Package ‘epiNEM’

May 29, 2024

Type Package
Title epiNEM
Version 1.28.0
Author Madeline Diekmann & Martin Pirkl
Maintainer Martin Pirkl <martinpirkl@yahoo.de>
Description epiNEM is an extension of the original Nested Effects Models (NEM). EpiNEM is able to take into account double knockouts and infer more complex network signalling pathways. It is tailored towards large scale double knock-out screens.
Depends R (>= 4.1)
License GPL-3
Encoding UTF-8
LazyData true
biocViews Pathways, SystemsBiology, NetworkInference, Network
RoxygenNote 7.2.3
Imports BoolNet, e1071, gtools, igraph, utils, lattice, latticeExtra, RColorBrewer, pcalg, minet, grDevices, graph, mnem, latex2exp
VignetteBuilder knitr
Suggests knitr, RUnit, BiocGenerics, STRINGdb, devtools, rmarkdown, GOSemSim, AnnotationHub, org.Sc.sgd.db, BiocStyle
BugReports https://github.com/cbg-ethz/epiNEM/issues
URL https://github.com/cbg-ethz/epiNEM/
git_url https://git.bioconductor.org/packages/epiNEM
git_branch RELEASE_3_19
git_last_commit d210c36
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
AddLogicGates

Description

extend model with node representing logic gate

Usage

AddLogicGates(child, logic, model)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>child</td>
<td>define the child</td>
</tr>
<tr>
<td>logic</td>
<td>define the logical gate</td>
</tr>
<tr>
<td>model</td>
<td>normal model</td>
</tr>
</tbody>
</table>
CreateExtendedAdjacency

Create an extended adjacency matrix

Description

extend adjacency matrices taking cycles and logics into account. For every given start state, the final state is computed using BoolNet.

Usage

CreateExtendedAdjacency(network, mutants, experiments)

Arguments

- `network`: network created by BoolNet from file
- `mutants`: vector of single knockouts
- `experiments`: vector of all knockouts

Value

extended adjacency matrix

Examples

```
library(BoolNet)
data(cellcycle)
extModel <- CreateExtendedAdjacency(cellcycle,
c(cellcycle$genes, "CycD.Rb"), cellcycle$genes)
```
CreateRandomGraph

Create a random graph

Description

Returns a model graph with randomly sampled edges. Every possible edge has a probability to exist in the graph.

Usage

CreateRandomGraph(pathwayGenes, edgeProb = 0.5)

Arguments

- pathwayGenes: vector of genes in the pathway
- edgeProb: probability of random edge

Value

adjacency matrix

Examples

```r
graph <- CreateRandomGraph(c("Ikk1", "Ikk2", "RelA"))
```

CreateTopology

Create Topology.

Description

Create topology for a randomly generated pathway topology

Usage

CreateTopology(single, double, force = TRUE)

Arguments

- single: number of single knockouts
- double: number of double knockouts
- force: if true the random model will have a sophisticated logical gate

Value

adjacency matrix
epiAnno

Examples

```r
model <- CreateTopology(3, 1)
```

epiAnno
Gate visualisation.

Description

Plots logical gate data annotation. The 8 heatmaps visualize what perfect data would look like in respective to each logical gate. Perfect data is equivalent to Boolean truth tables.

Usage

```r
epiAnno()
```

Value

plot of heatmaps showing the silencing scheme (=expected data, truth tables)

Author(s)

Martin Pirkl

References

Examples

```r
epiAnno()
```

epiNEM
Epistatic NEMs - main function.

Description

This function contains the inference algorithm to learn logical networks from knock-down data including double knock-downs.
Usage
epiNEM(
 filename = "random",
 method = "greedy",
 nIterations = 10,
 nModels = 0,
 random = list(single = 4, double = 1, reporters = 100, FPrate = 0.1, FNrate = 0.1,
 replicates = 1),
 ltype = "marginal",
 para = c(0.13, 0.05),
 init = NULL
)

Arguments
filename A binary, tab-delimited matrix. Columns: single and double knockdowns. Rows:
genes showing effect or not? Default: random; artificial data is generated to
'random' specifications
method greedy or exhaustive search. Default: greedy
nIterations number of iterations. Default: 10
nModels number of Models. Default: 0
random list specifying how the data should be generated: no. of single mutants, no. of
double mutants, no. of reporterGenes, FP-rate, FN-rate, no. of replicates
ltype likelihood either "marginal" or "maximum"
para false positive and false negative rates
init adjacency matrix to initialise the greedy search

Value
List object with an adjacency matrix denoting the network, the model of the silencing scheme (rows
are knock-downs, columns are signalling genes), a string with the inferred logical gates, a column
indices denoting position of logical gates, the log transformed likelihood and the effect reporter
distribution (rows are the signalling genes including the null node).

