Package ‘erccdashboard’

May 29, 2024

Type Package
Title Assess Differential Gene Expression Experiments with ERCC Controls
Version 1.38.0
Author Sarah Munro, Steve Lund
Maintainer Sarah Munro <sarah.munro@gmail.com>
Description Technical performance metrics for differential gene expression experiments using External RNA Controls Consortium (ERCC) spike-in ratio mixtures.
URL https://github.com/munrosa/erccdashboard,
 http://tinyurl.com/erccsrm
BugReports https://github.com/munrosa/erccdashboard/issues
Depends R (>= 3.2), ggplot2 (>= 2.1.0), gridExtra (>= 2.0.0)
Imports edgeR, gplots, grid, gtools, limma, locfit, MASS, plyr, qvalue, reshape2, ROCR, scales, stringr
License GPL (>=2)
biocViews ImmunoOncology, GeneExpression, Transcription, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, Genetics, Microarray, mRNAMicroarray, RNASeq, BatchEffect, MultipleComparison, QualityControl
LazyData yes
Roxygen list(wrap = FALSE)
RoxygenNote 5.0.1
git_url https://git.bioconductor.org/packages/erccdashboard
git_branch RELEASE_3_19
annotLODR

Annotate signal-abundance and ratio-abundance plots with LODR

Description

Annotate signal-abundance and ratio-abundance plots with LODR

Usage

annotLODR(exDat)

Arguments

exDat list, contains input data and stores analysis results
Examples

```r
data(SEQC.Example)

exDat <- initDat(datType="array", isNorm=FALSE,
exTable=UHRR.HBRR.arrayDat,
filenameRoot="testRun", sample1Name="UHRR",
sample2Name="HBRR", erccmix="RatioPair",
erccdcilution = 1, spikeVol = 50,
totalRNAmass = 2.5*10^3, choseFDR=0.01)

exDat <- est_r_m(exDat)

exDat <- dynRangePlot(exDat)

exDat <- geneExpTest(exDat)

exDat <- estLODR(exDat, kind="ERCC", prob=0.9)

exDat <- annotLODR(exDat)

exDat$Figures$maPlot
```

dynRangePlot

Produce signal-abundance plot to evaluate dynamic range

Description

Produce signal-abundance plot to evaluate dynamic range

Usage

```r
dynRangePlot(exDat, allPoints, labelReps)
```

Arguments

- `exDat`: list, contains input data and stores analysis results
- `allPoints`: boolean, default is false, means of replicates will be plotted. If true then all replicates will be plotted as individual points.
- `labelReps`: boolean, default is false. If true then replicates will be labeled.

Examples

```r
data(SEQC.Example)

exDat <- initDat(datType="count", isNorm=FALSE, exTable=MET.CTL.countDat,
filenameRoot="testRun", sample1Name="MET",
sample2Name="CTL", erccmix="RatioPair",
spikeVol = 50,
totalRNAmass = 2.5*10^3, choseFDR=0.01)
```

```r
dynRangePlot(exDat)
```
ERCCDef

```r
erccdilution=1/100, spikeVol=1, totalRNAmass=0.500,
choseFDR=0.1)
exDat <- est_r_m(exDat)
exDat <- dynRangePlot(exDat, allPoints="FALSE", labelReps ="FALSE")
exDat$Figures$dynRangePlot
```

ERCC

ERCC data

Description
Contains 2 data frames: ERCCDef and ERCCMix1and2

Usage
```r
data(ERCC)
```

Examples
```r
data(ERCC)
```

ERCCDef

ERCCDef dataframe

Description
ERCC transcript lengths and GC content

Format
A data frame with 96 observations on the following 3 variables.

- **Feature** a factor vector
- **Length** a numeric vector
- **GC** a numeric vector

Details
Length and GC content of all 96 ERCC controls in NIST SRM 2374

Source
http://tinyurl.com/erccsrm
ERCCMix1and2

ERCCMix1and2 dataframe

Description

Ambion RatioPair ERCC Mixtures

Format

A data frame with 96 observations on the following 4 variables.

