dotplot

- **group**: a logical value, whether to connect the nodes of the same group with wires.
- **shape**: a logical value, whether to use nodes of different shapes to distinguish the group it belongs to.
- **facet**: apply ‘facet_grid’ to the plot by specified variable, e.g., "ONTOLGY", "category" and "intersect".
- **strip_width**: width of strip text, a.k.a facet label.

Value

- plot

Author(s)

- guangchuang yu

Examples

```r
## Not run:
library(DOSE)
data(geneList)
de <- names(geneList)[1:100]
x <- enrichDO(de)
dotplot(x)
# use `showCategory` to select the displayed terms. It can be a number of a vector of terms.
dotplot(x, showCategory = 10)
categorys <- c("pre-malignant neoplasm", "intestinal disease", "breast ductal carcinoma", "non-small cell lung carcinoma")
dotplot(x, showCategory = categorys)
# It can also graph compareClusterResult
data(gcSample)
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichGO", OrgDb="org.Hs.eg.db")
xx2 <- pairwise_termsim(xx)
library(ggstar)
dotplot(xx2)
dotplot(xx2, shape = TRUE)
dotplot(xx2, group = TRUE)
dotplot(xx2, x = "GeneRatio", group = TRUE, size = "count")
## End(Not run)
```
drag_network

Description

Drag the nodes of a network to update the layout of the network.

Usage

```r
drag_network(p, g = NULL)
```

Arguments

- `p` the network diagram as a ggplot/gg/ggraph object.
- `g` an corresponding igraph object. Default is to extract from the 'ggraph' attribute.

Value

an updated ggplot/gg/ggraph object

Examples

```r
## Not run:
library(igraph)
library(ggraph)

flow_info <- data.frame(from = c(1,2,3,3,4,5,6),
                        to = c(5,5,5,6,7,6,7))
g <- graph_from_data_frame(flow_info)
p <- ggraph(g, layout='nicely') + geom_node_point() + geom_edge_link()
pp <- drag_network(p)
## End(Not run)
```

emapplot

Description

Enrichment Map for enrichment result of over-representation test or gene set enrichment analysis.
Usage

emapplot(x, ...)

S4 method for signature 'enrichResult'
emapplot(x, showCategory = 30, ...)

S4 method for signature 'gseaResult'
emapplot(x, showCategory = 30, ...)

S4 method for signature 'compareClusterResult'
emapplot(x, showCategory = 30, ...)

evapplot.enrichResult(
 x,
 showCategory = 30,
 layout = NULL,
 coords = NULL,
 color = "p.adjust",
 min_edge = 0.2,
 cex_label_category = 1,
 cex_category = 1,
 cex_line = 1,
 shadowtext = TRUE,
 label_style = "shadowtext",
 repel = FALSE,
 node_label = "category",
 with_edge = TRUE,
 group_category = FALSE,
 group_legend = FALSE,
 cex_label_group = 1,
 nWords = 4,
 label_format = 30,
 clusterFunction = stats::kmeans,
 nCluster = NULL,
 layout.params = list(layout = NULL, coords = NULL),
 edge.params = list(show = TRUE, min = 0.2),
 cex.params = list(category_node = 1, category_label = 1, line = 1),
 hilight.params = list(category = NULL, alpha_hilight = 1, alpha_no_hilight = 0.3),
 cluster.params = list(cluster = FALSE, method = stats::kmeans, n = NULL, legend = FALSE, label_style = "shadowtext", label_words_n = 4, label_format = 30),
 ...
)

evapplot.compareClusterResult(
 x,
 showCategory = 30,
 layout = NULL,
 coords = NULL,
split = NULL,
pie = "equal",
legend_n = 5,
cex_category = 1,
cex_line = 1,
min_edge = 0.2,
cex_label_category = 1,
shadowtext = TRUE,
with_edge = TRUE,
group_category = FALSE,
label_format = 30,
group_legend = FALSE,
node_label = "category",
label_style = "shadowtext",
repel = FALSE,
cex_label_group = 1,
nWords = 4,
clusterFunction = stats::kmeans,
nCluster = NULL,
cex_pie2axis = 1,
pie.params = list(pie = "equal", legend_n = 5),
layout.params = list(layout = NULL, coords = NULL),
edge.params = list(show = TRUE, min = 0.2),
cluster.params = list(cluster = FALSE, method = stats::kmeans, n = NULL, legend = FALSE, label_style = "shadowtext", label_words_n = 4, label_format = 30),
cex.params = list(category_node = 1, category_label = 1, line = 1, pie2axis = 1, label_group = 1),
hilight.params = list(category = NULL, alpha_hilight = 1, alpha_no_hilight = 0.3),
...
)

Arguments

x

... additional parameters

Enrichment result.

additional parameters can refer the following parameters.

