Package ‘flowVS’
March 18, 2024

Type Package
Title Variance stabilization in flow cytometry (and microarrays)
Version 1.34.0
Date 2021-04-02
Author Ariful Azad
Maintainer Ariful Azad <azad@iu.edu>
Description Per-channel variance stabilization from a collection of
flow cytometry samples by Bertlett test for homogeneity of
variances. The approach is applicable to microarrays data as
well.
License Artistic-2.0
LazyLoad yes
VignetteBuilder knitr
Depends R (>= 3.2), methods, flowCore, flowViz, flowStats
Suggests knitr, vsn,
biocViews ImmunoOncology, FlowCytometry, CellBasedAssays, Microarray
git_url https://git.bioconductor.org/packages/flowVS
git_branch RELEASE_3_18
git_last_commit 3548b61
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-18

R topics documented:

 flowVS-package ... 2
 estParamFlowVS .. 2
 HD .. 3
 lymphs ... 4
 microVS ... 5
 plotMeanSd .. 6
 transFlowVS ... 7
estParamFlowVS

flowVS-package

flowVS: Variance stabilization in flow cytometry (and microarrays).

Description

Please see the vignette.

Author(s)

Ariful Azad <azad@lbl.gov>

References

See Also

transFlowVS, microVS

estParamFlowVS

Estimate optimum parameters for per-channel within-population variance stabilization.

Description

This function estimates the variance stabilizing cofactors, one for each channel for the entire dataset. When a fluorescence channel z is transformed by asinh transformation with the optimum cofactor for z, the within-population variances of populations from all samples in the channel z are approximately stabilized.

Usage

estParamFlowVS(fs, channels)

Arguments

fs A flowSet containing a collection of flow cytometry samples.
channels A character vector identifying the channels/dimensions to be transformed. If any entry in this vector is not present in the flowSet, the function returns with an error.
Details

Let \(z \) be a fluorescence channel (column of a flowFrame). We consider transforming \(z \) by asinh transformation such that after transformation we obtain the transformed channel \(\text{asinh}(z/c) \), where \(c \) is a normalizing cofactor.

The `estParamFlowVS` function estimates cofactors, one for each channel for the entire dataset such that the within-population variance is stabilized in each fluorescence channel. When a fluorescence channel \(z \) is transformed by asinh transformation with the optimum cofactor for \(z \), the within-population variances of populations from all samples in the channel \(z \) are approximately stabilized.

Value

`estParamFlowVS` returns a numeric vector representing the optimum cofactors for the requested channels. The optimum cofactor for the input `channels[i]` is stored in the `i`th entry of the returned vector.

Author(s)

Ariful Azad

References

See Also

`transFlowVS`

Examples

```r
data(HD)
## identify optimum cofactor for CD3 and CD4 channels (from five samples)
cofactors = estParamFlowVS(HD[1:5], channels=c('CD3', 'CD4'))
# See detail examples in the documentation of the transFlowVS function.
```

Description

A `flowSet` containing 12 flow cytometry samples from three healthy individuals "A", "C", and "D". From each individual, the samples were drawn on two different days and two technical replicates were created from each sample (i.e., \(3 \times 2 \times 2 = 12 \) samples). Each HD sample was stained using labeled antibodies against CD45, CD3, CD4, CD8, and CD19 protein markers. Here, an HD sample "C_4_2" means that it is collected on day 4 from individual "C" and it is the second replicate on that day. We have identified lymphocytes in each sample of the HD dataset and apply the subsequent analysis on lymphocytes.
lymphs

Usage

data(HD)

Value

A flowSet containing 12 flowFrames. There are 3 subject groups with 4 samples each (2 days and 2 technical replicates per day).

References

lymphs

Identify lymphocyte cells from a flow cytometry sample.

Description

Identify and retain lymphocytes from a flow cytometry sample based on the forward and side scatters.

Usage

lymphs(ff, lymph.boundary, fsc, ssc, plot=FALSE)

Arguments

ff
A flowFrame containing a flow cytometry sample.

lymph.boundary
A list denoting an approximate rectangular boundary for lymphocytes. The first element of the list represents the lower and upper limit of forward scatter (FSC), and the 2nd element represents the lower and upper limit of side scatter (SSC). Example: list("FSC"=c(180000, 500000),"SSC"=c(0, 180000)).

fsc
name (or numeric index) of the forward scatter channel.

ssc
name (or numeric index) of the side scatter channel.

plot
true/false. If true then plots the rectangular and elliptical gates for the lymphocytes.

Details

At first a rectangular gate is created based on the lymph.boundary. Then the norm2Filter function is used to identify lymphocytes.

Value

lymphs returns a new flowFrame containing the lymphocytes.
microVS 5

Author(s)

Ariful Azad

References

See Also

estParamFlowVS

Examples

library(flowStats)
data(ITN)
identify lymphocytes
ITN.lymphs = lymphs(ITN[[1]], list("FS"=c(200, 600),"SS"=c(0, 400)), "FSC", "SSC",TRUE)

microVS

Variance stabilization for microarray data.

Description

Variance-stabilizing inverse hyperbolic sine (asinh) transformation for microarray data.

Usage

microVS(data, cfLow=0, cfHigh=10, frac=1)

Arguments

data The microarray data in a Matrix.
cfLow lowest possible value of cofactor (log scale).
cfHigh highest possible value of cofactor (log scale).
frac fraction of differentially expressed genes used in variance stabilization (0< frac <=1).

