Package ‘gespeR’

March 27, 2024

Imports Matrix, glmnet, cellHTS2, Biobase, biomaRt, doParallel, parallel, foreach, reshape2, dplyr

Depends methods, graphics, ggplot2, R(>= 2.10)

Suggests knitr

biocViews ImmunoOncology, CellBasedAssays, Preprocessing, GeneTarget, Regression, Visualization

VignetteBuilder knitr

Type Package

Lazyload yes

Title Gene-Specific Phenotype EstimatoR

Version 1.34.0

Date 2015-07-22

Author Fabian Schmich

Maintainer Fabian Schmich <fabian.schmich@bsse.ethz.ch>

Description Estimates gene-specific phenotypes from off-target confounded RNAi screens. The phenotype of each siRNA is modeled based on on-targeted and off-targeted genes, using a regularized linear regression model.

License GPL-3

URL http://www.cbg.ethz.ch/software/gespeR

Collate 'Phenotypes-class.R' 'TargetRelations-class.R'
 'gespeR-class.R' 'gespeR-concordance.R' 'gespeR-functions.R'
 'gespeR-generics.R' 'gespeR-methods.R' 'gespeR-package.R'

git_url https://git.bioconductor.org/packages/gespeR

git_branch RELEASE_3_18

git_last_commit 35e6043

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-27
Package: Gene-Specific Phenotype EstimatoR

Description

This package provides a model to deconvolute off-target confounded RNAi knockdown phenotypes, and methods to investigate concordance between ranked lists of (estimated) phenotypes. The regularized linear regression model can be fitted using two different strategies. (a) Cross-validation over regularization parameters optimising the mean-squared-error of the model and (b) stability selection of covariates (genes) based on a method by Nicolai Meinshausen et al.

Author(s)

Fabian Schmich | Computational Biology Group, ETH ZURICH | <fabian.schmich@bsse.ethz.ch>
Examples

```r
# Read phenotypes
phenos <- lapply(LETTERS[1:4], function(x) {
  sprintf("Phenotypes_screen_%s.txt", x)
})
phenos <- lapply(phenos, function(x) {
  Phenotypes(system.file("extdata", x, package="gespeR"),
  type = "SSP",
  col.id = 1,
  col.score = 2)
})
phenos
plot(phenos[[1]])

# Read target relations
tr <- lapply(LETTERS[1:4], function(x) {
  sprintf("TR_screen_%s.rds", x)
})
tr <- lapply(tr, function(x) {
  TargetRelations(system.file("extdata", x, package="gespeR"))
})
tr[[1]]
tempfile <- paste(tempfile(pattern = "file", tmpdir = tempdir()), ".rds", sep="")
tr[[1]] <- unloadValues(tr[[1]], writeValues = TRUE, path = tempfile)
tr[[1]]
tr[[1]] <- loadValues(tr[[1]])
tr[[1]]

# Fit gespeR models with cross validation
res.cv <- lapply(1:length(phenos), function(i) {
  gespeR(phenotypes = phenos[[i]],
  target.relations = tr[[i]],
  mode = "cv",
  alpha = 0.5,
  ncores = 1)
})
summary(res.cv[[1]])
res.cv[[1]]
plot(res.cv[[1]])

# Extract scores
ssp(res.cv[[1]])
gsp(res.cv[[1]])
head(scores(res.cv[[1]]))
```
Fit gespeR models with stability selection
res.stab <- lapply(1:length(phenos), function(i) {
 gespeR(phenotypes = phenos[[i]],
 target.relations = tr[[i]],
 mode = "stability",
 nbootstrap = 100,
 fraction = 0.67,
 threshold = 0.75,
 EV = 1,
 weakness = 0.8,
 ncores = 1)
})
summary(res.stab[[1]])
res.stab[[1]]
plot(res.stab[[1]])

Extract scores
ssp(res.stab[[1]])
gsp(res.stab[[1]])
head(scores(res.stab[[1]]))

Compare concordance between stability selected GSPs and SSPs
conc.gsp <- concordance(lapply(res.stab, gsp))
conc.ssp <- concordance(lapply(res.stab, ssp))

pl.gsp <- plot(conc.gsp) + ggtitle("GSPs\n")
pl.ssp <- plot(conc.ssp) + ggtitle("SSPs\n")

if (require(grid)) {
 grid.newpage()
 pushViewport(viewport(layout = grid.layout(1, 2)))
 print(pl.gsp, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
 print(pl.ssp, vp = viewport(layout.pos.row = 1, layout.pos.col = 2))
} else {
 plot(pl.gsp)
 plot(pl.ssp)
}

Description

Query Biomart HGNC symbols for the entrez identifiers of estimated GSPs. Currently, only implemented for species "hsapiens".

