Package ‘gespeR’

April 3, 2024

Imports Matrix, glmnet, cellHTS2, Biobase, biomaRt, doParallel, parallel, foreach, reshape2, dplyr
Depends methods, graphics, ggplot2, R(>= 2.10)
Suggests knitr
biocViews ImmunoOncology, CellBasedAssays, Preprocessing, GeneTarget, Regression, Visualization
VignetteBuilder knitr
Type Package
Lazyload yes
Title Gene-Specific Phenotype EstimatoR
Version 1.34.0
Date 2015-07-22
Author Fabian Schmich
Maintainer Fabian Schmich <fabian.schmich@bsse.ethz.ch>
Description Estimates gene-specific phenotypes from off-target confounded RNAi screens. The phenotype of each siRNA is modeled based on on-targeted and off-targeted genes, using a regularized linear regression model.
License GPL-3
URL http://www.cbg.ethz.ch/software/gespeR
Collate 'Phenotypes-class.R' 'TargetRelations-class.R'
 'gespeR-class.R' 'gespeR-concordance.R' 'gespeR-functions.R'
 'gespeR-generics.R' 'gespeR-methods.R' 'gespeR-package.R'
git_url https://git.bioconductor.org/packages/gespeR
git_branch RELEASE_3_18
git_last_commit 35e6043
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-03
R topics documented:

gespeR-package .. 2
annotate.gsp ... 4
as.data.frame.Phenotypes-method 5
as.data.frame.concordance ... 6
c,Phenotypes-method ... 7
concordance ... 8
dim,Phenotypes-method .. 9
gespeR-class ... 9
gsp ... 11
join ... 12
lasso.rand ... 13
loadValues ... 14
na.rem ... 15
path<- .. 16
Phenotypes-class ... 16
plot.concordance ... 18
plot.gespeR .. 19
plot.Phenotypes .. 19
rbo ... 20
scores .. 21
simData .. 22
stability .. 22
stability.selection .. 23
stabilityfits .. 24
target.relations ... 24
TargetRelations-class .. 25
values .. 26
[,Phenotypes,ANY,ANY,ANY-method 27
[,.TargetRelations,ANY,ANY,ANY-method 28

Index 29

gespeR-package

Package: Gene-Specific Phenotype Estimator

Description

This package provides a model to deconvolute off-target confounded RNAi knockdown phenotypes, and methods to investigate concordance between ranked lists of (estimated) phenotypes. The regularized linear regression model can be fitted using two different strategies. (a) Cross-validation over regularization parameters optimising the mean-squared-error of the model and (b) stability selection of covariates (genes) based on a method by Nicolai Meinshausen et al.

Author(s)

Fabian Schmich | Computational Biology Group, ETH ZURICH | <fabian.schmich@bsse.ethz.ch>
References

Fabian Schmich et. al, Deconvoluting Off-Target Confounded RNA Interference Screens (2014).

See Also

gespeR

Examples

```r
# Read phenotypes
phenos <- lapply(LETTERS[1:4], function(x) {
  sprintf("Phenotypes_screen_%s.txt", x)
})
phenos <- lapply(phenos, function(x) {
  Phenotypes(system.file("extdata", x, package="gespeR"),
    type = "SSP",
    col.id = 1,
    col.score = 2)
})
phenos
plot(phenos[[1]])

# Read target relations
tr <- lapply(LETTERS[1:4], function(x) {
  sprintf("TR_screen_%s.rds", x) # Read target relations
})
tr <- lapply(tr, function(x) {
  TargetRelations(system.file("extdata", x, package="gespeR"))
})
tr[[1]]
tempfile <- paste(tempfile(pattern = "file", tmpdir = tempdir()), ".rds", sep="")
tr[[1]] <- unloadValues(tr[[1]], writeValues = TRUE, path = tempfile)
tr[[1]]
tr[[1]] <- loadValues(tr[[1]])
tr[[1]]

# Fit gespeR models with cross validation
res.cv <- lapply(1:length(phenos), function(i) {
  gespeR(phenotypes = phenos[[i]],
    target.relations = tr[[i]],
    mode = "cv",
    alpha = 0.5,
    ncores = 1)
})
summary(res.cv[[1]])
res.cv[[1]]
plot(res.cv[[1]])

# Extract scores
ssp(res.cv[[1]])
gsp(res.cv[[1]])
head(scores(res.cv[[1]]))
```
Fit gespeR models with stability selection

```r
res.stab <- lapply(1:length(phenos), function(i) {
  gespeR(phenotypes = phenos[[i]],
         target.relations = tr[[i]],
         mode = "stability",
         nbootstrap = 100,
         fraction = 0.67,
         threshold = 0.75,
         EV = 1,
         weakness = 0.8,
         ncores = 1)
})
summary(res.stab[[1]])
res.stab[[1]]
plot(res.stab[[1]])
```