Details

This function transforms a microarray data matrix z by asinh(z/c) transformation where c is a normalizing cofactor. The cofactor is searched in the range [cfLow, cfHigh] and an optimum cofactor is obtained for which the transformed data is variance stabilized. The optimum cofactor is obtained by minimizing Bartlett’s test statistics for homogeneity of variance. If the parameter frac is less then one, a fraction of differentially expressed genes are used in estimating the cofactor.
Value

`microVS` returns a matrix of the variance-stabilizing microarray data.

Author(s)

Ariful Azad

References

Examples

```r
# stabilize variance of the Kidney microarray data from the vsn package
library(vsn)
data(kidney)
kidney.t = microVS(exprs(kidney))
plotMeanSd(kidney.t)
```

Description

Plot row standard deviations versus row means of a data matrix.

Usage

```r
plotMeanSd(x, ranks = TRUE, xlab = ifelse(ranks, "Rank of means (ascending order)", "mean"), ylab = "Standard deviation", pch = ".", plot = TRUE, ...)
```

Arguments

- `x`: An object of class `matrix`
- `ranks`: Logical, indicating whether the x-axis (means) should be plotted on the original scale (FALSE) or on the rank scale (TRUE). The latter distributes the data more evenly along the x-axis and allows a better visual assessment of the standard deviation as a function of the mean.
- `xlab`: Character, label for the x-axis.
transFlowVS

ylab Character, label for the y-axis.
pch Plot symbol.
plot Logical. If TRUE (default), a plot is produced. Calling the function with plot=FALSE can be useful if only its return value is of interest.
... Further arguments that get passed to plot.default.

Details

Standard deviation and mean are calculated row-wise from the expression matrix (in) x. The scatterplot of these versus each other allows to visually verify whether there is a dependence of the standard deviation (or variance) on the mean. The red dots depict the running median estimator (window-width 10%). If there is no variance-mean dependence, then the line formed by the red dots should be approximately horizontal.

Value

A named list with four components: its elements px and py are the x- and y-coordinates of the individual data points in the plot; its first and second element are the x-coordinates and values of the running median estimator (the red dots in the plot). Depending on the value of plot, the method can also have a side effect, which is to create a plot on the active graphics device.

Examples

library(vsn)
data(kidney)
kidney.t = microVS(exprs(kidney))
plotMeanSd(kidney.t)

transFlowVS Transform a flowSet by asinh transformation.

Description

This function transforms a flowSet by asinh transformation with the cofactors passed on to the function. The optimum cofactors that stabilize within-population variances in different fluorescence channels are estimated beforehand and passed to this function for data transformation.

Usage

transFlowVS(fs, channels, cofactors)

Arguments

fs A flowSet containing a collection of flow cytometry samples.
channels A character vector identifying the channels/dimensions to be transformed. If any entry in this vector is not present in the flowSet, the function returns with an error.
cofactors A numeric vector. cofactors[i] is used with asinh function to transform the column with name specified by channels[i].
Details

This function transforms a flowSet by asinh transformation with selected cofactors. The column with name `channels[i]` of every flowFrame of the input flowSet is transformed by asinh transformation with `cofactors[i]`. For example, let z_{ij} be the ith column of jth flowFrame in the input flowSet fs. Then after transformation z_{ij} would be converted to asinh($z_{ij}/\text{cofactors}[i]$).

For variance stabilization, the optimum cofactors that stabilize within-population variances in different fluorescence channels are estimated beforehand and passed to this function for data transformation. Variance stabilizing cofactors can be estimated by the `estParamFlowVS` function.

Value

transFlowVS returns a new flowSet with the transformed channels.

Author(s)

Ariful Azad

References

See Also

`estParamFlowVS`

Examples

```r
## Example 1: Healthy data from flowVS package
## ------------------------------------------------
data(HD)

## identify optimum cofactor for CD3 and CD4 channels (from five samples)
cofactors = estParamFlowVS(HD[1:5], channels=c("CD3", "CD4"))

## transform CD3 and CD4 channels in all samples
HD.VS = transFlowVS(HD, c("CD3", "CD4"), cofactors)
densityplot(~CD3+CD4, HD.VS, main="Transformed CD3 and CD4 channels in HD data")

## Example 2: ITN data from flowStats package
## ------------------------------------------------
library(flowStats)
data(ITN)

# identify lymphocytes
ITN.lymphs = fsApply(ITN, lymphs, list("FS"=c(200, 600), "SS"=c(0, 400), "FSC", "SSC", FALSE))

## identify optimum cofactor for CD3 and CD4 channels (from five samples)
cofactors = estParamFlowVS(ITN.lymphs[1:5], channels=c("CD3", "CD4"))

## transform CD3 and CD4 channels in all samples
ITN.VS = transFlowVS(ITN.lymphs, c("CD3", "CD4"), cofactors)
```
densityplot(~CD3*CD4, ITN.VS, main="Transfromed CD3 and CD4 channels in ITN data")
Index

* datasets
 HD, 3
* hplot
 plotMeanSd, 6
* methods
 plotMeanSd, 6
* transformation
 estParamFlowVS, 2
 flowVS-package, 2
 lymphs, 4
 microVS, 5
 transFlowVS, 7
* variance stabilization
 estParamFlowVS, 2
 flowVS-package, 2
 lymphs, 4
 microVS, 5
 transFlowVS, 7

estParamFlowVS, 2, 5, 8
flowFrames, 4
flowSet, 3
flowVS (flowVS-package), 2
flowVS-package, 2

HD, 3
lymphs, 4
matrix, 6
microVS, 2, 5
plotMeanSd, 6
transFlowVS, 2, 3, 7