Package ‘gcrma’

May 3, 2024

Title Background Adjustment Using Sequence Information

Version 2.76.0

Author Jean(ZHIJIN) Wu, Rafael Irizarry
with contributions from
James MacDonald <jmacdon@med.umich.edu>
Jeff Gentry

Description Background adjustment using sequence information

Maintainer Z. Wu <zwu@stat.brown.edu>

License LGPL

Depends R (>= 2.6.0), affy (>= 1.23.2), graphics, methods, stats,
utils

Imports Biobase, affy (>= 1.23.2), affyio (>= 1.13.3), XVector,
Biostings (>= 2.11.32), splines, BiocManager

Suggests affydata, tools, splines, hgu95av2cdf, hgu95av2probe

biocViews Microarray, OneChannel, Preprocessing

git_url https://git.bioconductor.org/packages/gcrma

git_branch RELEASE_3_19

git_last_commit 01247c3

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-03

Contents

<table>
<thead>
<tr>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>affinity.spline.coefs</td>
<td>2</td>
</tr>
<tr>
<td>bg.adjust.affinities</td>
<td>2</td>
</tr>
<tr>
<td>bg.adjust.gcrma</td>
<td>3</td>
</tr>
<tr>
<td>bg.parameters.ns</td>
<td>5</td>
</tr>
<tr>
<td>compute.affinities</td>
<td>6</td>
</tr>
<tr>
<td>fast.bkg</td>
<td>7</td>
</tr>
<tr>
<td>gcrma</td>
<td>8</td>
</tr>
</tbody>
</table>
affinity.spline.coefs

Spline coefficients for estimation of affinity from probe sequence

Description

Spline coefficients for estimation of affinity from probe sequence

Usage

```r
data(affinity.spline.coefs)
```

See Also

- `compute.affinities`

bg.adjust.affinities

Background adjustment with sequence information (internal function)

Description

An internal function to be used by `gcrma`.

Usage

```r
bg.adjust.fullmodel(pms,mms,ncs=NULL,apm,amm,anc=NULL,index.affinities,k=6
* fast + 0.25 * (1 - fast),rho=.7,fast=FALSE)
bg.adjust.affinities(pms,ncs,apm,anc,index.affinities,k=6
* fast + 0.25 * (1 - fast),fast=FALSE,nomm=FALSE)
```

Arguments

- `pms`
 PM intensities after optical background correction, before non-specific-binding correction.
- `mms`
 MM intensities after optical background correction, before non-specific-binding correction.
- `ncs`
 Negative control probe intensities after optical background correction, before non-specific-binding correction. If `ncs=NULL`, the MM probes are considered the negative control probes.
The index of pms with known sequences. (For some types of arrays the sequences of a small subset of probes are not provided by Affymetrix.)

apm Probe affinities for PM probes with known sequences.

amm Probe affinities for MM probes with known sequences.

anc Probe affinities for Negative control probes with known sequences. This is ignored when ncs=NULL.

rho correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7

k A tuning parameter. See details.

fast Logical value. If TRUE a faster add-hoc algorithm is used.

nomm Logical value indicating if MM intensities are available and will to be used to estimate background.

Details

Assumes PM=background1+signal, mm=background2, (log(background1),log(background2))' follow bivariate normal distribution, signal distribution follows power law. bg.parameters.gcrma and sg.parameters.gcrma provide adhoc estimates of the parameters.

the original gcrma uses an empirical Bayes estimate. this requires a complicated numerical integration. An add-hoc method tries to imitate the empirical Bayes estimate with a PM-B but values of PM-B<k going to k. This can be thought as a shrunken MVUE. For more details see Wu et al. (2003).

Value

a vector of same length as x.

Author(s)

Rafeal Irizarry, Zhijin(Jean) Wu

See Also

gcrma

Description

This function performs background adjustment (optical noise and non-specific binding on an AffyBatch project and returns an AffyBatch object in which the PM intensities are adjusted.
Usage

bg.adjust.gcrma(object, affinity.info=NULL,
 affinity.source=c("reference","local"),
 NCprobe=NULL,
 type=c("fullmodel","affinities","mm","constant"),
 k=6*fast+0.5*(1-fast), stretch=1.15*fast+1*(1-fast), correction=1,
 GSB.adjust=TRUE,
 rho=.7, optical.correct=TRUE, verbose=TRUE, fast=TRUE)

