Package ‘escape’

May 21, 2024

Title Easy single cell analysis platform for enrichment
Version 2.0.0
Date 2024-02-29

Description A bridging R package to facilitate gene set enrichment analysis (GSEA) in the context of single-cell RNA sequencing. Using raw count information, Seurat objects, or SingleCellExperiment format, users can perform and visualize ssGSEA, GSVA, AUCell, and UCell-based enrichment calculations across individual cells.

License MIT + file LICENSE
Encoding UTF-8
LazyData false
RoxygenNote 7.3.1

biocViews Software, SingleCell, Classification, Annotation,
GeneSetEnrichment, Sequencing, GeneSignaling, Pathways

Depends R (>= 4.1)
Imports AUCell, BiocParallel, grDevices, dplyr, ggdist, ggplot2,
ggpointdensity, GSEABase, GSVA, SingleCellExperiment, ggridges,
msigdbr, stats, reshape2, patchwork, MatrixGenerics, utils,
SummarizedExperiment, UCell, stringr, methods, SeuratObject

Suggests Seurat, hexbin, scran, knitr, rmarkdown, markdown, BiocStyle,
RColorBrewer, rlang, spelling, testthat (>= 3.0.0), vdiffr

VignetteBuilder knitr
Language en-US

git_url https://git.bioconductor.org/packages/escape
git_branch RELEASE_3_19
git_last_commit d314a29
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-21

Author Nick Borcherding [aut, cre],
Jared Andrews [aut]

Maintainer Nick Borcherding <ncborch@gmail.com>
densityEnrichment

Visualize the mean density ranking of genes across gene set

Description

This function allows the user to examine the mean ranking within the groups across the gene set. The visualization uses the density function to display the relative position and distribution of rank.

Usage

densityEnrichment(
 input.data,
 gene.set.use = NULL,
 gene.sets = NULL,
 group.by = NULL,
 palette = "inferno"
)

Arguments

 input.data The single-cell object to use.
 gene.set.use Selected individual gene set.
 gene.sets The gene set library to use to extract the individual gene set information from.
 group.by Categorical parameter to plot along the x.axis. If input is a single-cell object the default will be cluster.
 palette Colors to use in visualization - input any hcl.pals.

Value

 ggplot2 object mean rank gene density across groups
Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
 Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))

pbmc_small <- SeuratObject::pbmc_small

densityEnrichment(pbmc_small,
 gene.set.use = "Tcells",
 gene.sets = GS)

escape.gene.sets

Built-In Gene Sets for escape

Description

A list of gene sets derived from Azizi, et al 2018 PMID: 29961579 relating to tumor immunity.

escape.matrix

Calculate gene set enrichment scores

Description

This function allows users to input both the single-cell RNA-sequencing counts and output the enrichment scores as a matrix.

Usage

```
escape.matrix(
  input.data,
  gene.sets = NULL,
  method = "ssGSEA",
  groups = 1000,
  min.size = 5,
  normalize = FALSE,
  make.positive = FALSE,
  BPPARAM = SerialParam(),
  ...
)
```
Arguments

input.data The count matrix, Seurat, or Single-Cell Experiment object.
gene.sets Gene sets can be a list, output from getGeneSets, or the built-in gene sets in the escape package escape.gene.sets.
method Select the method to calculate enrichment, AUCell, GSA, ssGSEA, or UCell.
groups The number of cells to separate the enrichment calculation.
min.size Minimum number of gene necessary to perform the enrichment calculation.
normalize Whether to divide the enrichment score by the number of genes TRUE or report unnormalized FALSE.
make.positive During normalization shift enrichment values to a positive range TRUE for downstream analysis or not TRUE (default). Will only be applied if normalize = TRUE.
BPPARAM A BiocParallel::bpparam() object that for parallelization.
...

Value

matrix of enrichment scores

Author(s)

Nick Borcherding, Jared Andrews

See Also

getGeneSets to collect gene sets.

Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))

pbmc_small <- SeuratObject::pbmc_small

ES <- escape.matrix(pbmc_small,
 gene.sets = GS,
 min.size = NULL)

getGeneSets

Get a collection of gene sets to perform enrichment on

Description

This function allows users to select libraries and specific gene.sets to form a GeneSetCollection that is a list of gene sets.
Usage

```r
getGeneSets(
  species = "Homo sapiens",
  library = NULL,
  subcategory = NULL,
  gene.sets = NULL
)
```

Arguments

- `species`: The scientific name of the species of interest in order to get correct gene nomenclature.
- `library`: Individual collection(s) of gene sets, e.g. c("H", "C5"). See `msigdb` for all MSigDB collections.
- `subcategory`: MSigDB sub-collection abbreviation, such as CGP or BP.
- `gene.sets`: Select gene sets or pathways, using specific names, example: pathways = c("HALLMARK_TNFA_SIGNALING_VIA_NFKB"). Will only be honored if library is set, too.