Extract scores

```r
ssp(res.stab[[1]])
gsp(res.stab[[1]])
head(scores(res.stab[[1]]))
```

Compare concordance between stability selected GSPs and SSPs

```r
conc.gsp <- concordance(lapply(res.stab, gsp))
conc.ssp <- concordance(lapply(res.stab, ssp))
pl.gsp <- plot(conc.gsp) + ggtitle("GSPs
")
pl.ssp <- plot(conc.ssp) + ggtitle("SSPs\n")
if (require(grid)) {
  grid.newpage()
  pushViewport(viewport(layout = grid.layout(1, 2) ) )
  print(pl.gsp, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
  print(pl.ssp, vp = viewport(layout.pos.row = 1, layout.pos.col = 2))
} else {
  plot(pl.gsp)
  plot(pl.ssp)
}
```

Description

Query Biomart HGNC symbols for the entrez identifiers of estimated GSPs. Currently, only implemented for species "hsapiens".

Usage

```r
## S4 method for signature 'Phenotypes'
```
annotate.gsp(object, organism = "hsapiens")

S4 method for signature 'gespeR'
annotate.gsp(object, organism = "hsapiens")

Arguments

- `object`: A gespeR or Phenotypes object
- `organism`: String indicating the biomaRt organism

Value

data.frame containing gene identifier, gene symbol and phenotypic score

Author(s)

Fabian Schmich

See Also

gsp
ssp
scores

Examples

data(stabilityfits)
gspA <- gsp(stabilityfits$A)
Not run:
annotate.gsp(gspA)
End(Not run)
Arguments

x A Phenotypes object

Value
A data.frame

Author(s)
Fabian Schmich

Examples
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
as.data.frame(phenos)

as.data.frame.concordance

Coerce method

Description
Coerce method

Usage
S3 method for class 'concordance'
as.data.frame(x, ...)

Arguments
x concordance object
...

Value
data.frame

Author(s)
Fabian Schmich
Concateenate Phenotypes objects

Description

Concatenate Phenotypes objects

Usage

S4 method for signature 'Phenotypes'
c(x, ..., recursive = FALSE)

Arguments

x

A Phenotypes object

... additional Phenotypes objects

recursive recursive

Value

A concatenated Phenotypes object

Author(s)

Fabian Schmich

Examples

phenos.a <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
phenos.b <- Phenotypes(system.file("extdata", "Phenotypes_screen_B.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
c(phenos.a, phenos.b)
Evaluate the concordance between Phenotype objects

Description

Measures include the correlation (rho) between pairs of phenotypes for the same gene, the rank biased overlap (rbo) of the top and bottom of ranked lists, and the Jaccard index (J) of selected genes.