Usage

```r
## S4 method for signature 'Phenotypes'
```
annotate.gsp(object, organism = "hsapiens")

S4 method for signature 'gespeR'
annotate.gsp(object, organism = "hsapiens")

Arguments

object A gespeR or Phenotypes object
organism String indicating the biomaRt organism

Value
data.frame containing gene identifier, gene symbol and phenotypic score

Author(s)
Fabian Schmich

See Also
gsp
ssp
scores

Examples
data(stabilityfits)
gspA <- gsp(stabilityfits$A)
Not run:
annotate.gsp(gspA)
End(Not run)

as.data.frame,Phenotypes-method

Convert Phenotypes object to a data.frame

Description
Convert Phenotypes object to a data.frame

Usage
S4 method for signature 'Phenotypes'
as.data.frame(x)
Arguments

x A Phenotypes object

Value

A data.frame

Author(s)

Fabian Schmich

Examples

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
 type = "SSP",
 col.id = 1,
 col.score = 2)
as.data.frame(phenos)

as.data.frame.concordance

Description

Coerce method

Usage

S3 method for class 'concordance'
as.data.frame(x, ...)

Arguments

x concordance object

... additional arguments

Value

data.frame

Author(s)

Fabian Schmich
Concatenate Phenotypes objects

S4 method for signature 'Phenotypes'
c(x, ..., recursive = FALSE)

Arguments

- **x**: A `Phenotypes` object
- **...**: additional `Phenotypes` objects
- **recursive**: recursive

Value

A concatenated `Phenotypes` object

Examples

```r
phenos.a <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
phenos.b <- Phenotypes(system.file("extdata", "Phenotypes_screen_B.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
c(phenos.a, phenos.b)
```
concordance

Evaluate the concordance between Phenotype objects

Description

Measures include the correlation (rho) between pairs of phenotypes for the same gene, the rank biased overlap (rbo) of the top and bottom of ranked lists, and the Jaccard index (J) of selected genes.

Usage

```r
concordance(..., min.overlap = 10, cor.method = "spearman", rbo.p = 0.98,
        rbo.k = NULL, rbo.mid = 0, uneven.lengths = TRUE)
```

Arguments

- `...`: The phenotypes to be evaluated for concordance
- `min.overlap`: The minimum number of overlapping genes required
- `cor.method`: A character string indicating which correlation coefficient is to be computed
- `rbo.p`: The weighting parameter for rank biased overlap (rbo) in [0, 1]. High p implies strong emphasis on top ranked elements
- `rbo.k`: The evaluation depth for rank biased overlap extrapolation
- `rbo.mid`: The mid point to split a ranked list, e.g. in order to split positive and negative scores choose mid=0
- `uneven.lengths`: Indicator if lists have uneven lengths

Value

A `concordance` object with the following elements:

- `pair.test`: Indicator of compared phenotypes
- `cor`: The correlation between pairs of phenotypes for the same gene
- `rbo.top`: The rank biased overlap of genes evaluated at the top of the ranked list
- `rbo.bottom`: The rank biased overlap of genes evaluated at the bottom of the ranked list
- `jaccard`: The Jaccard index of selected genes

Author(s)

Fabian Schmich

See Also

- `Phenotypes`
- `plot.concordance`
- `rbo`
Examples

```r
data(stabilityfits)
conc <- concordance(gsp(stabilityfits$A), gsp(stabilityfits$B),
gsp(stabilityfits$C), gsp(stabilityfits$D))
plot(conc)
```

dim,Phenotypes-method
Dimension of a Phenotypes object

Description

Dimension of a Phenotypes object

Usage

```r
## S4 method for signature 'Phenotypes'

```

Arguments

- `x`
 Phenotypes object

Value

Dimension of the Phenotypes object

Author(s)

Fabian Schmich

gespeR-class
gespeR

Description

Class that represents a gespeR model. It contains a SSP Phenotypes and TargetRelations representing a siRNA knockdown experiment. When the model is fitted, it additionally contains estimated GSP Phenotypes.
Usage

gespeR(phenotypes, target.relations, ...)