Author(s)
Madeline Diekmann

See Also
nem

Examples
data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c("A", "A.B", "B", "C")
rownames(data) <- paste("E", 1:100, sep = ",")
epiScreen

```
res <- epiNEM(data, method = "exhaustive")
plot(res)
```

epiScreen
Analyse large double knock-out screen.

Description

This function is used to analyse knock-out screens with multiple double and single knock-outs combined in one data set.

Usage

```
epiScreen(data, ...)
```

Arguments

- `data`
 data matrix containing multiple single and double knock-downs in columns and effect reporters in the rows

- `...`
 additional parameters, e.g. for the main epiNEM function

Value

list object with vectors of double knock-downs, single knock-downs and two matrices with doubles in the columns and singles in the rows. The first matrix denotes the respective logical gate for the triple and the second matrix the log-likelihood

Author(s)

Martin Pirkl

Examples

```
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = "_")
res <- epiScreen(data)
```
ExtendTopology

Extending topology of normal "nem"

Description

Extending topology of normal "nem"

Usage

`ExtendTopology(topology, nReporters)`

Arguments

- `topology`: model of a topology from `CreateTopology`
- `nReporters`: number of effects reporters

Value

extended topology in which reporters are linked to pathway genes

Author(s)

Madeline Diekmann

See Also

`CreateTopology`

Examples

```r
topology <- CreateTopology(3, 1, force = TRUE)
topology <- unlist(unique(topology), recursive = FALSE)
extTopology <- ExtendTopology(topology$model, 100)
```

GenerateData

Generate data from extended model.

Description

Given a model created from `CreateTopology` and `ExtendTopology`, this function creates a corresponding artificial data matrix, which is used as a ground truth for simulation studies.

Usage

`GenerateData(model, extTopology, FPrate, FNrate, replicates)`
Arguments

- `model` model of a topology from `CreateTopology`
- `extTopology` extended topology
- `FPrate` false positive rate
- `FNrate` false negative rate
- `replicates` number of replicates

Value

data matrix with effect reporters as rows and knock-downs (including double knock-downs) as columns.

Author(s)

Madeline Diekmann

See Also

`CreateTopology`

Examples

```r
topology <- CreateTopology(3, 1, force = TRUE)
 topology <- unlist(unique(topology), recursive = FALSE)
 extTopology <- ExtendTopology(topology$model, 100)
 sortedData <- GenerateData(topology$model, extTopology, 0.05, 0.13, 3)
```

Description

Heatmap function based on the lattice package more information: ?xyplot

Usage

```r
HeatmapOP(
  x,
  col = "RdYlGn",
  colNA = "grey",
  coln = 11,
  bordercol = "grey",
  borderwidth = 0.1,
```
breaks = "sym",
main = "",
sub = "",
dendrogram = "none",
colorkey = "right",
Colv = TRUE,
Rowv = TRUE,
xrot = 90,
yrot = 0,
shrink = c(1, 1),
cexCol = 1,
cexRow = 1,
cexMain = 1,
cexSub = 1,
colSideColors = NULL,
aspect = "fill",
contour = FALSE,
useRaster = FALSE,
xlab = NULL,
ylab = NULL,
colSideColorsPos = "top",
clust = NULL,
clusterx = NULL,
axis.padding = 0.5,

Arguments

x Matrix.

col Color. See brewer.pal.info for all available color schemes. Alternatively, any
 number of colors, which are then used to create a color gradient. E.g., c("blue","red")
 produces a color scheme with a gradient from blue to red.

colNA color for NAs; default is grey

coln Number of colors.

bordercol Border color.

borderwidth Border width.

breaks Defines the breaks in the color range. "sym" makes the breaks symmetric around
 0.

main Main title.

sub Subtitle.

dendrogram Draw dendrogram with "both", "col" or "row", or do not draw with "none".

colorkey Draw colorkey "left", "right" (default), "top", "bottom" or NULL for no color-
 orkey. See ?lattice::levelplot for more complex colorkey options.

Colv Cluster columns (TRUE) or not (FALSE).
Rowv Cluster rows (TRUE) or not (FALSE).
xrot Rotate the column names by degree.
yrot Rotate the row names by degree.
shrink c(x,y) defines a range of size for the data boxes from low to high.
cexCol Font size of column names.
cexRow Font size of row names.
cexMain Font size of main title.
cexSub Font size of subtitle.
colSideColors Defines a numeric vector to annotate columns with different colors.
aspect "iso" for quadratic boxes or "fill" for stretched boxes.
contour TRUE adds a contour plot.
useRaster TRUE to add raster visuals
xlab Label for the x-axis.
ylab Label for the y-axis.
colSideColorsPos Place colSideColors at the "top" or "bottom".
clust p, s, or k for correlation clustering
clusterx Optional data matrix y with the same dimensions as x. x’s columns or rows are sorted by the cluster information of y. Col- and rownames of y must be in the same order as in x.
axis.padding padding around the heatmap (0.5 is no padding, default)
 ... Optional arguments.