Arguments

- **object**: an AffyBatch
- **affinity.info**: NULL or an AffyBatch containing the affinities in the exprs slot. This object can be created using the function `compute.affinities`.
- **affinity.source**: reference: use the package internal Non-specific binding data or local: use the experimental data in object. If local is chosen, either MM probes or a user-defined list of probes (see NCprobes) are used to estimate affinities.
- **NCprobe**: Index of negative control probes. When set as NULL, the MM probes will be used. These probes are used to estimate parameters of non-specific binding on each array. These will be also used to estimate probe affinity profiles when affinity.info is not provided.
- **type**: "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.
- **k**: A tuning factor.
- **stretch**: .
- **correction**: .
- **GSB.adjust**: Logical value. If TRUE, probe effects in specific binding will be adjusted.
- **rho**: correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7
- **optical.correct**: Logical value. If TRUE, optical background correction is performed.
- **verbose**: Logical value. If TRUE messages about the progress of the function is printed.
- **fast**: Logical value. If TRUE a faster ad hoc algorithm is used.

Details

The returned value is an AffyBatch object, in which the PM probe intensities have been background adjusted. The rest is left the same as the starting AffyBatch object.

The tuning factor k will have different meanings if one uses the fast (ad hoc) algorithm or the empirical bayes approach. See Wu et al. (2003)

Value

An AffyBatch.
Author(s)
Rafeal Irizarry

Examples

```r
if(require(affydata) & require(hgu95av2probe) & require(hgu95av2cdf)){
  data(Dilution)
  ai <- compute.affinities(cdfName(Dilution))
  Dil.adj <- bg.adjust.gcrma(Dilution, affinity.info=ai, type="affinities")
}
```

Description

Estimation of non-specific Binding Background Parameters

An internal function to be used by `gcrma`

Usage

```r
bg.parameters.ns(x, affinities, affinities2=NULL, affinities3=NULL, span=.2)
```

Arguments

- `x`: PM or MM intensities after optical background correction, before non-specific-binding correction.
- `affinities`: Probe affinities for probes with known sequences. Used to estimate the function between non-specific binding and affinities.
- `affinities2`: Probe affinities for the probes whose expected non-specific binding intensity is to be predicted.
- `affinities3`: Probe affinities for another extra group of probes whose expected non-specific binding intensity is to be predicted.
- `span`: The span parameter passed to loess function

Value

A vector of same length as `x`.

Author(s)

Rafeal Irizarry, Zhijin (Jean) Wu

See Also

- `gcrma`
compute.affinities

Probe Affinity computation

Description

An internal function to calculate probe affinities from their sequences.

Usage

```r
compute.affinities(cdbname, verbose=TRUE)
compute.affinities2(cdbname, verbose=TRUE)
check.probes(probepackage, cdbname)
```

Arguments

- `cdbname`: Object of class character representing the name of CDF file associated with the arrays in the AffyBatch.
- `probepackage`: character representing the name of the package with the probe sequence information.
- `verbose`: Logical value. If TRUE messages about the progress of the function is printed.

Details

The affinity of a probe is described as the sum of position-dependent base affinities. Each base at each position contributes to the total affinity of a probe in an additive fashion. For a given type of base, the positional effect is modeled as a spline function with 5 degrees of freedom.

Use `compute.affinities2` if there are no MM probes.

Value

`compute.affinities` returns an AffyBatch with the affinities for PM probes in the pm locations and the affinities for MM probes in the mm locations. NA will be added for probes with no sequence information.

Author(s)

Rafeal Irizarry

References

See Also

`gcrma`, `affinity.spline.coefs`
Internal functions for justGCRMA

These are internal functions for justGCRMA that are called based on memory or speed constraints.

Usage

```r
fast.bkg(filenames, pm.affinities, mm.affinities, index.affinities,
type, minimum, optical.correct, verbose, k, rho, correction, stretch,
fast, cdfname, read.verbose)
mem.bkg(filenames, pm.affinities, mm.affinities, index.affinities, type,
minimum, optical.correct, verbose, k, rho, correction, stretch, fast,
cdfname, read.verbose)
```

Arguments

- **filenames**
 A list of cel files.
- **pm.affinities**
 Values passed from `compute.affinities`.
- **mm.affinities**
 Values passed from `compute.affinities`.
- **index.affinities**
 Values passed from `compute.affinities`.
- **type**
 "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.
- **minimum**
 A minimum value to be used for `optical.correct`.
- **optical.correct**
 Logical value. If TRUE, optical background correction is performed.
- **verbose**
 Logical value. If TRUE, messages about the progress of the function are printed.
- **k**
 A tuning factor.
- **rho**
 Correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7
- **correction**
 Logical value. If TRUE, then a faster ad hoc algorithm is used.
- **stretch**
 Logical value. If TRUE, then a faster ad hoc algorithm is used.
- **fast**
 Logical value. If TRUE, then a faster ad hoc algorithm is used.
- **cdfname**
 Used to specify the name of an alternative cdf package. If set to NULL, the usual cdf package based on Affymetrix’ mappings will be used. Note that the name should not include the ‘cdf’ on the end, and that the corresponding probe package is also required to be installed. If either package is missing an error will result.
- **read.verbose**
 Logical value. If TRUE, a message is returned as each celfile is read in.
Details

Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.