S4 method for signature 'Phenotypes,TargetRelations'
gespeR(phenotypes, target.relations,
 mode = c("cv", "stability"), alpha = 0.5, nbootstrap = 100,
 fraction = 0.67, threshold = 0.9, EV = 1, weakness = 0.8,
 ncores = 1, ...)

S4 method for signature 'numeric,Matrix'
gespeR(phenotypes, target.relations, ...)

Arguments

phenotypes The siRNA-specific phenotypes. Single object for univariate phenotypes and list
 of Phenotypes objects for multivariate phenotypes.

target.relations The siRNA-to-gene target relations

... Additional arguments

mode The mode of covariate selection ("cv" or "stability")

alpha The glmnet mixing parameter

nbootstrap The number of bootstrap samples

fraction The fraction for each bootstrap sample

threshold The selection threshold

EV The expected value of wrongly selected elements

weakness The weakness parameter for randomised lasso

ncores The number of cores for parallel computation

Value

A gespeR object

Slots

SSP The observed siRNA-specific phenotypes
GSP The deconvoluted gene-specific phenotypes

Author(s)

Fabian Schmich
See Also

gespeR-package
plot.gespeR
gsp
ssp
scores
stability
target.relations

Examples

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
 type = "SSP",
 col.id = 1,
 col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
res <- gespeR(phenotypes = phenos,
 target.relations = trels,
 mode = "stability",
 nbootstrap = 100,
 fraction = 0.67,
 threshold = 0.75,
 EV = 1,
 weakness = 0.8,
 ncores = 1)
gsp(res)

gsp

Retrieve GSPs and SSPs from gespeR objects

Description

Retrieve GSPs and SSPs from gespeR objects

Usage

```r
gsp(object)
```

S4 method for signature 'gespeR'
gsp(object)

```r
ssp(object)
```

S4 method for signature 'gespeR'
ssp(object)
Arguments

object A gespeR object

Value

A Phenotypes object of GSPs and SSPs, respectively

Author(s)

Fabian Schmich

See Also

annotate.gsp
scores

Examples

data(stabilityfits)
gsp(stabilityfits$A)
ssp(stabilityfits$B)

join

join

Description

Join a TargetRelations object and a Phenotype object

Usage

join(targets, phenotypes)

S4 method for signature 'TargetRelations,Phenotypes'
join(targets, phenotypes)

Arguments

targets A TargetRelations object.

phenotypes A Phenotypes object.

Value

List containing the matched targets and phenotypes

Author(s)

Fabian Schmich
lasso.rand

Examples

```r
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
  type = "SSP",
  col.id = 1,
  col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
phenos <- phenos[1:17]
stripped_down <- join(targets = trels, phenotypes = phenos)
```

Description

Based on Meinshausen and Buehlmann (2009)

Usage

```r
lasso.rand(x, y, weakness = 1, subsample = 1:nrow(x), dfmax = (ncol(x) + 1), lambda = NULL, standardize = FALSE, intercept = FALSE, ...)
```

Arguments

- `x`: The design matrix
- `y`: The response vector
- `weakness`: The weakness parameter
- `subsample`: The data subsample (default: none)
- `dfmax`: The maximum number of degrees of freedom
- `lambda`: The regularisation parameter
- `standardize`: Indicator, whether to standardize the design matrix
- `intercept`: Indicator, whether to fit an intercept
- `...`: Additional arguments to `glmnet`

Value

A `glmnet` object

Author(s)

Fabian Schmich

Examples

```r
y <- rnorm(50)
x <- matrix(runif(50 * 20), ncol = 20)
lasso.rand(x = x, y = y)
```
Description
Load, unload or write to file the values of a TargetRelations object

Usage
loadValues(object)

S4 method for signature 'TargetRelations'
loadValues(object)

S4 method for signature 'gespeR'
loadValues(object)

unloadValues(object, ...)

S4 method for signature 'TargetRelations'
unloadValues(object, writeValues = TRUE,
 overwrite = FALSE, path = NULL)

S4 method for signature 'gespeR'
unloadValues(object, writeValues = TRUE,
 overwrite = FALSE, path = NULL)

writeValues(object, ...)