- force Force of repulsion between overlapping text labels. Defaults to 1.
- nudge_x, nudge_y Horizontal and vertical adjustments to nudge the starting position of each text label.
- direction "both", "x", or "y" – direction in which to adjust position of labels.
- ellipse_style style of ellipse, one of "ggforce" an "polygon".
- ellipse_pro numeric indicating confidence value for the ellipses, it can be used only when ellipse_style = "polygon".
- alpha the transparency of ellipse fill.
- type The type of ellipse. The default "t" assumes a multivariate t-distribution, and "norm" assumes a multivariate normal distribution. "euclid" draws a
circle with the radius equal to level, representing the euclidean distance from the center.

showCategory
A number or a vector of terms. If it is a number, the first n terms will be displayed. If it is a vector of terms, the selected terms will be displayed.

layout
Layout of the map, e.g. 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'. Will be removed in the next version. Will be removed in the next version.

coords
a data.frame with two columns: 'x' for X-axis coordinate and 'y' for Y-axis coordinate. Will be removed in the next version.

color
Variable that used to color enriched terms, e.g. 'pvalue', 'p.adjust' or 'qvalue'.

min_edge
The minimum similarity threshold for whether two nodes are connected, should between 0 and 1, default value is 0.2. Will be removed in the next version.

cex_label_category
Scale of category node label size. Will be removed in the next version.

cex_category
Number indicating the amount by which plotting category nodes should be scaled relative to the default. Will be removed in the next version.

cex_line
Scale of line width. Will be removed in the next version.

shadowtext
a logical value, whether to use shadow font.

label_style
style of group label, one of "shadowtext" and "ggforce". Will be removed in the next version.

repel
whether to correct the position of the label. Defaults to FALSE.

node_label
Select which labels to be displayed, one of 'category', 'group', 'all' and 'none'.

with_edge
Logical, if TRUE, draw the edges of the network diagram. Will be removed in the next version.

group_category
a logical, if TRUE, group the category. Will be removed in the next version.

group_legend
Logical, if TRUE, the grouping legend will be displayed. The default is FALSE. Will be removed in the next version.

cex_label_group
Numeric, scale of group labels size, the default value is 1. Will be removed in the next version.

nWords
Numeric, the number of words in the cluster tags, the default value is 4. Will be removed in the next version.

label_format
a numeric value sets wrap length, alternatively a custom function to format axis labels. Will be removed in the next version.

clusterFunction
a function of Clustering method, such as stats::kmeans(the default), cluster::clara, cluster::fanny or cluster::pam. Will be removed in the next version.

nCluster
Numeric, the number of clusters, the default value is square root of the number of nodes. Will be removed in the next version.

layout.params
list, the parameters to control the layout. see the layout.params in the following. layout.params control the attributes of layout, it can be referred to the following parameters:
• layout Layout of the map, e.g. 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'.
• coords a data.frame with two columns: 'x' for X-axis coordinate and 'y' for Y-axis coordinate.

edge.params list, the parameters to control the edge. see the edge.params in the following. edge.params control the attributes of edge, it can be referred to the following parameters:
• show Logical, if TRUE (the default), draw the edges of the network diagram.
• min The minimum similarity threshold for whether two nodes are connected, should between 0 and 1, default value is 0.2.

cex.params list, the parameters to control the edge. see the cex.params in the following. cex.params control the attributes of edge, it can be referred to the following parameters:
• category_node Number indicating the amount by which plotting category nodes should be scaled relative to the default.
• category_label Scale of category node label size.
• line Scale of line width.
• pie2axis It is used to adjust the relative size of the pie chart on the coordinate axis, the default value is 1.
• label_group Numeric, scale of group labels size, the default value is 1.

hilight.params list, the parameters to control the attributes of highlighted nodes and edges. see the hilight.params in the following. hilight.params control the attributes of highlight, it can be referred to the following parameters:
• category category nodes to be highlight.
• alpha_hilight alpha of highlighted nodes.
• alpha_no_hilight alpha of unhighlighted nodes.

cluster.params list, the parameters to control the attributes of highlighted nodes and edges. see the cluster.params in the following. cluster.params control the attributes of highlight, it can be referred to the following parameters:
• cluster a logical, if TRUE, group the category.
• method function of Clustering method, such as stats::kmeans(the default), cluster::clara, cluster::fanny or cluster::pam.
• n Numeric, the number of clusters, the default value is square root of the number of nodes.
• legend Logical, if TRUE, the grouping legend will be displayed. The default is FALSE.
• label_style style of group label, one of "shadowtext" and "ggforce".
• label_words_n Numeric, the number of words in the cluster tags, the default value is 4.
• label_format a numeric value sets wrap length, alternatively a custom function to format axis labels.

split separate result by 'category' variable
Emapplot

- **pie**: proportion of clusters in the pie chart, one of 'equal' (default) and 'Count'. Will be removed in the next version.
- **legend_n**: number of circle in legend. Will be removed in the next version.
- **cex_pie2axis**: It is used to adjust the relative size of the pie chart on the coordinate axis, the default value is 1. Will be removed in the next version.
- **pie.params**: list, the parameters to control the attributes of pie nodes. See the pie.params in the following. Pie.params control the attributes of pie nodes, it can be referred to the following parameters:
 - **pie**: proportion of clusters in the pie chart, one of 'equal' (default) and 'Count'.
 - **legend_n**: number of circle in legend.