Value

A list of gene sets from msigdb.

Author(s)

Nick Borcherding, Jared Andrews

Examples

```r
GS <- getGeneSets(library = "H")
```

geyserEnrichment
Generate a ridge plot to examine enrichment distributions

Description

This function allows to the user to examine the distribution of enrichment across groups by generating a ridge plot.

Usage

```r
geyserEnrichment(
  input.data,
  assay = NULL,
  group.by = NULL,
  gene.set = NULL,
```
Arguments

input.data Enrichment output from escape.matrix or runEscape.
assay Name of the assay to plot if data is a single-cell object.
group.by Categorical parameter to plot along the x.axis. If input is a single-cell object the
default will be cluster.
gene.set Gene set to plot (on y-axis).
color.by How the color palette applies to the graph - can be "group" for a categorical
 color palette based on the group.by parameter or use the gene.set name if want-
 ing to apply a gradient palette.
order.by Method to organize the x-axis: "mean" will arrange the x-axis by the mean of
 the gene.set, while "group" will arrange the x-axis by in alphanumerical order.
 Using NULL will not reorder the x-axis.
scale Visualize raw values FALSE or Z-transform enrichment values TRUE.
facet.by Variable to facet the plot into n distinct graphs.
palette Colors to use in visualization - input any hcl.pals.

Value

ggplot2 object with geyser-based distributions of selected gene.set

Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
 Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmcmSmall <- SeuratObject::pbmcmSmall
pbmcmSmall <- runEscape(pbmcmSmall,
 gene.sets = GS,
 min.size = NULL)
geyserEnrichment(pbmcmSmall,
 assay = "escape",
 gene.set = "Tcells")
heatmapEnrichment

Generate a heatmap to visualize enrichment values

Description

This function allows the user to examine the heatmap with the mean enrichment values by group. The heatmap will have the gene sets as rows and columns will be the grouping variable.

Usage

heatmapEnrichment(
 input.data,
 assay = NULL,
 group.by = NULL,
 gene.set.use = "all",
 cluster.rows = FALSE,
 cluster.columns = FALSE,
 scale = FALSE,
 facet.by = NULL,
 palette = "inferno"
)

Arguments

input.data Enrichment output from escape.matrix or runEscape.
assay Name of the assay to plot if data is a single-cell object.
group.by Categorical parameter to plot along the x.axis. If input is a single-cell object the default will be cluster.
gene.set.use Selected gene sets to visualize. If "all", the heatmap will be generated across all gene sets.
cluster.rows Use Euclidean distance to order the row values.
cluster.columns Use Euclidean distance to order the column values.
scale Visualize raw values FALSE or Z-transform enrichment values TRUE.
facet.by Variable to facet the plot into n distinct graphs.
palette Colors to use in visualization - input any hcl.pals.

Value

ggplot2 object with heatmap of mean enrichment values
Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
 gene.sets = GS,
 min.size = NULL)

heatmapEnrichment(pbmc_small,
 assay = "escape")

pcaEnrichment
Visualize the PCA of enrichment values

Description

This function allows the user to examine the distribution of principal components run on the
enrichment values.

Usage

pcaEnrichment(
 input.data,
 dimRed = NULL,
 x.axis = "PC1",
 y.axis = "PC2",
 facet.by = NULL,
 style = "point",
 add.percent.contribution = TRUE,
 display.factors = FALSE,
 number.of.factors = 10,
 palette = "inferno"
)

Arguments

input.data PCA from performPCA.
dimRed Name of the dimensional reduction to plot if data is a single-cell object.
x.axis Component to plot on the x.axis.
y.axis Component set to plot on the y.axis.
facet.by Variable to facet the plot into n distinct graphs.
style Return a "hex" bin plot or a "point"-based plot.
add.percent.contribution Add the relative percent of contribution of the selected components to the axis
labels.
display.factors

Add an arrow overlay to show the direction and magnitude of individual gene sets on the PCA dimensions.

number.of.factors

The number of gene sets to display on the overlay.

palette

Colors to use in visualization - input any hcl.pals.