S4 method for signature 'TargetRelations'
writeValues(object, overwrite = FALSE)

Arguments
object A TargetRelations object or gespeR object
... Additional arguments
writeValues Indicator, whether to write values
overwrite Indicator, whether to overwrite values if file exists at path
path The path to write out values

Value
A TargetRelations object or gespeR object

Author(s)
Fabian Schmich
```r
Examples
data(stabilityfits)
## Not run:
loadValues(stabilityfits$A)
## End(Not run)
```

na.rem

Remove NA/Inf values from phenotype vectors

Description

Remove NA/Inf values from phenotype vectors

Usage

```r
na.rem(object)
```

Arguments

- `object`
 A `Phenotypes` object

Value

A `Phenotypes` object without NA scores values

Author(s)

Fabian Schmich

Examples

```r
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
  type = "SSP",
  col.id = 1,
  col.score = 2)
na.rem(phenos)
```
Phenotypes-class

Description

Set the path of a `TargetRelations` object.

Usage

```r
path(object) <- value
```

```r
## S4 replacement method for signature 'TargetRelations,character'
path(object) <- value
```

Arguments

- `object` A `TargetRelations` object
- `value` A string defining the path

Value

A `TargetRelations` object with set path

Author(s)

Fabian Schmich

Examples

```r
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
path(trels) <- "/dev/null"
```

Phenotypes

Description

Class used to represent various types of phenotypes, e.g. from siRNA-specific (SSP) or estimated gene-specific phenotypes (GSP).
Usage

Phenotypes(phenotypes, ...)

S4 method for signature 'character'
Phenotypes(phenotypes, type = c("SSP", "GSP"),
sep = "\t", col.id = 1, col.score = 2)

S4 method for signature 'cellHTS'
Phenotypes(phenotypes, channel, sample)

S4 method for signature 'Matrix'
Phenotypes(phenotypes, ids = NULL, pnames = NULL,
type = c("SSP", "GSP"))

Arguments

- **phenotypes**: The phenotypes as numeric vector, path to a .txt file with two columns (1: identifiers, 2: values), or a cellHTS object
- **...**: Additional arguments
- **type**: The type of phenotype (GSP, SSP)
- **sep**: The separator string
- **col.id**: Column number for the siRNA identifiers
- **col.score**: Column number(s) for the phenotype score
- **channel**: The cellHTS channel identifier
- **sample**: The cellHTS sample index
- **ids**: The siRNA/gene identifiers
- **pnames**: The phenotype identifiers

Value

A Phenotypes object

Slots

- **type**: The type of represented phenotypes (i.e., "SSP" or "GSP")
- **ids**: The entity identifiers (i.e., siRNA or gene ids)
- **pnames**: The phenotype identifiers
- **values**: The phenotypic values

Author(s)

Fabian Schmich
See Also
plot.Phenotypes
join
gsp
ssp
scores
concordance

Examples
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)

plot.concordance Plot concordance

Description
Plots boxplots of concordance evaluated between multiple Phenotype objects. Measures include the
correlation (rho) between pairs of phenotypes for the same gene, the rank biased overlap (rbo) of
the top and bottom of ranked lists, and the Jaccard index (J) of selected genes.

Usage
S3 method for class 'concordance'
plot(x, ...)

Arguments
x The data of class concordance
...
 Additional parameters for plot

Value
Boxplots of concordance measures

Author(s)
Fabian Schmich
Description

Plot method for gespeR objects

Usage

S3 method for class 'gespeR'
plot(x, ...)

Arguments

x A gespeR object
...

Value

Histogram of SSPs or GSPs

Author(s)

Fabian Schmich

Description

Plot method for Phenotype objects

Usage

S3 method for class 'Phenotypes'
plot(x, ...)

Arguments

x A Phenotypes object
...

Value

Histogram of scores phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"), type = "SSP", col.id = 1, col.score = 2) plot(phenos)
Author(s)

Fabian Schmich

rbo

Rank biased overlap (Webber et al., 2010)

Description

Evaluates the rank biased overlap (rbo) of two ranked lists based on formula based on (32) from "A Similarity Measure for Indefinite Rankings" (Webber et al.). Two ranked lists with high rbo are very similar, whereas low rbo indicates dissimilar lists. rbo ranges between 0 and 1. In this method the extrapolated version of rbo is implemented.