Usage

```r
concordance(., min.overlap = 10, cor.method = "spearman", rbo.p = 0.98,
            rbo.k = NULL, rbo.mid = 0, uneven.lengths = TRUE)
```

Arguments

- `...`: The phenotypes to be evaluated for concordance
- `min.overlap`: The minimum number of overlapping genes required
- `cor.method`: A character string indicating which correlation coefficient is to be computed
- `rbo.p`: The weighting parameter for rank biased overlap (rbo) in [0, 1]. High p implies strong emphasis on top ranked elements
- `rbo.k`: The evaluation depth for rank biased overlap extrapolation
- `rbo.mid`: The mid point to split a ranked list, e.g. in order to split positive and negative scores choose mid=0
- `uneven.lengths`: Indicator if lists have uneven lengths

Value

A `concordance` object with the following elements:

- `pair.test`: Indicator of compared phenotypes
- `cor`: The correlation between pairs of phenotypes for the same gene
- `rbo.top`: The rank biased overlap of genes evaluated at the top of the ranked list
- `rbo.bottom`: The rank biased overlap of genes evaluated at the bottom of the ranked list
- `jaccard`: The Jaccard index of selected genes

Author(s)

Fabian Schmich

See Also

- Phenotypes
- plot.concordance
- rbo
Examples

```r
data(stabilityfits)
conc <- concordance(gsp(stabilityfits$A), gsp(stabilityfits$B),
gsp(stabilityfits$C), gsp(stabilityfits$D))
plot(conc)
```

dim,Phenotypes-method

Description

Dimension of a `Phenotypes` object

Usage

```r
## S4 method for signature 'Phenotypes'
dim(x)
```

Arguments

- `x` _Phenotypes_ object

Value

Dimension of the `Phenotypes` object

Author(s)

Fabian Schmich

gespeR-class
gespeR

Description

Class that represents a gespeR model. It contains a SSP `Phenotypes` and `TargetRelations` representing a siRNA knockdown experiment. When the model is fitted, it additionally contains estimated GSP `Phenotypes`.
Usage

gespeR(phenotypes, target.relations, ...)

S4 method for signature 'Phenotypes,TargetRelations'
gespeR(phenotypes, target.relations,
 mode = c("cv", "stability"), alpha = 0.5, nbootstrap = 100,
 fraction = 0.67, threshold = 0.9, EV = 1, weakness = 0.8,
 ncores = 1, ...)

S4 method for signature 'numeric,Matrix'
gespeR(phenotypes, target.relations, ...)

Arguments

phenotypes The siRNA-specific phenotypes. Single object for univariate phenotypes and list of Phenotypes objects for multivariate phenotypes.

target.relations The siRNA-to-gene target relations

... Additional arguments

mode The mode of covariate selection ("cv" or "stability")

alpha The glmnet mixing parameter

nbootstrap The number of bootstrap samples

fraction The fraction for each bootstrap sample

threshold The selection threshold

EV The expected value of wrongly selected elements

weakness The weakness parameter for randomised lasso

ncores The number of cores for parallel computation

Value

A gespeR object

Slots

SSP The observed siRNA-specific phenotypes

GSP The deconvoluted gene-specific phenotypes

target.relations The siRNA-to-gene target relations, e.g. predicted by TargetScan

is.fitted An indicator whether the gespeR model was fitted

model The fitted regularized linear regression model

Author(s)

Fabian Schmich
See Also

gespeR-package
plot.gespeR
gsp
ssp
scores
stability
target.relations

Examples

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
res <- gespeR(phenotypes = phenos,
target.relations = trels,
mode = "stability",
nbootstrap = 100,
fraction = 0.67,
threshold = 0.75,
EV = 1,
weakness = 0.8,
ncores = 1)
gsp(res)

gsp

Retrieve GSPs and SSPs from gespeR objects

Description

Retrieve GSPs and SSPs from gespeR objects

Usage

```
gsp(object)

## S4 method for signature 'gespeR'
gsp(object)

ssp(object)

## S4 method for signature 'gespeR'
ssp(object)
```
Arguments

object A gespeR object

Value

A Phenotypes object of GSPs and SSPs, respectively

Author(s)

Fabian Schmich

See Also

annotate.gsp
scores

Examples

data(stabilityfits)
gsp(stabilityfits$A)
ssp(stabilityfits$B)

Description

Join a TargetRelations object and a Phenotype object

Usage

join(targets, phenotypes)

S4 method for signature 'TargetRelations,Phenotypes'
join(targets, phenotypes)

Arguments

targets A TargetRelations object.
phenotypes A Phenotypes object.