Value

lattice object/matrix

Author(s)

Martin Pirkl & Oscar Perpinan at http://oscarperpinan.github.io/rastervis/

Examples

x <- matrix(rnorm(50), 10, 5)
HeatmapOP(x, dendrogram = "both", aspect = "iso", xrot = 45)
Mll

Evaluation of graphs

Description

Computes marginal log-likelihood for model Phi given observed data matrix D1

Usage

```
Mll(Phi, D1, D0, ltype = "marginal", para = c(0.13, 0.05))
```

Arguments

- **Phi**: model to be evaluated
- **D1**: observed data matrix
- **D0**: complementary D1
- **ltype**: likelihood type either "marginal" or "maximum"
- **para**: false positive and false negative rates

Value

list with likelihood poster probability, egene positions

Examples

```
Phi <- matrix(sample(c(0,1), 9, replace = TRUE), 3, 3)
data <- matrix(sample(c(0,1), 3*10, replace = TRUE), 10, 3)
rownames(Phi) <- colnames(Phi) <- colnames(data) <- c("Ikk1", "Ikk2", "RelA")
score <- Mll(Phi, D1 <- data, D0 <- 1 - data)
```

perm.rank.test

AUC permutation test

Description

computes the area under the rank enrichment score curve and does a permutation test to compute the p-value

Usage

```
perm.rank.test(
  x,
  y = NULL,
  alternative = c("two.sided", "less", "greater"),
  iter = 1000
)
```
plot.epiNEM

Arguments

- **x**
 numeric vector of ranks
- **y**
 numeric vector of the superset of x
- **alternative**
 character for test type: 'less', 'greater', 'two.sided'
- **iter**
 integer number of iterations

Value

p-value

Author(s)

Martin Pirkl

Examples

```r
x <- 1:10
y <- 1:100
perm.rank.test(x, y, alternative='less')
perm.rank.test(x, y, alternative='greater')
```

plot.epiNEM

Plot pathway.

Description

Plots the winning pathway structure

Usage

```r
## S3 method for class 'epiNEM'
plot(x, ...)
```

Arguments

- **x**
 object of class epiNEM
- **...**
 other arguments

Value

plot of the logical network

Examples

```r
data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c(“A”, “A.B”, “B”, “C”)
rownames(data) <- paste(“E”, 1:100, sep = ”_”)
res <- epiNEM(data, method = “exhaustive”)
plot(res)
```
Description

Plots the results of a systematic knock-out screen

Usage

```r
## S3 method for class 'epiScreen'
plot(
x,  
global = TRUE,
ind = NULL,
colorkey = TRUE,
cexGene = 1,
off = 0.05,
cexLegend = 1,
...
)
```

Arguments

- `x` object of class `epiScreen`
- `global` plot global distribution or for each pair (FALSE)
- `ind` index of pairs to plot
- `colorkey` if TRUE prints colorkey
- `cexGene` size of modulator annotation
- `off` relative distance from the gene names to the respective likelihoods
- `cexLegend` font size of the legend
- `...` other arguments

Value

plot(s) of an epiNEM screen analysis

Examples

```r
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = ".")
res <- epiScreen(data)
plot(res)
plot(res, global = FALSE, ind = 1:3)
```
plot.epiSim
Plot simulations.

Description
Plots the simulation results

Usage
```r
## S3 method for class 'epiSim'
plot(x, ...)
```

Arguments

- `x` object of class `epiSim`
- `...` other arguments

Value
plot(s) of an epiNEM simulation analysis

Examples
```r
res <- SimEpiNEM(runs = 1)
plot(res)
```

rank.enrichment
Rank enrichment

Description
Infers a signalling pathway from peerturbation experiments.