Usage

rbo(s, t, p, k = floor(max(length(s), length(t))/2), side = c("top", "bottom"), mid = NULL, uneven.lengths = TRUE)

Arguments

s List 1
t List 2
p Weighting parameter in [0, 1]. High p implies strong emphasis on top ranked elements
k Evaluation depth for extrapolation
side Evaluate similarity between the top or the bottom of the ranked lists
mid Set the mid point to for example only consider positive or negative scores
uneven.lengths Indicator if lists have uneven lengths

Value

rank biased overlap (rbo)

Author(s)

Fabian Schmich

See Also

concordance

Examples

a <- rnorm(26)
b <- rnorm(26)
names(a) <- names(b) <- LETTERS
rbo(a, b, p = 0.95)
Description

Return a named vector of phenotype scores

Usage

```r
## S4 method for signature 'Phenotypes'
scores(object)

## S4 method for signature 'gespeR'
scores(object, type = c("GSP", "SSP"))
```

Arguments

- **object**: A `gespeR` or `Phenotypes` object
- **type**: The type of phenotype scores (GSP, SSP)

Value

A named vector of scores for each phenotype identifier

Author(s)

Fabian Schmich

See Also

- `gespeR`
- `Phenotypes`

Examples

```r
data(stabilityfits)
scores(stabilityfits$A)
```
Example data: Simulated phenotypes and target relations for 4 screens (A, B, C, D)

Description

The data set contains simulated data for four screens. Each screen consists of a phenotype vector and target relations between siRNAs and genes, i.e. which siRNA binds which genes (on- and off-targets). The size of each simulated screen is N = 1000 siRNAs x p = 1500 genes. SSPs are generated by first defining GSPs and multiplying the true GSPs with the sampled target relation matrices. For sampling the GSPs, we set the number of effect genes to 5 from Normal(0, 3). Target relation matrices are simulated by sampling the number of off-targets per siRNA from Normal(3 * N, 3e-3 * N) and the strength of off-targets is sampled from Beta(2, 5). On-target components are set to 0.75.

Details

The code used to simulate the data can be found in system.file("example", "data_simulation.R", package="gespeR")

Examples

```r
pheno.a <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package="gespeR"), type = "SSP", col.id = 1, col.score = 2)
targets.a <- TargetRelations(system.file("extdata", "TR_screen_A.rds", package="gespeR"))
```

Description

Retrieve a Phenotypes object with stability values from a gespeR object.

Usage

```r
stability(object)
```

Arguments

- `object`: A gespeR object

Value

A Phenotypes object of SSPs
Author(s)

Fabian Schmich

Examples

```r
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
  type = "SSP",
  col.id = 1,
  col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
res <- gespeR(phenotypes = phenos,
  target.relations = trels,
  mode = "stability",
  nbootstrap = 100,
  fraction = 0.67,
  threshold = 0.75,
  EV = 1,
  weakness = 0.8,
  ncores = 1)
stab <- stability(res)
ans <- merge(as.data.frame(gsp(res)), as.data.frame(stability(res)), by = "ID")
```

stability.selection

Stability Selection

Based on Meinshausen and Buehlmann (2009)

Usage

```r
stability.selection(x, y, fraction = 0.5, threshold = 0.75, EV = 1,
  nbootstrap = 100, weakness = 1, intercept = FALSE, ncores = 1, ...)
```

Arguments

- `x` The design matrix
- `y` The response vector
- `fraction` The fraction for each bootstrap sample
- `threshold` The selection threshold
- `EV` The expected value of wrongly selected elements
- `nbootstrap` The number of bootstrap samples
- `weakness` The weakness parameter for randomised lasso
- `intercept` Indicator, whether to fit an intercept
- `ncores` The number of cores for parallel computation
- `...` Additional arguments to `lasso.rand`
Target relations

Value
A list containing selected covariates with frequencies, and the fitted model

Author(s)
Fabian Schmich

stabilityfits
Example fits for phenotypes from simulated screening data A, B, C and D

Description
The data set contains four fitted gespeR models using stability selection from the four simulated screens.

Examples

data(stabilityfits)

target.relations

Description
Retrieve siRNA-to-gene target relations from a gespeR object.

Usage
target.relations(object)

S4 method for signature 'gespeR'
target.relations(object)

Arguments

object A gespeR object

Value
A TargetRelations object

Author(s)
Fabian Schmich
TargetRelations-class

Examples

data(stabilityfits)
target.relations(stabilityfits$A)

Description

Class used to represent siRNA-to-gene on- and off-target relations for a knockdown library and a set of genes.