- **ERCC.AMB.Expected**: a factor vector of all 96 ERCC control IDs
- **Subpool**: a factor vector of the ERCC Ratios in each Subpool with levels 4:1, 1:1, 1:1.5, 1:2
- **Mix1Conc.Attomoles_ul**: a numeric vector of the ERCC concentrations in Mix 1
- **Mix2Conc.Attomoles_ul**: a numeric vector of the ERCC concentrations in Mix 2

Source

http://www.lifetechnologies.com/order/catalog/product/4456739

erccROC

Produce Receiver Operator Characteristic (ROC) Curves and AUC statistics

Description

Produce Receiver Operator Characteristic (ROC) Curves and AUC statistics

Usage

```r
erccROC(exDat)
```

Arguments

- **exDat**: list, contains input data and stores analysis results

Examples

```r
data(SEQC.Example)
exDat <- initDat(datType="array", isNorm=FALSE,
    exTable=UHHR.HBRR.arrayDat,
    filenameRoot="testRun", sample1Name="UHRR",
    sample2Name="HBRR", erccmix="RatioPair",
    erccdilution = 1, spikeVol = 50,
    totalRNAmass = 2.5*10^3, choseFDR=0.01)
```
estLODR <- est_r_m(exDat)

exDat <- dynRangePlot(exDat)

exDat <- geneExprTest(exDat)

exDat <- erccROC(exDat)

exDat$Figures$rocPlot

estLODR
Estimate Limit of Detection of Ratios (LODR)

Description

Estimate Limit of Detection of Ratios (LODR)

Usage

estLODR(exDat, kind = "ERCC", prob = 0.9)

Arguments

- **exDat**: list, contains input data and stores analysis results
- **kind**: "ERCC" or "Sim"
- **prob**: probability, ranging from 0 - 1, default is 0.9

Details

This is the function to estimate a limit of detection of ratios (LODR) for a chosen probability and threshold p-value for the fold changes in the ERCC control ratio mixtures.

Examples

data(SEQC.Example)

exDat <- initDat(datType="array", isNorm=FALSE,
 exTable=UHRR.HBRR.arrayDat,
 filenameRoot="testRun", sample1Name="UHRR",
 sample2Name="HBRR", erccmix="RatioPair",
 erccdilution = 1, spikeVol = 50,
 totalRNAmass = 2.5*10^4(3), choseFDR=0.01)

exDat <- est_r_m(exDat)

exDat <- dynRangePlot(exDat)
est_r_m

```r
exDat <- geneExprTest(exDat)
exDat <- estLODR(exDat, kind = "ERCC", prob = 0.9)
exDat$Figures$lodrERCCPlot
```

est_r_m

Estimate the mRNA fraction differences for the pair of samples using replicate data

Description

Estimate the mRNA fraction differences for the pair of samples using replicate data.

Usage

```r
est_r_m(exDat)
```

Arguments

- `exDat`: list, contains input data and stores analysis results

Details

This is the first function to run after an exDat structure is initialized using initDat, because it is needed for all additional analysis. An \(r_m \) of 1 indicates that the two sample types under comparison have similar mRNA fractions of total RNA. The \(r_m \) estimate is used to adjusted the expected ERCC mixture ratios in this analysis and may indicate a need for a different sample normalization approach.

Examples

```r
data(SEQC.Example)
exDat <- initDat(datType="count", isNorm = FALSE, exTable=MET.CTL.countDat, filenameRoot = "testRun", sample1Name = "MET", sample2Name = "CTL", erccmix = "RatioPair", erccdilution = 1/100, spikeVol = 1, totalRNAmass = 0.500, choseFDR = 0.1)
exDat <- est_r_m(exDat)
```
Prepare differential expression testing results for spike-in analysis

Usage

geneExprTest(exDat)

Arguments

exDat list, contains input data and stores analysis results

Details

This function wraps the QuasiSeq differential expression testing package for datType = "count" or uses the limma package for differential expression testing if datType = "array". Alternatively, for count data only, if correctly formatted DE test results are provided, then geneExprTest will bypass DE testing (with reduced runtime).