Value

List containing the matched targets and phenotypes

Author(s)

Fabian Schmich
Examples

```r
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
                    type = "SSP",
                    col.id = 1,
                    col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
phenos <- phenos[1:17]
stripped_down <- join(targets = trels, phenotypes = phenos)
```

lasso.rand

Randomized Lasso

Description

Based on Meinshausen and Buehlmann (2009)

Usage

```r
lasso.rand(x, y, weakness = 1, subsample = 1:nrow(x), dfmax = (ncol(x) + 1), lambda = NULL, standardize = FALSE, intercept = FALSE, ...)
```

Arguments

- **x**: The design matrix
- **y**: The response vector
- **weakness**: The weakness parameter
- **subsample**: The data subsample (default: none)
- **dfmax**: The maximum number of degrees of freedom
- **lambda**: The regularisation parameter
- **standardize**: Indicator, whether to standardize the design matrix
- **intercept**: Indicator, whether to fit an intercept
- **...**: Additional arguments to `glmnet`

Value

A `glmnet` object

Author(s)

Fabian Schmich

Examples

```r
y <- rnorm(50)
x <- matrix(runif(50 * 20), ncol = 20)
lasso.rand(x = x, y = y)
```
loadValues

Methods for values of TargetRelations objects

Description
Load, unload or write to file the values of a TargetRelations object

Usage

loadValues(object)

S4 method for signature 'TargetRelations'
loadValues(object)

S4 method for signature 'gespeR'
loadValues(object)

unloadValues(object, ...)

S4 method for signature 'TargetRelations'
unloadValues(object, writeValues = TRUE, overwrite = FALSE, path = NULL)

S4 method for signature 'gespeR'
unloadValues(object, writeValues = TRUE, overwrite = FALSE, path = NULL)

writeValues(object, ...)

S4 method for signature 'TargetRelations'
writeValues(object, overwrite = FALSE)

Arguments

object A TargetRelations object or gespeR object

... Additional arguments

writeValues Indicator, whether to write values

overwrite Indicator, whether to overwrite values if file exists at path

path The path to write out values

Value

A TargetRelations object or gespeR object

Author(s)

Fabian Schmich
na.rem

Examples

data(stabilityfits)
Not run:
loadValues(stabilityfits$A)

End(Not run)

na.rem Remove NA/Inf values from phenotype vectors

Description

Remove NA/Inf values from phenotype vectors

Usage

na.rem(object)

S4 method for signature 'Phenotypes'
na.rem(object)

Arguments

object A Phenotypes object

Value

A Phenotypes object without NA scores values

Author(s)

Fabian Schmich

Examples

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
na.rem(phenos)
Description

Set the path of a TargetRelations object object

Usage

path(object) <- value

S4 replacement method for signature 'TargetRelations,character'
path(object) <- value

Arguments

object A TargetRelations object
value A string defining the path

Value

A TargetRelations object with set path

Author(s)

Fabian Schmich

Examples

trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
path(trels) <- "/dev/null"

Phenotypes-class

Phenotypes

Description

Class used to represent various types of phenotypes, e.g. from siRNA-specific (SSP) or estimated gene-specific phenotypes (GSP).
Usage

Phenotypes(phenotypes, ...)