Usage

TargetRelations(targets)

S4 method for signature 'character'
TargetRelations(targets)

S4 method for signature 'Matrix'
TargetRelations(targets)

Arguments

targets Path to a .rds target relations matrix file or Matrix object

Value

A TargetRelations object

Slots

siRNAs The siRNA identifiers
genes The gene identifiers (Entrez)
path The path to and .rds TargetRelations file
is.loaded An indicator if target relations values are loaded
values The quantitative target relation values between siRNAs and genes

Author(s)

Fabian Schmich
See Also

join
loadValues
unloadValues
writeValues
values
path<-

Examples

trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))

values
values

Description

Retrieve the numeric values from a TargetRelations or Phenotypes object

Usage

values(object)

S4 method for signature 'TargetRelations'
values(object)

S4 method for signature 'Phenotypes'
values(object)

Arguments

object A TargetRelations or Phenotypes object

Value

A Matrix object

Author(s)

Fabian Schmich
Examples

trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
values(trels)[1:5, 1:5]
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
values(phenos)

Description

Subsetting for Phenotype objects.

Usage

S4 method for signature 'Phenotypes,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

Arguments

- x: A Phenotypes object
- i: The subsetting indices for siRNAs
- j: Subsetting indices for multivariate phenotypes
- ...: Additional parameters
- drop: Drop Redundant Extent Information

Value

A Phenotypes object

Author(s)

Fabian Schmich
Subsetting for TargetRelations objects.

Usage

```r
## S4 method for signature 'TargetRelations,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]
```

Arguments

- `x`: A `TargetRelations` object
- `i`: The row subsetting indices (siRNAs)
- `j`: The column subsetting indeces (genes)
- `...`: Additional parameters
- `drop`: Drop Redundant Extent Information

Value

A `TargetRelations` object

Author(s)

Fabian Schmich
Index

* package
 gespeR-package, 2
 ph,Phenotypes,ANY,ANY,ANY-method, 27
 ph,TargetRelations,ANY,ANY,ANY-method, 28
annotate.gsp, 4, 12
annotate.gsp,gespeR-method (annotate.gsp), 4
annotate.gsp,Phenotypes-method (annotate.gsp), 4
as.data.frame,Phenotypes-method, 5
as.data.frame.concordance, 6
c,Phenotypes-method, 7
cordance, 8, 8, 18, 20
dim,Phenotypes-method, 9
gespeR, 3, 5, 10–12, 14, 19, 21, 22, 24
gespeR (gespeR-class), 9
gespeR,numeric,Matrix-method (gespeR-class), 9
gespeR,Phenotypes,TargetRelations-method (gespeR-class), 9
gespeR-class, 9
gespeR-package, 2
gespeRpkg (gespeR-package), 2
glmnet, 10, 13
gs, 5, 11, 11, 18
gs,gespeR-method (gs), 11
join, 12, 18, 26
join,TargetRelations,Phenotypes-method (join), 12
lasso.rand, 13, 23
loadValues, 14, 26
loadValues,gespeR-method (loadValues), 14
loadValues,TargetRelations-method (loadValues), 14
Matrix, 25, 26
na.rem, 15
na.rem,Phenotypes-method (na.rem), 15
path<-, 16
path<-,TargetRelations,character-method (path<-), 16
Phenotypes, 5–10, 12, 15, 17, 19, 21, 22, 26, 27
Phenotypes (Phenotypes-class), 16
Phenotypes,cellHTS-method (Phenotypes-class), 16
Phenotypes,character-method (Phenotypes-class), 16
Phenotypes,Matrix-method (Phenotypes-class), 16
Phenotypes-class, 16
plot.concordance, 8, 18
plot.gespeR, 11, 19
plot.Phenotypes, 18, 19
rbo, 8, 20
scores, 5, 11, 12, 18, 21
scores,gespeR-method (scores), 21
scores,Phenotypes-method (scores), 21
simData, 22
ssp, 5, 11, 18
ssp (gs), 11
ssp,gespeR-method (gs), 11
stability, 11, 22
stability,gespeR-method (stability), 22
stability.selection, 23
stabilityfits, 24
target.relationships, 11, 24
target.relations, gespeR-method (target.relations), 24
TargetRelations, 9, 12, 14, 16, 24–26, 28
TargetRelations (TargetRelations-class), 25
TargetRelations, character-method (TargetRelations-class), 25
TargetRelations, Matrix-method (TargetRelations-class), 25
TargetRelations-class, 25
unloadValues, 26
unloadValues (loadValues), 14
unloadValues, gespeR-method (loadValues), 14
unloadValues, TargetRelations-method (loadValues), 14
values, 26, 26
values, Phenotypes-method (values), 26
values, TargetRelations-method (values), 26
writeValues, 26
writeValues (loadValues), 14
writeValues, TargetRelations-method (loadValues), 14