The tuning factor ‘k’ will have different meanings if one uses the fast (add-hoc) algorithm or the empirical Bayes approach. See Wu et al. (2003)

Value

An ExpressionSet.

Author(s)

James W. MacDonald <jmacdon@med.umich.edu>

See Also

gcrma

Description

This function converts an AffyBatch into an ExpressionSet using the robust multi-array average (RMA) expression measure with help of probe sequence.

Usage

gcrma(object, affinity.info = NULL,
 affinity.source = c("reference", "local"), NCprobe = NULL,
 type = c("fullmodel", "affinities", "mm", "constant"),
 k = 6*fast + 0.5*(1-fast), stretch = 1.15*fast + 1*(1-fast), correction = 1,
 GSB.adjust = TRUE,
 rho = .7, optical.correct = TRUE, verbose = TRUE, fast = TRUE,
 subset = NULL, normalize = TRUE, ...)

Arguments

object an AffyBatch

affinity.info NULL or an AffyBatch containing the affinities in the exprs slot. This object can be created using the function compute.affinities.

affinity.source reference: use the package internal Non-specific binding data or local: use the experimental data in object. If local is chosen, either MM probes or a user-defined list of probes (see NCprobes) are used to estimate affinities.
NCprobe Index of negative control probes. When set as NULL, the MM probes will be used. These probes are used to estimate parameters of non-specific binding on each array. These will be also used to estimate probe affinity profiles when affinity.info is not provided.

type "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.

k A tuning factor.

stretch

correction

GSB.adjust Logical value. If TRUE, probe effects in specific binding will be adjusted.

rho correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7

optical.correct Logical value. If TRUE, optical background correction is performed.

verbose Logical value. If TRUE messages about the progress of the function is printed.

fast Logical value. If TRUE a faster ad hoc algorithm is used.

subset a character vector with the the names of the probesets to be used in expression calculation.

normalize logical value. If 'TRUE' normalize data using quantile normalization.

... further arguments to be passed (not currently implemented - stub for future use).

Details

Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.

The tuning factor k will have different meanings if one uses the fast (add-hoc) algorithm or the empirical Bayes approach. See Wu et al. (2003)

Value

An ExpressionSet.

Author(s)

Rafeal Irizarry

Examples

```r
if(require(affydata) & require(hgu95av2probe) & require(hgu95av2cdf)){
  data(Dilution)
  ai <- compute.affinities(cdfName(Dilution))
  Dil.expr<-gcrma(Dilution,affinity.info=ai,type="affinities")
}
```
gcrma.engine

GCRMA background adjust engine (internal function)

Description

This function adjusts for non-specific binding when all arrays in the dataset share the same probe affinity information. It takes matrices of PM probe intensities, MM probe intensities, other negative control probe intensities (optional) and the associated probe affinities, and return one matrix of non-specific binding corrected PM probe intensities.

Usage

```r
gcrma.engine(pms, mms, ncs=NULL,
             pm.affinities=NULL, mm.affinities=NULL, anc=NULL,
             type=c("fullmodel","affinities","mm","constant"),
             k=6*fast+0.5*(1-fast),
             stretch=1.15*fast+1*(1-fast), correction=1, GSB.adjust=TRUE, rho=0.7,
             verbose=TRUE, fast=FALSE)
```

Arguments

- **pms**: The matrix of PM intensities
- **mms**: The matrix of MM intensities
- **ncs**: The matrix of negative control probe intensities. When left as `NULL`, the MMs are considered the negative control probes.
- **pm.affinities**: The vector of PM probe affinities. Note: This can be shorter than the number of rows in `pms` when some probes do not have sequence information provided.
- **mm.affinities**: The vector of MM probe affinities.
- **anc**: The vector of Negative Control probe affinities. This is ignored if MMs are used as negative controls (`ncs=NULL`).
- **type**: "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.
- **k**: A tuning factor.
- **stretch**: .
- **correction**: .
- **GSB.adjust**: Logical value. If `TRUE`, probe effects in specific binding will be adjusted.
- **rho**: Correlation coefficient of log background intensity in a pair of pm/mm probes. Default = .7
- **verbose**: Logical value. If `TRUE` messages about the progress of the function is printed.
- **fast**: Logical value. If `TRUE` a faster add-hoc algorithm is used.
Details

Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.