Usage
```r
rank.enrichment(
  data,
  list,
  list2 = NULL,
  n = 1000,
  main = NULL,
  col1 = "RdBu",
  col2 = rgb(1, 0, 0, 0.75),
  col3 = rgb(0, 0, 1, 0.75),
  blim = NULL,
  p = NULL,
)```

```r
```
lwd = 3,
test = wilcox.test,
vis = "matrix",
verbose = FALSE,
...)

Arguments

data m times l matrix with m observed genes and l variables with numeric values to
rank the genes
list list of vectors of genes
list2 optional list with same length as list
n length of the gradient (maximum: m)
main character string for main header; if NULL uses the column names of data by
default
col1 color of the gradient
col2 color of the first list
col3 color of the second list2
blim numeric vector of length two with the lower and upper bounds for the gradient
p numeric adjustment (length four) of the left side of the gradient (low means
more to the left, high more to the right) the right side of the enrichment lines
and the top positions of the additional matrices in case of vis='matrices'
lwd line width of the enrichment lines
test test function for the enrichment p-value; must have input argument and out-
put values same as perm.rank.test; e.g., wilcox.test or ks.test (here 'less' and
'greater' are switched!)
vis method for visualisation: 'matrix' uses one matrix heatmap for; 'matrices' uses
several matrices (experimental), 'colside' uses the colSideColors argument for
the ticks of genes in list/list2 (can use a lot of memory; experimental)
verbose if TRUE gives prints additional output
... additional arguments for epiNEM::HeatmapOP

Value

transitively closed matrix or graphNEL

Author(s)

Martin Pirkl
sameith_GO

Examples

data <- matrix(rnorm(100*2),100,2)
rownames(data) <- 1:100
colnames(data) <- LETTERS[1:2]
list <- list(first = as.character(sample(1:100, 10)), second = as.character(sample(1:100, 20))
rank.enrichment(data,list)

sameith_GO  
graph-based GO similarity scores, string GO annotations for Sameith et al., 2015 data

Description

The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

Examples

data(sameith_GO)

sameith_string  
sig. of string interaction scores for Sameith et al., 2015 data

Description

The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived form the string database. For details see the vignette.

Examples

data(sameith_string)

samscreen  
Example data: epiNEM results for the Sameith et al., 2015 knock-out screen

Description

The result of the epiNEM analysis of the data from "http://www.holstegelab.nl/publications/sv/signaling_redundancy/downloads/DataS1.txt". The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

Examples

data(samscreen)
SimEpiNEM

Example data: simulation results

Description

Contains simulation results. How they were acquired is explained in the vignette. The data consists of a list of data matrices holding sensitivity and specificity (spec, sens) of network edges for the various methods compared to the ground truth, sensitivity and specificity (sens2, spec2) of the expected data for epiNEM and Boolean NEMs and accuracy of the inferred logics for both. The different methods are in the rows and the columns denote the different independent simulation runs.

Examples

data(sim)

SimEpiNEM

Compare algorithms.

Description

Compares different network reconstruction algorithm on simulated data.

Usage

SimEpiNEM(
  runs = 10,
  do = c("n", "e"),
  random = list(FPrate = 0.1, FNrate = c(0.1, 0.5), single = 3, double = 1, reporters = 10, replicates = 2),
  maxTime = FALSE,
  forcelogic = TRUE,
  epinemsearch = "greedy",
  bnemsearch = "genetic",
  ...
)

Arguments

- **runs**: number simulation runs
- **do**: string vector of algorithms to compare: e (epiNEM), n (Nested Effects Models), b (B-NEM), p (PC algorithm), a (Aracne), e.g. c("e", "n", "p")
- **random**: list of false positive rate FPrate, false negative rates FNrate, number of single knock-downs single, number of double knock-downs double, number of effect reporters reporters and number of replicates replicates
maxTime: TRUE if the algorithms are bound to a maximum running time in respect to epiNEM
forceLogic: if TRUE the randomly sampled ground truth network includes a complex logic with probability 1
epinemSearch: greedy or exhaustive search for epiNEM
bnemSearch: genetic or greedy search for B-NEM
...

Value
returns list of specificity and sensitivity of inferred edges (spec, sens) and inferred expected data (spec2, sens2) and accuracy of logics (logics) and running time (time)

Author(s)
Martin Pirkl

Examples
res <- SimEpiNEM(runs = 1)

data(wageningen_GO)

Description
The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

Examples
data(wageningen_GO)

data(wageningen_string)

Description
The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived form the string database. For details see the vignette.

Examples
data(wageningen_string)
Example data: epiNEM results for the Wageningen et al., 2010 knock-out screen "http://www.holstegelab.nl/publications/GSTF_geneticinteractions/downloads/del_mutants_limma.txt"

Description
The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

Examples

data(wagscreen)
Index

AddLogicGates, 2
CreateExtendedAdjacency, 3
CreateRandomGraph, 4
CreateTopology, 4
epiAnno, 5
epiNEM, 5
epiScreen, 7
ExtendTopology, 8
GenerateData, 8
HeatmapOP, 9
Mll, 12
perm.rank.test, 12
plot.epiNEM, 13
plot.epiScreen, 14
plot.epiSim, 15
rank.enrichment, 15
sameith_GO, 17
sameith_string, 17
samscreen, 17
sim, 18
SimEpiNEM, 18
wageningen_GO, 19
wageningen_string, 19
wagscreen, 20