S4 method for signature 'character'
Phenotypes(phenotypes, type = c("SSP", "GSP"),
 sep = "\t", col.id = 1, col.score = 2)

S4 method for signature 'cellHTS'
Phenotypes(phenotypes, channel, sample)

S4 method for signature 'Matrix'
Phenotypes(phenotypes, ids = NULL, pnames = NULL,
 type = c("SSP", "GSP"))

Arguments

phenotypes The phenotypes as numeric vector, path to a .txt file with two columns (1: identifiers, 2: values), or a cellHTS object

... Additional arguments
type The type of phenotype (GSP, SSP)
sep The separator string
col.id Column number for the siRNA identifiers
col.score Column number(s) for the phenotype score
channel The cellHTS channel identifier
sample The cellHTS sample index
ids The siRNA/gene identifiers
pnames The phenotype identifiers

Value

A Phenotypes object

Slots

type The type of represented phenotypes (i.e., "SSP" or "GSP")
ids The entity identifiers (i.e., siRNA or gene ids)
pnames The phenotype identifiers
values The phenotypic values

Author(s)

Fabian Schmich
See Also

plot.Phenotypes
join
gsp
ssp
scores
concordance

Examples

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)

Description

Plots boxplots of concordance evaluated between multiple Phenotype objects. Measures include the correlation (rho) between pairs of phenotypes for the same gene, the rank biased overlap (rbo) of the top and bottom of ranked lists, and the Jaccard index (J) of selected genes.

Usage

S3 method for class 'concordance'
plot(x, ...)

Arguments

x The data of class concordance
...
Additional parameters for plot

Value

Boxplots of concordance measures

Author(s)

Fabian Schmich
plot.gespeR

Plot method for gespeR objects

Description
Plot method for gespeR objects

Usage
S3 method for class 'gespeR'
plot(x, ...)

Arguments

x A gespeR object
...

Additional parameters for plot

Value
Histogram of SSPs or GSPs

Author(s)
Fabian Schmich

plot.Phenotypes
Plot method for Phenotype objects

Description
Plot method for Phenotype objects

Usage
S3 method for class 'Phenotypes'
plot(x, ...)

Arguments

x A Phenotypes object
...

Additional arguments for plot

Value
Histogram of scores phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"), type = "SSP", col.id = 1, col.score = 2) plot(phenos)
rbo

Rank biased overlap (Webber et al., 2010)

Description

Evaluates the rank biased overlap (rbo) of two ranked lists based on formula based on (32) from "A Similarity Measure for Indefinite Rankings" (Webber et al.). Two ranked lists with high rbo are very similar, whereas low rbo indicates dissimilar lists. rbo ranges between 0 and 1. In this method the extrapolated version of rbo is implemented.

Usage

\[
\text{rbo}(s, t, p, k = \text{floor}(\max(\text{length}(s), \text{length}(t))/2), \text{side} = c(\text{"top", } \\
\text{"bottom"}), \text{mid} = \text{NULL}, \text{uneven.lengths} = \text{TRUE})
\]

Arguments

- \(s\): List 1
- \(t\): List 2
- \(p\): Weighting parameter in \([0, 1]\). High \(p\) implies strong emphasis on top ranked elements
- \(k\): Evaluation depth for extrapolation
- \(\text{side}\): Evaluate similarity between the top or the bottom of the ranked lists
- \(\text{mid}\): Set the mid point to for example only consider positive or negative scores
- \(\text{uneven.lengths}\): Indicator if lists have uneven lengths

Value

rank biased overlap (rbo)

Author(s)

Fabian Schmich

See Also

concordance

Examples

```r
a <- rnorm(26)
b <- rnorm(26)
names(a) <- names(b) <- LETTERS
rbo(a, b, p = 0.95)
```
Description

Return a named vector of phenotype scores

Usage

```r
## S4 method for signature 'Phenotypes'
scores(object)

## S4 method for signature 'gespeR'
scores(object, type = c("GSP", "SSP"))
```

Arguments

- `object`: A `gespeR` or `Phenotypes` object
- `type`: The type of phenotype scores (GSP, SSP)

Value

A named vector of scores for each phenotype identifier

Author(s)