Details

This function visualizes gene sets as a network (i.e., enrichment map). Mutually overlapping gene sets tend to cluster together, making it easier for interpretation. When the similarity between terms meets a certain threshold (default is 0.2, adjusted by parameter 'min_edge'), there will be edges between terms. The stronger the similarity, the shorter and thicker the edges. The similarity between terms is obtained by function 'pairwise_termsim', the details of similarity calculation can be found in its documentation: pairwise_termsim.

Value

- ggplot object

Author(s)

Guangchuang Yu

Examples

```r
## Not run:
library(DOSE)
data(geneList)
de <- names(geneList)[1:100]
x <- enrichDO(de)
x2 <- pairwise_termsim(x)
emapplot(x2)
# use `layout` to change the layout of map
emapplot(x2, layout = "star")
# use `showCategory` to select the displayed terms. It can be a number of a vector of terms.
emapplot(x2, showCategory = 10)
categories <- c("pre-malignant neoplasm", "intestinal disease", "breast ductal carcinoma")
emapplot(x2, showCategory = categories)

# It can also graph compareClusterResult
library(clusterProfiler)
library(DOSE)
library(org.Hs.eg.db)
```

`emapplot()` has been replaced by `enrichplot()`. Please visit [igraph](https://igraph.org/) for more information on the changed function. Consider updating your code to use enrichplot().
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichGO", OrgDb="org.Hs.eg.db")
xx2 <- pairwise_termsim(xx)
emapplot(xx2)

End(Not run)

emapplot_cluster

Functional grouping network diagram for enrichment result of over-representation test or gene set enrichment analysis

Description

This function has been replaced by `emapplot`.

Usage

```r
emapplot_cluster(x, ...)
```

Arguments

- `x`: enrichment result
- `...`: additional parameters. Please refer to: `emapplot`.

Value

`ggplot2` object

fortify.compareClusterResult

fortify

Description

convert `compareClusterResult` to a `data.frame` that ready for plot
convert `enrichResult` object for `ggplot2`
Usage

```r
## S3 method for class 'compareClusterResult'
fortify(
  model,
  data,
  showCategory = 5,
  by = "geneRatio",
  split = NULL,
  includeAll = TRUE,
  ...
)
```

```r
## S3 method for class 'enrichResult'
fortify(
  model,
  data,
  showCategory = 5,
  by = "Count",
  order = FALSE,
  drop = FALSE,
  split = NULL,
  ...
)
```

Arguments

- **model** `enrichResult` or `compareClusterResult` object
- **data** not use here
- **showCategory** Category numbers to show
- **by** one of Count and GeneRatio
- **split** separate result by `split` variable
- **includeAll** logical
- **order** logical
- **drop** logical
- **...** additional parameter

Value

- `data.frame`
- `data.frame`

Author(s)

Guangchuang Yu
Description

label genes in running score plot

Usage

```r
geom_gsea_gene(
  genes,
  mapping = NULL,
  geom = ggplot2::geom_text,
  ..., geneSet = NULL
)
```

Arguments

- `genes`: selected genes to be labeled
- `mapping`: aesthetic mapping, default is `NULL`
- `geom`: geometric layer to plot the gene labels, default is `geom_text`
- `...`: additional parameters passed to the `geom`
- `geneSet`: choose which gene set(s) to be label if the plot contains multiple gene sets

Value

ggplot object

Author(s)

Guangchuang Yu

Description

plot table

Usage

```r
ggtable(d, p = NULL)
```
Arguments

d data frame
p ggplot object to extract color to color rownames(d), optional

Value

ggplot object

Author(s)

guangchuang yu

Description

plot induced GO DAG of significant terms

Usage

goplot(
 x,
 showCategory = 10,
 color = "p.adjust",
 layout = "sugiyama",
 geom = "text",
 ...
)

S4 method for signature 'enrichResult'
goplot(
 x,
 showCategory = 10,
 color = "p.adjust",
 layout = "sugiyama",
 geom = "text",
 ...
)

S4 method for signature 'gseaResult'
goplot(
 x,
 showCategory = 10,
 color = "p.adjust",
 layout = "sugiyama",
 ...
Arguments

- **x**: enrichment result.
- **showCategory**: number of enriched terms to display.
- **color**: variable that used to color enriched terms, e.g. pvalue, p.adjust or qvalue.
- **layout**: layout of the map.
- **geom**: label geom, one of 'label' or 'text'.
- **...**: additional parameter.

Value

ggplot object.