The tuning factor \(k \) will have different meanings if one uses the fast (add-hoc) algorithm or the empirical bayes approach. See Wu et al. (2003)

Value

A matrix of PM intensities.

Author(s)

Rafeal Irizarry & Zhijin Wu

See Also

gcrma.engine2

gcrma.engine2

GCRMA background adjust engine(internal function)

Description

This function adjust for non-specific binding when each array has its own probe affinity information. It takes an AffyBatch object of probe intensities and an AffyBatch of probe affinity, returns one matrix of non-specific binding corrected PM probe intensities.

Usage

\[
gcrma.engine2(object, pmIndex=NULL, mmIndex=NULL, NCprobe=NULL, affinity.info,
\text{type}=c("fullmodel","affinities","mm","constant"),
k=6*fast+0.5*(1-fast),
stretch=1.15*fast+1*(1-fast),correction=1,GSB.adjust=TRUE,rho=0.7,
\text{verbose=TRUE,fast=TRUE})
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an AffyBatch. Note: this is an internal function. Optical noise should have been corrected for.</td>
</tr>
<tr>
<td>pmIndex</td>
<td>Index of PM probes. This will be computed within the function if left NULL</td>
</tr>
<tr>
<td>mmIndex</td>
<td>Index of MM probes. This will be computed within the function if left NULL</td>
</tr>
<tr>
<td>NCprobe</td>
<td>Index of negative control probes. When set as NULL, the MM probes will be used. These probes are used to estimate parameters of non-specific binding on each array. These will be also used to estimate probe affinity profiles when affinity.info is not provided.</td>
</tr>
</tbody>
</table>
getCDF

affinity.info NULL or an AffyBatch containing the affinities in the exprs slot. This object can be created using the function `compute.affinities`.

type "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.

k A tuning factor.

stretch

correction

GSB.adjust Logical value. If TRUE, probe effects in specific binding will be adjusted.

rho correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7

verbose Logical value. If TRUE messages about the progress of the function is printed.

fast Logical value. If TRUE a faster add-hoc algorithm is used.

Details

Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.

The tuning factor k will have different meanings if one uses the fast (add-hoc) algorithm or the empirical bayes approach. See Wu et al. (2003)

Value

A matrix of PM intensities.

Author(s)

Rafeal Irizarry & Zhijin Wu

See Also

gcrma.engine

getCDF Functions for Automatic Download of Packages

Description

These are internal functions that are called by justGCRMA and GCRMA in order to automatically download and install cdf environments and probe packages.

Usage

getCDF(cdfname, lib = .libPaths()[1], verbose = TRUE)
getProbePackage(probepackage, lib = .libPaths()[1], verbose = TRUE)
justGCRMA

Arguments

- `cdfname`: Name of the cdfenv to install.
- `probepackage`: Name of the probe package to install.
- `lib`: Directory of the R library where packages will be installed.
- `verbose`: Output informative comments? Defaults to TRUE.

Value

Nothing is returned. These functions are called simply to install environments.

Author(s)

James W. MacDonald, based on `getCDFinfo`, written by Jeff Gentry.

See Also

- `getCDFinfo`

justGCRMA (Compute GCRMA Directly from CEL Files)

Description

This function converts CEL files into an ExpressionSet using the robust multi-array average (RMA) expression measure with help of probe sequences.

Usage

```r
just.gcrma(..., filenames=character(0),
          phenoData=new("AnnotatedDataFrame"),
          description=NULL,
          notes="",
          compress=getOption("BioC")$affy$compress.cel,
          normalize=TRUE,
          bgversion=2,
          affinity.info=NULL,
          type=c("fullmodel","affinities","mm","constant"),
          k=6*fast+0.5*(1-fast),
          stretch=1.15*fast+1*(1-fast),
          correction=1,
          rho=0.7,
          optical.correct=TRUE,
          verbose=TRUE,
          fast=TRUE,
          minimum=1,
          optimize.by=
          "speed","memory"),
          cdfname = NULL,
          read.verbose = FALSE)
```

```r
justGCRMA(..., filenames=character(0),
          widget=getOption("BioC")$affy$use.widgets,
          compress=getOption("BioC")$affy$compress.cel,
          celfile.path=getwd(),
          sampleNames=NULL,
          phenoData=NULL,
          ...)
```
description=NULL,
notes="",
normalize=TRUE,
bgversion=2, affinity.info=NULL,
type=c("fullmodel","affinities","mm","constant"),
k=6*fast+0.5*(1-fast), stretch=1.15*fast+1*(1-fast),
correction=1, rho=0.7, optical.correct=TRUE,
verbose=TRUE, fast=TRUE, minimum=1,
optimize.by = c("speed","memory"),
cdfname = NULL, read.verbose = FALSE)