Fabian Schmich

See Also

- `gespeR`
- `Phenotypes`

Examples

```r
data(stabilityfits)
scores(stabilityfits$A)
```
Example data: Simulated phenotypes and target relations for 4 screens (A, B, C, D)

Description
The data set contains simulated data for four screens. Each screen consists of a phenotype vector and target relations between siRNAs and genes, i.e. which siRNA binds which genes (on- and off-targets). The size of each simulated screen is N = 1000 siRNAs x p = 1500 genes. SSPs are generated by first defining GSPs and multiplying the true GSPs with the sampled target relation matrices. For sampling the GSPs, we set the number of effect genes to 5 from Normal(0, 3). Target relation matrices are simulated by sampling the number of off-targets per siRNA from Normal(0, 3) x N, 3e-3 * N) and the strength of off-targets is sampled from Beta(2, 5). On-target components are set to 0.75.

Details
The code used to simulate the data can be found in system.file("example", "data_simulation.R", package="gespeR")

Examples
pheno.a <- Pheno(types(system.file("extdata", "Phenotypes_screen_A.txt", package="gespeR"), type = "SSS", col.id = 1, col.score = 2)
targets.a <- TargetRelations(system.file("extdata", "TR_screen_A.rds", package="gespeR"))

stability

Description
Retrieve a Phenotypes object with stability values from a gespeR object.

Usage
stability(object)

S4 method for signature 'gespeR'
stability(object)

Arguments

object A gespeR object

Value

A Phenotypes object of SSPs
stability.selection

Author(s)
Fabian Schmich

Examples
phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
type = "SSP",
col.id = 1,
col.score = 2)
trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
res <- gespeR(phenotypes = phenos,
target.relations = trels,
mode = "stability",
bootstrap = 100,
fraction = 0.67,
threshold = 0.75,
EV = 1,
weakness = 0.8,
ncores = 1)
stab <- stability(res)
ans <- merge(as.data.frame(gsp(res)), as.data.frame(stability(res)), by = "ID")
colnames(ans)[2:3] <- c("Phenotype", "Stability")
ans[order(ans$Stability, decreasing = TRUE),]

stability.selection

Stability Selection

Description
Based on Meinshausen and Buehlmann (2009)

Usage
stability.selection(x, y, fraction = 0.5, threshold = 0.75, EV = 1,
nbootstrap = 100, weakness = 1, intercept = FALSE, ncores = 1, ...)

Arguments
x The design matrix
y The response vector
fraction The fraction for each bootstrap sample
threshold The selection threshold
EV The expected value of wrongly selected elements
nbootstrap The number of bootstrap samples
weakness The weakness parameter for randomised lasso
intercept Indicator, whether to fit an intercept
ncores The number of cores for parallel computation
... Additional arguments to lasso.rand
target.relations

Value
A list containing selected covariates with frequencies, and the fitted model

Author(s)
Fabian Schmich

Example fits for phenotypes from simulated screening data A, B, C and D

Description
The data set contains four fitted gespeR models using stability selection from the four simulated screens.

Examples
data(stabilityfits)

target.relations

Description
Retrieve siRNA-to-gene target relations from a gespeR object.

Usage
target.relations(object)

S4 method for signature 'gespeR'
target.relations(object)

Arguments
object A gespeR object

Value
A TargetRelations object

Author(s)
Fabian Schmich
TargetRelations-class

Examples

```r
data(stabilityfits)
target.relations(stabilityfits$A)
```

Description

Class used to represent siRNA-to-gene on- and off-target relations for a knockdown library and a set of genes.