Author(s)

Guangchuang Yu

Examples

```r
## Not run:
library(clusterProfiler)
  data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
gplot(yy)
gplot(yy, showCategory = 5)
## End(Not run)
```
gseadist

Description

plot logFC distribution of selected gene sets

Usage

```r
gseadist(x, IDs, type = "density")
```

Arguments

- `x` GSEA result
- `IDs` gene set IDs
- `type` one of 'density' or 'boxplot'

Value

distribution plot

Author(s)

Guangchuang Yu

gseaplot

Description

visualize analyzing result of GSEA

Usage

```r
gseaplot(x, geneSetID, by = "all", title = "", ...)  
```

S4 method for signature 'gseaResult'

```r
gseaplot(  
  x,  
  geneSetID,  
  by = "all",  
  title = "",  
  color = "black",  
  color.line = "green",  
  color.vline = "#FA5860",  
)```
...)

gseaplot.gseaResult(
  x,
  geneSetID,
  by = "all",
  title = "",
  color = "black",
  color.line = "green",
  color.vline = "#FA5860",
  ...
)

Arguments

  x  object of gsea result
  geneSetID  geneSet ID
  by  one of "runningScore" or "position"
  title  plot title
  ...  additional parameters
  color  color of line segments
  color.line  color of running enrichment score line
  color.vline  color of vertical line which indicating the maximum/minimal running enrichment score

Details

  plotting function for gseaResult

Value

  ggplot2 object
  ggplot2 object

Author(s)

  Guangchuang Yu

Examples

  library(DOSE)
  data(geneList)
  x <- gseDO(geneList)
  gseaplot(x, geneSetID=1)
Description

GSEA plot that mimic the plot generated by broad institute’s GSEA software

Usage

```r
gseaplot2(
 x,
 geneSetID,
 title = "",
 color = "green",
 base_size = 11,
 rel_heights = c(1.5, 0.5, 1),
 subplots = 1:3,
 pvalue_table = FALSE,
 ES_geom = "line"
)
```

Arguments

- `x` - gseaResult object
- `geneSetID` - gene set ID
- `title` - plot title
- `color` - color of running enrichment score line
- `base_size` - base font size
- `rel_heights` - relative heights of subplots
- `subplots` - which subplots to be displayed
- `pvalue_table` - whether add pvalue table
- `ES_geom` - geom for plotting running enrichment score, one of 'line' or 'dot'

Value

- `plot`

Author(s)

Guangchuang Yu
gsearank

Description
plot ranked list of genes with running enrichment score as bar height

Usage
gsearank(x, geneSetID, title = "", output = "plot")

Arguments
  x   gseaResult object
geneSetID gene set ID
title  plot title
output one of ‘plot’ or ‘table’ (for exporting data)

Value
ggplot object

Author(s)
Guangchuang Yu

gsInfo

Description
extract gsea result of selected geneSet

Usage
gsInfo(object, geneSetID)

Arguments
  object  gseaResult object
geneSetID gene set ID

Value
data.frame
**Description**

heatmap like plot for functional classification

**Usage**

```r
heatplot(x, showCategory = 30, ...)
S4 method for signature 'enrichResult'
heatplot(x, showCategory = 30, ...)
S4 method for signature 'gseaResult'
heatplot(x, showCategory = 30, ...)

heatplot.enrichResult(
 x,
 showCategory = 30,
 symbol = "rect",
 foldChange = NULL,
 pvalue = NULL,
 label_format = 30
)
```

**Arguments**

- `x` enrichment result.
- `showCategory` number of enriched terms to display
- `...` Additional parameters
- `symbol` symbol of the nodes, one of "rect"(the default) and "dot" by default wraps names longer that 30 characters
- `foldChange` fold Change.
- `pvalue` pvalue of genes
- `label_format` a numeric value sets wrap length, alternatively a custom function to format axis labels.

**Value**

`ggplot` object
**pairwise_termsim**

**Author(s)**

guangchuang yu  
Guangchuang Yu

**Examples**

```r
library(DOSE)
data(geneList)
de <- names(geneList)[1:100]
x <- enrichDO(de)
heatmap(x)
```

**Description**

Get the similarity matrix

**Usage**

```r
pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200)

S4 method for signature 'enrichResult'
pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200)

S4 method for signature 'gseaResult'
pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200)

S4 method for signature 'compareClusterResult'
pairwise_termsim(x, method = "JC", semData = NULL, showCategory = 200)
```

```r
pairwise_termsim.enrichResult(
 x,
 method = "JC",
 semData = NULL,
 showCategory = 200
)
```

```r
pairwise_termsim.compareClusterResult(
 x,
 method = "JC",
 semData = NULL,
 showCategory = 200
)
```
plotting.clusterProfile

Arguments

- **x**: enrichment result.
- **method**: method of calculating the similarity between nodes, one of "Resnik", "Lin", "Rel", "Jiang", "Wang" and "JC" (Jaccard similarity coefficient) methods.
- **semData**: GOSemSimDATA object, can be obtained through `godata` function in GOSemSim package.
- **showCategory**: number of enriched terms to display, default value is 200.

Details

This function adds similarity matrix to the termsim slot of enrichment result. Users can use the 'method' parameter to select the method of calculating similarity. The Jaccard correlation coefficient (JC) is used by default, and it applies to all situations. When users want to calculate the correlation between GO terms or DO terms, they can also choose "Resnik", "Lin", "Rel" or "Jiang" (they are semantic similarity calculation methods from GOSemSim packages), and at this time, the user needs to provide the 'semData' parameter, which can be obtained through `godata` function in GOSemSim package.

Examples