Arguments

... file names separated by comma.
filenames file names in a character vector.
widget a logical specifying if widgets should be used.
compress are the CEL files compressed?
phenoData a AnnotatedDataFrame object.
description a MIAME object.
notes notes.
affinity.info NULL or a list of three components: apm,amm and index, for PM probe affinities, MM probe affinities, the index of probes with known sequence, respectively.
type "fullmodel" for sequence and MM model. "affinities" for sequence information only. "mm" for using MM without sequence information.
k A tuning factor.
rho correlation coefficient of log background intensity in a pair of pm/mm probes. Default=.7.
stretch .
correction .
normalize Logical value. If TRUE, then normalize data using quantile normalization.
optical.correct Logical value. If TRUE, then optical background correction is performed.
verbose Logical value. If TRUE, then messages about the progress of the function is printed.
fast Logical value. If TRUE, then a faster add-hoc algorithm is used.
optimize.by "speed" will use a faster algorithm but more RAM, and "memory" will be slower, but require less RAM.
bgversion integer value indicating which RMA background to use 1: use background similar to pure R rma background given in affy version 1.0 - 1.0.2 2: use background similar to pure R rma background given in affy version 1.1 and above.
minimum .
celfile.path a character denoting the path 'ReadAffy' should look for cel files.
justGCRMA

sampleNames a character vector of sample names to be used in the ’AffyBatch’.
cdfname Used to specify the name of an alternative cdf package. If set to NULL, the usual cdf package based on Affymetrix’ mappings will be used. Note that the name should not include the ’cdf’ on the end, and that the corresponding probe package is also required to be installed. If either package is missing an error will result.
read.verbose Logical value. If TRUE, then messages will be printed as each celfile is read in.

Details
This method should require much less RAM than the conventional method of first creating an AffyBatch and then running gcrma.
This is a simpler version than gcrma, so some of the arguments available in gcrma are not available here. For example, it is not possible to use the MM probes to estimate background. Instead, the internal NSB estimates are used (which is also the default for gcrma).
Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.
The tuning factor k will have different meanings if one uses the fast (add-hoc) algorithm or the empirical Bayes approach. See Wu et al. (2003)
fast.bkg and mem.bkg are two internal functions.

Value
An ExpressionSet object.

Author(s)
James W. MacDonald
Index

* datasets
 affinity.spline.coefs, 2

* internal
 fast.bkg, 7
getCDF, 12

* manip
 bg.adjust.affinities, 2
 bg.adjust.gcrma, 3
 bg.parameters.ns, 5
 compute.affinities, 6
gcrma, 8
gcrma.engine, 10
gcrma.engine2, 11
 justGCRMA, 13

affinity.spline.coefs, 2, 6
AffyBatch, 4, 8, 11
AnnotatedDataFrame, 14
average.for.PAV(bg.parameters.ns), 5

base.profiles(compute.affinities), 6
bg.adjust.affinities, 2
bg.adjust.constant
 (bg.adjust.affinities), 2
bg.adjust.fullmodel
 (bg.adjust.affinities), 2
bg.adjust.gcrma, 3
bg.adjust.mm(bg.adjust.affinities), 2
bg.adjust.optical
 (bg.adjust.affinities), 2
bg.parameters.ns, 5

check.probes(compute.affinities), 6
compute.affinities, 2, 4, 6, 8, 12
compute.affinities2
 (compute.affinities), 6
compute.affinity.coef
 (compute.affinities), 6

ExpressionSet, 15

fast.bkg, 7
gcrma, 2, 3, 5, 6, 8, 8, 15
gcrma.engine, 10
gcrma.engine2, 11
getCDF, 12
getProbePackage(getCDF), 12
GSB.adj(gcrma), 8
just.gcrma(justGCRMA), 13
justGCRMA, 13
left.sigma(bg.parameters.ns), 5
mem.bkg(fast.bkg), 7
MIAME, 14
PAV(bg.parameters.ns), 5
plotBaseProfiles(compute.affinities), 6