Examples

data(SEQC.Example)

exDat <- initDat(datType="array", isNorm=FALSE,
 exTable=UHRR.HBRR.arrayDat,
 filenameRoot="testRun", sample1Name="UHRR",
 sample2Name="HBRR", erccmix="RatioPair",
 erccdilution = 1, spikeVol = 50,
 totalRNAmass = 2.5*10^3, choseFDR=0.01)

exDat <- est_r_m(exDat)

exDat <- dynRangePlot(exDat)

exDat <- geneExprTest(exDat)
initDat

Initialize the exDat list

Description

Initialize the exDat list

Usage

`initDat(datType = NULL, isNorm = FALSE, exTable = NULL, repNormFactor = NULL, filenameRoot = NULL, sample1Name = NULL, sample2Name = NULL, erccmix = "RatioPair", erccdilution = 1, spikeVol = 1, totalRNAmass = 1, choseFDR = 0.05, ratioLim = c(-4, 4), signalLim = c(-14, 14), userMixFile = NULL)`

Arguments

- **datType**: type is "count" or "array", unnormalized data is expected (normalized data may be accepted in future version of the package). Default is "count" (integer count data), "array" is unnormalized fluorescent intensities from microarray fluorescent intensities (not log transformed or normalized)
- **isNorm**: default is FALSE, if FALSE then the unnormalized input data will be normalized in erccdashboard analysis. If TRUE then it is expected that the data is already normalized
- **exTable**: data frame, the first column contains names of genes or transcripts (Feature) and the remaining columns are counts for sample replicates spiked with ERCC controls
- **repNormFactor**: optional vector of normalization factors for each replicate, default value is NULL and 75th percentile normalization will be applied to replicates
- **filenameRoot**: string root name for output files
- **sample1Name**: string name for sample 1 in the gene expression experiment
- **sample2Name**: string name for sample 2 in the gene expression experiment
- **erccmix**: Name of ERCC mixture design, "RatioPair" is default, the other option is "Single"
- **erccdilution**: unitless dilution factor used in dilution of the Ambion ERCC spike-in mixture solutions
- **spikeVol**: volume in microliters of diluted ERCC mix spiked into the total RNA samples
- **totalRNAmass**: mass in micrograms of total RNA spiked with diluted ERCC mixtures
- **choseFDR**: False Discovery Rate for differential expression testing, default is 0.05
- **ratioLim**: Limits for ratio axis on MA plot, default is c(-4,4)
- **signalLim**: Limits for signal axis on dynamic range plot, default is c(-14,14)
- **userMixFile**: optional filename input, default is NULL, if ERCC control ratio mixtures other than the Ambion product were used then a userMixFile can be used for the analysis
Examples

data(SEQC.Example)

exDat <- initDat(datType="count", isNorm = FALSE, exTable=MET.CTL.countDat, filenameRoot = "testRun", sample1Name = "MET", sample2Name = "CTL", erccmix = "RatioPair", erccdilution = 1/100, spikeVol = 1, totalRNAmass = 0.500, choseFDR = 0.1)
summary(exDat)

maSignal(exDat, alphaPoint = 0.8, r_mAdjust = TRUE, replicate = TRUE)

Arguments

exDat list, contains input data and stores analysis results
alphaPoint numeric value, for alpha (transparency) for plotted points, range is 0 - 1
r_mAdjust default is TRUE, if FALSE then the r_m estimate will not used to offset dashed lines for empirical ratios on figure
replicate default is TRUE, if FALSE then error bars will not be produced

Examples

data(SEQC.Example)

exDat <- initDat(datType="array", isNorm=FALSE, exTable=UHRR.HBRR.arrayDat, filenameRoot="testRun", sample1Name="UHRR", sample2Name="HBRR", erccmix="RatioPair", erccdilution = 1, spikeVol = 50, totalRNAmass = 2.5*10^(3), choseFDR=0.01)

exDat <- est_r_m(exDat)

exDat <- dynRangePlot(exDat)

exDat <- geneExprTest(exDat)
generate MA plot without LODR annotation
```
exDat <- maSignal(exDat)
exDat$Figures$maPlot
exDat <- estLODR(exDat, kind = "ERCC", prob = 0.9)
# Include LODR annotation
exDat <- annotLODR(exDat)
exDat$Figures$maPlot
```

MET.CTL.countDat

Rat toxicogenomics count data

Description

RNA-Seq count data from Methimazole and Control rat biological replicates

Format

A data frame with 16590 observations of the following 7 variables.