Usage

```r
TargetRelations(targets)
```

S4 method for signature 'character'
```r
TargetRelations(targets)
```

S4 method for signature 'Matrix'
```r
TargetRelations(targets)
```

Arguments

- `targets` Path to a .rds target relations matrix file or *Matrix* object

Value

A *TargetRelations* object

Slots

- `siRNAs` The siRNA identifiers
- `genes` The gene identifiers (Entrez)
- `path` The path to and .rds *TargetRelations* file
- `is.loaded` An indicator if target relations values are loaded
- `values` The quantitative target relation values between siRNAs and genes

Author(s)

Fabian Schmich
See Also

join
loadValues
unloadValues
writeValues
values

Examples

trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))

Description

Retrieve the numeric values from a TargetRelations or Phenotypes object

Usage

values(object)

S4 method for signature 'TargetRelations'
values(object)

S4 method for signature 'Phenotypes'
values(object)

Arguments

object A TargetRelations or Phenotypes object

Value

A Matrix object

Author(s)

Fabian Schmich
Examples

trels <- TargetRelations(readRDS(system.file("extdata", "TR_screen_A.rds", package = "gespeR")))
values(trels)[1:5, 1:5]

phenos <- Phenotypes(system.file("extdata", "Phenotypes_screen_A.txt", package = "gespeR"),
 type = "SSP",
 col.id = 1,
 col.score = 2)
values(phenos)

Description

Subsetting for Phenotype objects.

Usage

S4 method for signature 'Phenotypes,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

Arguments

x A Phenotypes object
i The subsetting indices for siRNAs
j Subsetting indices for multivariate phenotypes
... Additional parameters
drop Drop Redundant Extent Information

Value

A Phenotypes object

Author(s)

Fabian Schmich
Subsetting for TargetRelations objects.

Usage

```r
## S4 method for signature 'TargetRelations,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]
```

Arguments

- `x`: A `TargetRelations` object
- `i`: The row subsetting indices (siRNAs)
- `j`: The column subsetting indices (genes)
- `...`: Additional parameters
- `drop`: Drop Redundant Extent Information

Value

A `TargetRelations` object

Author(s)