```r
Not run:
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(GOSemSim)
library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 2]
ego <- enrichGO(gene = gene,
 universe = names(geneList),
 OrgDb = org.Hs.eg.db,
 ont = "BP",
 pAdjustMethod = "BH",
 pvalueCutoff = 0.01,
 qvalueCutoff = 0.05,
 readable = TRUE)
d <- godata('org.Hs.eg.db', ont="BP")
ego2 <- pairwise_termsim(ego, method="Wang", semData = d)
emapplot(ego2)
emapplot_cluster(ego2)
End(Not run)
```

---

plotting.clusterProfile

plotting-clusterProfile
Description

Internal plot function for plotting compareClusterResult

Usage

plotting.clusterProfile(
  clProf.reshape.df,
  x = ~Cluster,
  type = "dot",
  colorBy = "p.adjust",
  by = "geneRatio",
  title = "",
  font.size = 12
)

Arguments

  clProf.reshape.df
    data frame of compareCluster result
  x
    x variable
  type
    one of dot and bar
  colorBy
    one of pvalue or p.adjust
  by
    one of percentage and count
  title
    graph title
  font.size
    graph font size

Value

ggplot object

Author(s)

Guangchuang Yu https://guangchuangyu.github.io

---

pmcplot

Description

PubMed Central Trend plot

Usage

pmcplot(query, period, proportion = TRUE)
Arguments

query  query terms
period  period of query in the unit of year
proportion  If TRUE, use query_hits/all_hits, otherwise use query_hits

Value

ggplot object

Author(s)

guangchuang yu

---

Description

These objects are imported from other packages. Follow the links below to see their documentation.

aplot  plot_list
ggplot2  facet_grid, ggttitle

---

Description

ridgeline plot for GSEA result

Usage

ridgeplot(
  x,
  showCategory = 30,
  fill = "p.adjust",
  core_enrichment = TRUE,
  label_format = 30,
  ...
)

## S4 method for signature 'gseaResult'
ridgeplot(
  x,
showCategory = 30,
fill = "p.adjust",
core_enrichment = TRUE,
label_format = 30,
...
)
ridgeplot.gseaResult(
  x,
  showCategory = 30,
  fill = "p.adjust",
  core_enrichment = TRUE,
  label_format = 30,
  orderBy = "NES",
  decreasing = FALSE
)

Arguments

x                   gseaResult object
showCategory        number of categories for plotting
fill                 one of "pvalue", "p.adjust", "qvalue"
core_enrichment     whether only using core_enriched genes
label_format        a numeric value sets wrap length, alternatively a custom function to format axis labels.
...                  additional parameters by default wraps names longer that 30 characters
orderBy             The order of the Y-axis
decreasing          logical. Should the orderBy order be increasing or decreasing?

Value

ggplot object

Author(s)

Guangchuang Yu

Examples

library(DOSE)
data(geneList)
x <- gseD0(geneList)
ridgeplot(x)
set_enrichplot_color

Description

helper function to set color for enrichplot

Usage

```r
set_enrichplot_color(
 colors = get_enrichplot_color(2),
 type = "color",
 name = NULL,
 .fun = NULL,
 ...
)
```

Arguments

- `colors`: user provided color vector
- `type`: one of 'color', 'colour' or 'fill'
- `name`: name of the color legend
- `.fun`: force to use user provided color scale function
- `...`: additional parameter that passed to the color scale function

Value

a color scale

ssplot

Description

Similarity space plot of enrichment analysis results.

Usage

```r
ssplot(x, ...)
```

## S4 method for signature 'enrichResult'
```r
ssplot(x, showCategory = 30, ...)
```

## S4 method for signature 'gseaResult'
ssplot(x, showCategory = 30, ...)

## S4 method for signature 'compareClusterResult'
ssplot(x, showCategory = 30, ...)

ssplot.enrichResult(
  x,
  showCategory = 30,
  drfun = NULL,
  with_edge = FALSE,
  dr.params = list(),
  group_category = TRUE,
  node_label = "group",
  ...
)

ssplot.compareClusterResult(
  x,
  showCategory = 30,
  split = NULL,
  pie = "equal",
  drfun = NULL,
  with_edge = FALSE,
  cex_pie2axis = 0.0125,
  dr.params = list(),
  group_category = TRUE,
  node_label = "group",
  ...
)

Arguments

x Enrichment result.
...

additional parameters

can refer the following parameters.

- coords a data.frame with two columns: 'x' for X-axis coordinate and 'y' for Y-axis coordinate.
- color Variable that used to color enriched terms, e.g. 'pvalue', 'p.adjust' or 'qvalue'. the starting position of each text label.
- cex_line Scale of line width.
- min_edge The minimum similarity threshold for whether two nodes are connected, should between 0 and 1, default value is 0.2.
- cex_label_category Scale of category node label size.
- cex_category Number indicating the amount by which plotting category nodes should be scaled relative to the default.
- shadowtext a logical value, whether to use shadow font.
- label_style style of group label, one of "shadowtext" and "ggforce".
- `repel` whether to correct the position of the label. Defaults to FALSE.
- `group_legend` Logical, if TRUE, the grouping legend will be displayed. The default is FALSE.
- `cex_label_group` Numeric, scale of group labels size, the default value is 1.
- `nWords` Numeric, the number of words in the cluster tags, the default value is 4.
- `label_format` a numeric value sets wrap length, alternatively a custom function to format axis labels.
- `clusterFunction` function of Clustering method, such as stats::kmeans (the default), cluster::clara, cluster::fanny or cluster::pam.
- `nCluster` Numeric, the number of clusters, the default value is square root of the number of nodes.

additional parameters can refer the emapplot function: `emapplot`.

**showCategory**
A number or a vector of terms. If it is a number, the first n terms will be displayed. If it is a vector of terms, the selected terms will be displayed.

**drfun**
The function used for dimension reduction, e.g. stats::cmdscale (the default), vegan::metaMDS, or ape::pcoa.

**with_edge**
Logical, if TRUE, draw the edges of the network diagram. Will be removed in the next version.

**dr.params**
list, the parameters of tidydr::dr. one of 'category', 'group', 'all' and 'none'.

**group_category**
a logical, if TRUE, group the category. Will be removed in the next version.

**node_label**
Select which labels to be displayed, one of 'category', 'group', 'all' and 'none'.

**split**
separate result by 'category' variable

**pie**
proportion of clusters in the pie chart, one of 'equal' (default) and 'Count' Will be removed in the next version.

**cex_pie2axis**
It is used to adjust the relative size of the pie chart on the coordinate axis, the default value is 0.0125.

**Value**
ggplot object

**Examples**