- **Feature** a factor vector of all Endogenous and ERCC transcripts in the experiment
- **MET_1** a numeric vector of counts from Methimazole treatment biological replicate 1
- **MET_2** a numeric vector of counts from Methimazole treatment biological replicate 2
- **MET_3** a numeric vector of counts from Methimazole treatment biological replicate 3
- **CTL_1** a numeric vector of counts from Control biological replicate 1
- **CTL_2** a numeric vector of counts from Control biological replicate 2
- **CTL_3** a numeric vector of counts from Control biological replicate 3

MET.CTL.totalReads

Rat toxicogenomics total read data

Description

Total reads per biological replicate from FASTQ files

Format

The format is: int [1:6] 41423502 46016148 44320280 38400362 47511484 33910098
runDashboard

"Run default erccdashboard analysis of ERCC control ratio mixtures"

description

Run default erccdashboard analysis of ERCC control ratio mixtures

Usage

runDashboard(datType = NULL, isNorm = FALSE, exTable = NULL,
repNormFactor = NULL, filenameRoot = NULL, sample1Name = NULL,
sample2Name = NULL, erccmix = "RatioPair", erccdilution = 1,
spikeVol = 1, totalRNAmass = 1, choseFDR = 0.05, ratioLim = c(-4, 4),
signalLim = c(-14, 14), userMixFile = NULL)

Arguments

datType: type is "count" (RNA-Seq) or "array" (microarray), "count" is unnormalized integer count data (normalized RNA-Seq data will be accepted in an updated version of the package), "array" can be normalized or unnormalized fluorescent intensities from a microarray experiment.

isNorm: default is FALSE, if FALSE then the unnormalized input data will be normalized in erccdashboard analysis. If TRUE then it is expected that the data is already normalized

exTable: data frame, the first column contains names of genes or transcripts (Feature) and the remaining columns are expression measures for sample replicates spiked with ERCC controls

repNormFactor: optional vector of normalization factors for each replicate, default value is NULL and 75th percentile normalization will be applied to replicates

filenameRoot: string root name for output files

sample1Name: string name for sample 1 in the gene expression experiment

sample2Name: string name for sample 2 in the gene expression experiment

erccmix: Name of ERCC mixture design, "RatioPair" is default, the other option is "Single"

erccdilution: unitless dilution factor used in dilution of the Ambion ERCC spike-in mixture solutions

spikeVol: volume in microliters of diluted ERCC mix spiked into the total RNA samples

totalRNAmass: mass in micrograms of total RNA spiked with diluted ERCC mixtures

choseFDR: False Discovery Rate for differential expression testing

ratioLim: Limits for ratio axis on MA plot, default is c(-4,4)

signalLim: Limits for ratio axis on MA plot, default is c(-14,14)

userMixFile: optional filename input, default is NULL, if ERCC control ratio mixtures other than the Ambion product were used then a userMixFile can be used for the analysis
Examples

```
data(SEQC.Example)

exDat <- runDashboard(datType = "count", isNorm = FALSE,
exTable = MET.CTL.countDat,
filenameRoot = "COH.ILM",
sample1Name = "MET", sample2Name = "CTL",
erccmix = "RatioPair", erccdilution = 1/100,
spikeVol = 1, totalRNAmass = 0.500, choseFDR = 0.1)

summary(exDat)
```

saveERCCPlots

Save erccdashboard plots to a pdf file

Description

The function savePlots will save selected figures to a pdf file. The default is the 4 manuscript figures to a single page (plotsPerPg = "manuscript"). If plotsPerPg = "single" then each plot is placed on an individual page. If plotlist is not defined (plotlist = NULL) or if plotlist = exDat$Figures then all plots in exDat$Figures are printed to a PDF file.

Usage

```
saveERCCPlots(exDat, plotsPerPg = "main", saveas = "pdf", outName, plotlist, res)
```

Arguments

- **exDat**: list, contains input data and stores analysis results
- **plotsPerPg**: string, if "main" then the 4 main plots are printed to one page, if "single" then a single plot is printed per page from the plotlist argument
- **saveas**: Choose file format from "pdf", "jpeg" or "png"
- **outName**: Choose output file name, default will be fileName from exDat
- **plotlist**: list, contains plots to print
- **res**: Choose the file resolution

Examples

```
data(SEQC.Example)

exDat <- initDat(datType="count", isNorm=FALSE, exTable=MET.CTL.countDat,
filenameRoot="testRun", sample1Name="MET",
sample2Name="CTL", erccmix="RatioPair",
```r
exDat <- est_r_m(exDat)
exDat <- dynRangePlot(exDat)
exDat <- geneExprTest(exDat)
exDat <- erccROC(exDat)
exDat <- estLODR(exDat, kind="ERCC", prob=0.9)
exDat <- annotLODR(exDat)