Value

ggplot2 object with PCA distribution

Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
 Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
 gene.sets = GS,
 min.size = NULL)
pbmc_small <- performPCA(pbmc_small,
 assay = "escape")
pcaEnrichment(pbmc_small,
 x.axis = "PC1",
 y.axis = "PC2",
 dimRed = "escape.PCA")
performPCA

Perform Principal Component Analysis on Enrichment Data

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input.data</td>
<td>Enrichment output from escape.matrix or runEscape.</td>
</tr>
<tr>
<td>assay</td>
<td>Name of the assay to plot if data is a single-cell object.</td>
</tr>
<tr>
<td>gene.sets</td>
<td>The gene set library to use to extract the individual gene set information from.</td>
</tr>
<tr>
<td>make.positive</td>
<td>Shift enrichment values to a positive range TRUE for downstream analysis or not TRUE (default).</td>
</tr>
<tr>
<td>scale.factor</td>
<td>A vector to use for normalizing enrichment scores per cell.</td>
</tr>
</tbody>
</table>

Value

Single-cell object or matrix of normalized enrichment scores

Examples

```r
GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
            Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
                         gene.sets = GS,
                         min.size = NULL)
pbmc_small <- performNormalization(pbmc_small,
                                    assay = "escape",
                                    gene.sets = GS)
```

Description

This function allows users to calculate the principal components for the gene set enrichment values. For single-cell data, the PCA will be stored with the dimensional reductions. If a matrix is used as input, the output is a list for further plotting. Alternatively, users can use functions for PCA calculations based on their desired workflow in lieu of using performPCA, but will not be compatible with downstream pcaEnrichment visualization.

Usage

```r
performPCA(
  input.data,  # Enrichment output from escape.matrix or runEscape.
  assay = NULL,  # Name of the assay to plot if data is a single-cell object.
  scale = TRUE,  # The gene set library to use to extract the individual gene set information from.
  n.dim = 1:10,  # Shift enrichment values to a positive range TRUE for downstream analysis or not TRUE (default).
  reduction.name = "escape.PCA",  # A vector to use for normalizing enrichment scores per cell.
  reduction.key = "PCA"
)
```
ridgeEnrichment

Arguments

input.data Enrichment output from escape.matrix or runEscape.
assay Name of the assay to plot if data is a single-cell object.
scale Standardize the enrichment value (TRUE) or not (FALSE)
n.dim The number of components to calculate.
reduction.name Name of the reduced dimensions object to add if data is a single-cell object.
reduction.key Name of the key to use with the components.

Value

single-cell object or list with PCA components to plot.

Examples

GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
 Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
 gene.sets = GS,
 min.size = NULL)
pbmc_small <- performPCA(pbmc_small,
 assay = "escape")

ridgeEnrichment Visualize enrichment results with a ridge plot

Description

This function allows the user to examine the distribution of enrichment across groups by generating a ridge plot.

Usage

ridgeEnrichment(
 input.data,
 assay = NULL,
 group.by = NULL,
 gene.set = NULL,
 color.by = "group",
 order.by = NULL,
 scale = FALSE,
 facet.by = NULL,
 add.rug = FALSE,
 palette = "inferno"
)
Arguments

- **input.data**: Enrichment output from `escape.matrix` or `runEscape`.
- **assay**: Name of the assay to plot if data is a single-cell object.
- **group.by**: Categorical parameter to plot along the x.axis. If input is a single-cell object the default will be `cluster`.
- **gene.set**: Gene set to plot (on y-axis).
- **color.by**: How the color palette applies to the graph - can be "**group**" for a categorical color palette based on the **group.by** parameter or use the **gene.set** name if wanting to apply a gradient palette.
- **order.by**: Method to organize the x-axis: "**mean**" will arrange the x-axis by the mean of the gene.set, while "**group**" will arrange the x-axis by in alphanumerical order. Using **NULL** will not reorder the x-axis.
- **scale**: Visualize raw values **FALSE** or Z-transform enrichment values **TRUE**.
- **facet.by**: Variable to facet the plot into n distinct graphs.
- **add.rug**: Add visualization of the discrete cells along the ridge plot (**TRUE**).
- **palette**: Colors to use in visualization - input any hcl.pals.

Value

- ggplot2 object with ridge-based distributions of selected gene.set

Examples

```r
GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
            Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbm_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small, gene.sets = GS, min.size = NULL)
ridgeEnrichment(pbmc_small, assay = "escape",
                gene.set = "Tcells")
```

```r
ridgeEnrichment(pbmc_small, assay = "escape",
                gene.set = "Tcells",
                color.by = "Tcells")
```
runEscape

Enrichment calculation for single-cell workflows

Description

Run the escape-based gene-set enrichment calculation with Seurat or SingleCellExperiment pipelines.

Usage

```r
runeescape(
  input.data,
  gene.sets = NULL,
  method = "ssGSEA",
  groups = 1000,
  min.size = 5,
  normalize = FALSE,
  make.positive = FALSE,
  new.assay.name = "escape",
  BPPARAM = SerialParam(),
  ...
)
```