```r
Not run:
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(GOSemSim)
library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 2]
ego <- enrichGO(gene = gene,
 universe = names(geneList),
 OrgDb = org.Hs.eg.db,
```
> ont = "BP",
> pAdjustMethod = "BH",
> pvalueCutoff = 0.01,
> qvalueCutoff = 0.05,
> readable = TRUE)
> d <- godata('org.Hs.eg.db', ont="BP")
> ego2 <- pairwise_termsim(ego, method = "Wang", semData = d)
> ssplot(ego2)
>
## End(Not run)

Description

Functional grouping tree diagram for enrichment result of over-representation test or gene set enrichment analysis.

Usage

treeplot(x, ...)

## S4 method for signature 'enrichResult'
treeplot(x, ...)

## S4 method for signature 'gseaResult'
treeplot(x, ...)

## S4 method for signature 'compareClusterResult'
treeplot(x, ...)

treeplot.enrichResult(
  x,
  showCategory = 30,
  color = "p.adjust",
  nWords = 4,
  nCluster = 5,
  cex_category = 1,
  label_format = NULL,
  label_format_cladelab = 30,
  label_format_tiplab = NULL,
  fontsize = 4,
  offset = rel(1),
  offset_tiplab = rel(1),
  hclust_method = "ward.D",
  group_color = NULL,
  extend = 0.3,
hilight = TRUE,
hexpand = 0.1,
align = "both",
hilight.params = list(hilight = TRUE, align = "both"),
offset.params = list(bar_tree = rel(1), tiplab = rel(1), extend = 0.3, hexpand = 0.1),
cluster.params = list(method = "ward.D", n = 5, color = NULL, label_words_n = 4,

label_format = 30),
...)

treeplot.compareClusterResult(
x,
showCategory = 5,
color = "p.adjust",
nWords = 4,
nCluster = 5,
cex_category = 1,
split = NULL,
label_format = NULL,
label_format_cladelab = 30,
label_format_tiplab = NULL,
fontsize = 4,
offset = rel(1),
pie = "equal",
legend_n = 3,
offset_tiplab = rel(1),
clus	
hclust_method = "ward.D",
geneClusterPanel = "heatMap",
古align = "both",
cluster.params = list(method = "ward.D", n = 5, color = NULL, label_words_n = 4,

label_format = 30),
hiılighton = TRUE,
geneClusterPanel = "heatMap",
古align = "both",
cluster.params = list(method = "ward.D", n = 5, color = NULL, label_words_n = 4,

label_format = 30),
highlight.params = list(highlight = TRUE, align = "both"),
clus
...)

Arguments

x enrichment result.
... additional parameters
showCategory number of enriched terms to display
color variable that used to color enriched terms, e.g. pvalue, p.adjust or qvalue
nWords The number of words in the cluster tags. Will be removed in the next version.
nCluster  The number of clusters, the default value is 5. Will be removed in the next version.
cex_category  Number indicating the amount by which plotting category nodes should be scaled relative to the default. Will be removed in the next version.
label_format  a numeric value sets wrap length, alternatively a custom function to format axis labels.
label_format_cladelab  label_format for group labels, a numeric value sets wrap length, alternatively a custom function to format axis labels. Will be removed in the next version.
label_format_tiplab  label_format for tiplabs, a numeric value sets wrap length, alternatively a custom function to format axis labels. Will be removed in the next version.
fontsize  The size of text, default is 4.
offset  rel object or numeric value, distance bar and tree, offset of bar and text from the clade, default is rel(1), meaning 1 * 1.2 * x_range_of_tree + distance_between_tree_and_tiplab (1 * (1.2 * x_range_of_tree + distance_between_tree_and_tiplab)). Will be removed in the next version.
offset_tiplab  tiplab offset, rel object or numeric value, the bigger the number, the farther the distance between the node and the branch. The default is rel(1), when geneClusterPanel = "pie", meaning 1 * max_radius_of_the_pies; when geneClusterPanel = "heatMap", meaning 1 * 0.16 * column_number_of_heatMap * x_range_of_tree; when geneClusterPanel = "dotplot", meaning 1 * 0.09 * column_number_of_dotplot * x_range_of_tree. Will be removed in the next version.