#to print 4 main plots to a single page pdf file
saveERCCPlots(exDat, plotsPerPg = "manuscript", saveas = "pdf")

#to print 4 plots to a jpeg file
saveERCCPlots(exDat, plotsPerPg = "manuscript", saveas = "jpeg")

or to create a multiple page pdf of all plots produced
saveERCCPlots(exDat, plotsPerPg = "single", plotlist = exDat$Figures)

or to create a multiple page pdf of just 2 plots
saveERCCPlots(exDat, plotsPerPg = "single",
 plotlist = list(exDat$Figures$lodrPlot, exDat$Figures$maPlot))
```

---

**SEQC.Example**

*Example data from SEQC project for erccdashboard analysis*

**Description**

Contains the following 5 items:

- **MET.CTL.countDat** - Rat toxicogenomics count data
- **MET.CTL.totalReads** - Rat toxicogenomics total read data
- **UHRR.HBRR.arrayDat** - UHRR and HBRR Illumina BeadArray data
- **UHRR.HBRR.countDat** - UHRR and HBRR RNA-Seq Illumina count data
- **UHRR.HBRR.totalReads** - UHRR and HBRR sample total read data

**Usage**

data(SEQC.Example)

**Examples**

data(SEQC.Example)
**UHRR.HBRR.arrayDat**

**UHRR and HBRR Illumina BeadArray data**

**Description**
Unnormalized microarray data from Lab 13 of reference sample interlaboratory study.

**Format**
A data frame with 17627 observations of the following 7 variables.

- **Feature**: a factor vector of all Endogenous and ERCC transcripts in the experiment
- **UHRR_3**: a numeric vector of fluorescence intensities from UHRR microarray technical replicate 1
- **UHRR_2**: a numeric vector of fluorescence intensities from UHRR microarray technical replicate 2
- **UHRR_1**: a numeric vector of fluorescence intensities from UHRR microarray technical replicate 3
- **HBRR_3**: a numeric vector of fluorescence intensities from HBRR microarray technical replicate 1
- **HBRR_2**: a numeric vector of fluorescence intensities from HBRR microarray technical replicate 2
- **HBRR_1**: a numeric vector of fluorescence intensities from HBRR microarray technical replicate 3

**UHRR.HBRR.countDat**

**UHRR and HBRR RNA-Seq Illumina count data**

**Description**
RNA-Seq count data from UHRR and HBRR interlaboratory study library replicates.

**Format**
A data frame with 43919 observations of the following 9 variables.

- **Feature**: a character vector of all Endogenous and ERCC transcripts in the experiment
- **UHRR_1**: a numeric vector of counts from UHRR library preparation replicate 1
- **UHRR_2**: a numeric vector of counts from UHRR library preparation replicate 2
- **UHRR_3**: a numeric vector of counts from UHRR library preparation replicate 3
- **UHRR_4**: a numeric vector of counts from UHRR library preparation replicate 4
- **HBRR_1**: a numeric vector of counts from HBRR library preparation replicate 1
- **HBRR_2**: a numeric vector of counts from HBRR library preparation replicate 2
- **HBRR_3**: a numeric vector of counts from HBRR library preparation replicate 3
- **HBRR_4**: a numeric vector of counts from HBRR library preparation replicate 4
**UHRR.HBRR.totalReads**  
*UHRR and HBRR sample total read data*

---

**Description**

Total reads per library replicate from FASTQ files

**Format**

The format is: int [1:8] 138786892 256006510 199468322 431933806 247985592 219383270 251265814 257508210
Index

* datasets
  ERCC, 4
  ERCCDef, 4
  ERCCMix1and2, 5
  SEQC.Example, 14
  UHRR.HBRR.arrayDat, 15
  UHRR.HBRR.countDat, 15
  annotLODR, 2
  dynRangePlot, 3
  ERCC, 4
  ERCCDef, 4
  ERCCMix1and2, 5
  erccROC, 5
  est_r_m, 7
  estLODR, 6
  geneExprTest, 8
  initDat, 9
  maSignal, 10
  MET.CTL.countDat, 11
  MET.CTL.totalReads, 11
  runDashboard, 12
  saveERCCPlots, 13
  SEQC.Example, 14
  UHRR.HBRR.arrayDat, 15
  UHRR.HBRR.countDat, 15
  UHRR.HBRR.totalReads, 16