Fabian Schmich
Index

<table>
<thead>
<tr>
<th>* package</th>
<th>gespeR-package, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[,Phenotypes,ANY,ANY,ANY-method, 27</td>
</tr>
<tr>
<td></td>
<td>[,TargetRelations,ANY,ANY,ANY-method, 28</td>
</tr>
<tr>
<td>annotate.gsp, 4, 12</td>
<td>annotate.gsp,Phenotypes-method (annotate.gsp), 4</td>
</tr>
<tr>
<td>annotate.gsp,Phenotypes-method (annotate.gsp), 4</td>
<td>annotate.gsp,Phenotypes-method (annotate.gsp), 4</td>
</tr>
<tr>
<td>as.data.frame,Phenotypes-method, 5</td>
<td>as.data.frame,Phenotypes-method, 5</td>
</tr>
<tr>
<td>c,Phenotypes-method, 7</td>
<td>concordance, 8, 8, 18, 20</td>
</tr>
<tr>
<td>dim,Phenotypes-method, 9</td>
<td>dim,Phenotypes-method, 9</td>
</tr>
<tr>
<td>gespeR, 3, 5, 10–12, 14, 19, 21, 22, 24</td>
<td>gespeR,numeric,Matrix-method (gespeR-class), 9</td>
</tr>
<tr>
<td>gespeR,Phenotypes,TargetRelations-method (gespeR-class), 9</td>
<td>gespeR-class, 9</td>
</tr>
<tr>
<td>gespeR-package, 2</td>
<td>gespeR-package, 2</td>
</tr>
<tr>
<td>glmnet, 10, 13</td>
<td>glmnet, 10, 13</td>
</tr>
<tr>
<td>gsp, 5, 11, 11, 18</td>
<td>gsp, 5, 11, 11, 18</td>
</tr>
<tr>
<td>gsp,gespeR-method (gsp), 11</td>
<td>gsp,gespeR-method (gsp), 11</td>
</tr>
<tr>
<td>join, 12, 18, 26</td>
<td>join, 12, 18, 26</td>
</tr>
<tr>
<td>join,TargetRelations,Phenotypes-method (join), 12</td>
<td>loadValues,TargetRelations-method (loadValues), 14</td>
</tr>
<tr>
<td>lasso.rand, 13, 23</td>
<td>loadValues,TargetRelations-method (loadValues), 14</td>
</tr>
<tr>
<td>loadValues, 14, 26</td>
<td>Matrix, 25, 26</td>
</tr>
<tr>
<td>loadValues,gespeR-method (loadValues), 14</td>
<td>na.rem, 15</td>
</tr>
<tr>
<td>na.rem,Phenotypes-method (na.rem), 15</td>
<td>path<-, 16</td>
</tr>
<tr>
<td>path<-,TargetRelations,character-method (path<->), 16</td>
<td>Phenotypes, 5–10, 12, 15, 17, 19, 21, 22, 26, 27</td>
</tr>
<tr>
<td>Phenotypes, (Phenotypes-class), 16</td>
<td>Phenotypes,cellHTS-method (Phenotypes-class), 16</td>
</tr>
<tr>
<td>Phenotypes,character-method (Phenotypes-class), 16</td>
<td>Phenotypes,Matrix-method (Phenotypes-class), 16</td>
</tr>
<tr>
<td>Phenotypes,Phenotypes-method (Phenotypes-class), 16</td>
<td>Phenotypes,Phenotypes-method (Phenotypes-class), 16</td>
</tr>
<tr>
<td>Phenotypes,plot.concordance, 8, 18</td>
<td>Phenotypes,plot.gespeR, 11, 19</td>
</tr>
<tr>
<td>Phenotypes,plot.Phenotypes, 18, 19</td>
<td>plot.concordance, 8, 18</td>
</tr>
<tr>
<td>Phenotypes,plot.gespeR, 11, 19</td>
<td>plot.Phenotypes, 18, 19</td>
</tr>
<tr>
<td>Phenotypes,plot.Phenotypes, 18, 19</td>
<td>rbo, 8, 20</td>
</tr>
<tr>
<td>scores, 5, 11, 12, 18, 21</td>
<td>scores,gespeR-method (scores), 21</td>
</tr>
<tr>
<td>scores,gespeR-method (scores), 21</td>
<td>scores,Phenotypes-method (scores), 21</td>
</tr>
<tr>
<td>scores,Phenotypes-method (scores), 21</td>
<td>simData, 22</td>
</tr>
<tr>
<td>simData, 22</td>
<td>ssp, 5, 11, 18</td>
</tr>
<tr>
<td>ssp, 5, 11, 18</td>
<td>ssp,gespeR-method (gsp), 11</td>
</tr>
<tr>
<td>ssp,gespeR-method (gsp), 11</td>
<td>stability, 11, 22</td>
</tr>
<tr>
<td>stability, 11, 22</td>
<td>stability,gespeR-method (stability), 22</td>
</tr>
<tr>
<td>stability,gespeR-method (stability), 22</td>
<td>stability.selection, 23</td>
</tr>
<tr>
<td>stability.selection, 23</td>
<td>stabilityfis, 24</td>
</tr>
<tr>
<td>stabilityfis, 24</td>
<td>target.relations, 11, 24</td>
</tr>
<tr>
<td>target.relations, 11, 24</td>
<td>29</td>
</tr>
</tbody>
</table>
INDEX

target.relations, gespeR-method
(target.relations), 24

TargetRelations, 9, 12, 14, 16, 24–26, 28

TargetRelations
(TargetRelations-class), 25

TargetRelations, character-method
(TargetRelations-class), 25

TargetRelations, Matrix-method
(TargetRelations-class), 25

TargetRelations-class, 25

unloadValues, 26

unloadValues (loadValues), 14

unloadValues, gespeR-method
(loadValues), 14

unloadValues, TargetRelations-method
(loadValues), 14

values, 26, 26

values, Phenotypes-method (values), 26

values, TargetRelations-method (values), 26

writeValues, 26

writeValues (loadValues), 14

writeValues, TargetRelations-method
(loadValues), 14