hclust_method  Method of hclust. This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). Will be removed in the next version.
group_color  A vector of group colors, the length of the vector should be the same as nCluster. Will be removed in the next version.
extend  Numeric, extend the length of bar, default is 0.3. Will be removed in the next version.
hilight  Logical value, if TRUE(default), add ggtree::geom_hilight() layer. Will be removed in the next version.
hexexpand  expand x limits by amount of xrange * hexexpand. Will be removed in the next version.
align  control the align direction of the edge of high light rectangular. Options is 'none', 'left', 'right', 'both (default)'. Will be removed in the next version.
hilight.params  list, the parameters to control the attributes of highlight layer. see the hilight.params in the following. hilight.params control the attributes of highlight layer, it can be referred to the following parameters:
  • hilight Logical value, if TRUE(default), add ggtree::geom_hilight() layer.
  • align control the align direction of the edge of high light rectangular. Options is 'none', 'left', 'right', 'both (default)'.

offset.params list, the parameters to control the offset. see the offset.params in the following. offset.params control the attributes of offset, it can be referred to the following parameters:

- **bar_tree** rel object or numeric value, distance bar and tree, offset of bar and text from the clade, default is rel(1), meaning 1 * 1.2 * x_range_of_tree plus distance_between_tree_and_tiplab (1 * (1.2 * x_range_of_tree + distance_between_tree_and_tiplab)).
- **tiplab** tiplab offset, rel object or numeric value, the bigger the number, the farther the distance between the node and the branch. The default is rel(1), when clusterPanel = "pie", meaning 1 * max_radius_of_the_pies; when clusterPanel = "heatMap", meaning 1 * 0.16 * column_number_of_heatMap * x_range_of_tree; when clusterPanel = "dotplot", meaning 1 * 0.09 * column_number_of_dotplot * x_range_of_tree.
- **extend** Numeric, extend the length of bar, default is 0.3.
- **hexpand** Numeric, extend x limits by amount of xrange * hexpand.

cluster.params list, the parameters to control the attributes of highlighted nodes and edges. see the cluster.params in the following. cluster.params control the attributes of highlight, it can be referred to the following parameters:

- **method** function of Clustering method, such as stats::kmeans(the default), cluster::clara, cluster::fanny or cluster::pam.
- **n** Numeric, the number of clusters, the default value is square root of the number of nodes.
- **color** A vector of group colors, the length of the vector should be the same as nCluster.
- **label_words_n** Numeric, the number of words in the cluster tags, the default value is 4.
- **label_format** A numeric value sets wrap length, alternatively a custom function to format axis labels.

split Separate result by 'category' variable.

pie Used only when geneClusterPanel = "pie", proportion of clusters in the pie chart, one of 'equal' (default) and 'Count'. Will be removed in the next version.

legend_n Number of circle in legend, the default value is 3. Will be removed in the next version.

geneClusterPanel one of "heatMap"(default), "dotplot", "pie". Will be removed in the next version.

clusterPanel.params list, the parameters to control the attributes of cluster panel. see the clusterPanel.params in the following. clusterPanel.params control the attributes of cluster panel, it can be referred to the following parameters:

- **clusterPanel** one of "heatMap"(default), "dotplot", "pie".
- **pie** Used only when ClusterPanel = "pie", proportion of clusters in the pie chart, one of 'equal' (default) and 'Count'.
- **legend_n** number of circle in legend.
Details

This function visualizes gene sets as a tree. Gene sets with high similarity tend to cluster together, making it easier for interpretation.

Value

ggplot object

Examples