Arguments

- `input.data`: The count matrix, Seurat, or Single-Cell Experiment object.
- `gene.sets`: Gene sets can be a list, output from `getGeneSets`, or the built-in gene sets in the escape package `escape.gene.sets`.
- `method`: Select the method to calculate enrichment, AUCell, GSVA, ssGSEA or UCell.
- `groups`: The number of cells to separate the enrichment calculation.
- `min.size`: Minimum number of gene necessary to perform the enrichment calculation.
- `normalize`: Whether to divide the enrichment score by the number of genes `TRUE` or report unnormalized `FALSE`.
- `make.positive`: During normalization shift enrichment values to a positive range `TRUE` for downstream analysis or not `TRUE` (default). Will only be applied if `normalize = TRUE`.
- `new.assay.name`: The new name of the assay to append to the single-cell object containing the enrichment scores.
- `BPPARAM`: A BiocParallel::bpparam() object that for parallelization.
- `...`: pass arguments to AUCell GSVA, ssGSEA or UCell call

Value

Seurat or Single-Cell Experiment object with escape enrichment scores in the assay slot.
Examples

```r
GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
  gene.sets = GS,
  min.size = NULL)
```

scatterEnrichment

Generate a density-based scatter plot

Description

This function allows to the user to examine the distribution of 2 gene sets along the x.axis and y.axis. The color gradient is generated using a density estimate. See `ggpointdensity` for more information.

Usage

```r
scatterEnrichment(
  input.data,
  assay = NULL,
  x.axis = NULL,
  y.axis = NULL,
  scale = FALSE,
  facet.by = NULL,
  style = "point",
  palette = "inferno"
)
```

Arguments

- **input.data**: Enrichment output from `escape.matrix` or `runEscape`.
- **assay**: Name of the assay to plot if data is a single-cell object.
- **x.axis**: Gene set to plot on the x.axis.
- **y.axis**: Gene set to plot on the y.axis. `group.by` parameter or use the `gene.set` name if wanting to apply a gradient palette.
- **scale**: Visualize raw values `FALSE` or Z-transform enrichment values `TRUE`.
- **facet.by**: Variable to facet the plot into n distinct graphs.
- **style**: Return a "hex" bin plot or a "point"-based plot.
- **palette**: Colors to use in visualization - input any `hcl.pals`.

Value

`ggplot2` object with a scatter plot of selected gene sets
splitEnrichment

Examples

```r
gs <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
            Tcells = c("CD3E", "CD3D", "CD3G", "CD7", "CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
                        gene.sets = gs,
                        min.size = NULL)
scatterEnrichment(pbm_small,
                  assay = "escape",
                  x.axis = "Tcells",
                  y.axis = "Bcells")
```

Description

This function allows the user to examine the distribution of enrichment across groups by generating a split violin plot.

Usage

```r
splitEnrichment(
  input.data,
  assay = NULL,
  split.by = NULL,
  group.by = NULL,
  gene.set = NULL,
  order.by = NULL,
  facet.by = NULL,
  scale = TRUE,
  palette = "inferno"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input.data</td>
<td>Enrichment output from <code>escape.matrix</code> or <code>runEscape</code>.</td>
</tr>
<tr>
<td>assay</td>
<td>Name of the assay to plot if data is a single-cell object.</td>
</tr>
<tr>
<td>split.by</td>
<td>Variable to form the split violin, must have 2 levels.</td>
</tr>
<tr>
<td>group.by</td>
<td>Categorical parameter to plot along the x.axis. If input is a single-cell object the default will be cluster.</td>
</tr>
<tr>
<td>gene.set</td>
<td>Gene set to plot (on y-axis).</td>
</tr>
<tr>
<td>order.by</td>
<td>Method to organize the x-axis - "mean" will arrange the x-axis by the mean of the gene.set, while "group" will arrange the x-axis by in alphanumerical order. Using <code>NULL</code> will not reorder the x-axis.</td>
</tr>
</tbody>
</table>
splitEnrichment

- **facet.by**: Variable to facet the plot into n distinct graphs.
- **scale**: Visualize raw values **FALSE** or Z-transform enrichment values **TRUE**.
- **palette**: Colors to use in visualization - input any hcl.pals.

Value

ggplot2 object violin-based distributions of selected gene.set

Examples

```r
GS <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
            Tcells = c("CD3E", "CD3D", "CD3G", "CD7","CD8A"))
pbmc_small <- SeuratObject::pbmc_small
pbmc_small <- runEscape(pbmc_small,
                        gene.sets = GS,
                        min.size = NULL)

splitEnrichment(pbmc_small,
                assay = "escape",
                split.by = "groups",
                gene.set = "Tcells")
```
Index

densityEnrichment, 2
escape.gene.sets, 3, 4, 13
escape.matrix, 3, 6, 7, 10–12, 14, 15

geneSets, 4, 4, 13
geyserEnrichment, 5
hcl.pals, 2, 6, 7, 9, 12, 14, 16
heatmapEnrichment, 7
pcaEnrichment, 8, 10
performNormalization, 9
performPCA, 8, 10, 10
ridgeEnrichment, 11
runEscape, 6, 7, 10–12, 13, 14, 15
scatterEnrichment, 14
splitEnrichment, 15