```r
Not run:
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(GOSemSim)
library(ggplot2)
library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 2]
ego <- enrichGO(gene = gene,
 universe = names(geneList),
 OrgDb = org.Hs.eg.db,
 ont = "BP",
 pAdjustMethod = "BH",
 pvalueCutoff = 0.01,
 qvalueCutoff = 0.05,
 readable = TRUE)
d <- godata(org.Hs.eg.db, ont="BP")
ego2 <- pairwise_termsim(ego, method = "Wang", semData = d)
treeplot(ego2, showCategory = 30)
use `hilight = FALSE` to remove ggtree::geom_hilight() layer.
treeplot(ego2, showCategory = 30, hilight = FALSE)
use `offset` parameter to adjust the distance of bar and tree.
treeplot(ego2, showCategory = 30, hilight = FALSE, offset = rel(1.5))
use `offset_tiplab` parameter to adjust the distance of nodes and branches.
treeplot(ego2, showCategory = 30, hilight = FALSE, offset_tiplab = rel(1.5))
keep <- rownames(ego2@termsim)[c(1:10, 16:20)]
keep
treeplot(ego2, showCategory = keep)
treeplot(ego2, showCategory = 20,
 group_color = c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442"))
It can also graph compareClusterResult
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
 organism="hsa", pvalueCutoff=0.05)
xx <- pairwise_termsim(xx)
treeplot(xx)
use `geneClusterPanel` to change the gene cluster panel.
treeplot(xx, geneClusterPanel = "dotplot")
treeplot(xx, geneClusterPanel = "pie")
```
Description

upsetplot method generics

Usage

upsetplot(x, ...)

## S4 method for signature 'enrichResult'
upsetplot(x, n = 10, ...)

## S4 method for signature 'gseaResult'
upsetplot(x, n = 10, ...)

Arguments

x          object
...
additional parameters
n          number of categories to be plotted

Value

plot

Author(s)

Guangchuang Yu

Examples

require(DOSE)
data(geneList)
de = names(geneList)[1:100]
x <- enrichDO(de)
upsetplot(x, 8)
Index

* internal
  reexports, 31
autofacet, 2
barplot.enrichResult, 3
cnetplot, 4
cnetplot,compareClusterResult-method (cnetplot), 4
cnetplot,enrichResult-method (cnetplot), 4
cnetplot,gseaResult-method (cnetplot), 4
cnetplot,list-method (cnetplot), 4
cnetplot.enrichResult (cnetplot), 4
color_palette, 7
dotplot, 8
dotplot,compareClusterResult,ANY-method (dotplot), 8
dotplot,compareClusterResult-method (dotplot), 8
dotplot,enrichResult-method (dotplot), 8
dotplot,enrichResultList,ANY-method (dotplot), 8
dotplot,enrichResultList-method (dotplot), 8
dotplot,gseaResult-method (dotplot), 8
dotplot,gseaResultList,ANY-method (dotplot), 8
dotplot,gseaResultList-method (dotplot), 8
dotplot.compareClusterResult (dotplot), 8
dotplot.enrichResult (dotplot), 8
drag_network, 12
drag_network,18,35
drag_network, compareClusterResult-method (emapplot), 12
emapplot, 12, 18, 35
effect, 18
effect, emapplot, 12, 18, 35
effect, emapplot,compareClusterResult-method (emapplot), 12
effect, emapplot,gseaResult-method (emapplot), 12
effect, emapplot.compareClusterResult (emapplot), 12
effect, emapplot.enrichResult (emapplot), 12
effect, emapplot_cluster, 18
facet_grid, 31
facet_grid (reexports), 31
fortify.compareClusterResult, 18
fortify.enrichResult (fortify.compareClusterResult), 18
gene_plot, 5
geom_gsea_gene, 20
ggtable, 20
ggtitle, 31
ggtitle (reexports), 31
godata, 29
goplot, 21
goplot,enrichResult-method (goplot), 21
goplot,gseaResult-method (goplot), 21
goplot.enrichResult (goplot), 21
gseadist, 23
gseaplot, 23
gseaplot,gseaResult-method (gseaplot), 23
gseaplot.gseaResult (gseaplot), 23
gseaplot2, 25
gsearank, 26
gsInfo, 26
heatplot, 27
heatplot,enrichResult-method (heatplot), 27
heatplot,gseaResult-method (heatplot), 27
heatplot.enrichResult (heatplot), 27
INDEX

pairwise_termsim, 17, 28
pairwise_termsim, compareClusterResult-method
  (pairwise_termsim), 28
pairwise_termsim, enrichResult-method
  (pairwise_termsim), 28
pairwise_termsim, gseaResult-method
  (pairwise_termsim), 28
pairwise_termsim, compareClusterResult
  (pairwise_termsim), 28
pairwise_termsim.enrichResult
  (pairwise_termsim), 28
plot_list, 31
plot_list (reexports), 31
plotting.clusterProfile, 29
pmcplot, 30
reexports, 31
ridgeplot, 31
ridgeplot.gseaResult-method
  (ridgeplot), 31
ridgeplot.gseaResult (ridgeplot), 31
set_enrichplot_color, 33
ssplot, 33
ssplot, compareClusterResult-method
  (ssplot), 33
ssplot.enrichResult-method (ssplot), 33
ssplot.gseaResult-method (ssplot), 33
ssplot.compareClusterResult (ssplot), 33
ssplot.enrichResult (ssplot), 33
treeplot, 36
treeplot, compareClusterResult-method
  (treeplot), 36
treeplot.enrichResult-method
  (treeplot), 36
treeplot.gseaResult-method (treeplot), 36
treeplot.compareClusterResult
  (treeplot), 36
treeplot.enrichResult (treeplot), 36
upsetplot, 41
upsetplot.enrichResult, ANY-method
  (upsetplot), 41
upsetplot.enrichResult-method
  (upsetplot), 41
upsetplot.gseaResult (upsetplot), 41
upsetplot.gseaResult-method
  (upsetplot), 41