Package ‘ggmsa’

March 27, 2024

Title Plot Multiple Sequence Alignment using ‘ggplot2’

Version 1.8.0

Description A visual exploration tool for multiple sequence alignment and associated data. Supports MSA of DNA, RNA, and protein sequences using ‘ggplot2’. Multiple sequence alignment can easily be combined with other ‘ggplot2’ plots, such as phylogenetic tree Visualized by ‘ggtree’, boxplot, genome map and so on. More features: visualization of sequence logos, sequence bundles, RNA secondary structures and detection of sequence recombinations.

Depends R (>= 4.1.0)

Imports Biostrings, ggplot2, magrittr, tidyr, utils, stats, aplot, RColorBrewer, ggalt, ggforce, dplyr, R4RNA, grDevices, seqmagick, grid, methods, statebins, ggtree (>= 1.17.1)

Suggests ggtreeExtra, ape, cowplot, knitr, BiocStyle, rmarkdown, readxl, ggnewscale, kableExtra, gggenes, testthat (>= 3.0.0)

License Artistic-2.0

Encoding UTF-8

URL https://doi.org/10.1093/bib/bbac222(paper).
https://www.amazon.com/Integration-Manipulation-Visualization-Phylogenetic-Computational-ebook/dp/B0B5NLZR1Z/
(book)

BugReports https://github.com/YuLab-SMU/ggmsa/issues

biocViews Software, Visualization, Alignment, Annotation, MultipleSequenceAlignment

RoxygenNote 7.1.2

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/ggmsa

git_branch RELEASE_3_18
git_last_commit b6f7dd9
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27
Author Lang Zhou [aut, cre],
 Guangchuang Yu [aut, ths] (<https://orcid.org/0000-0002-6485-8781>),
 Shuangbin Xu [ctb],
 Huina Huang [ctb]
Maintainer Lang Zhou <nyzhoulang@gmail.com>

R topics documented:

adjust_ally .. 3
assign_dms .. 4
available_colors ... 4
available_fonts ... 5
available_msa .. 5
extract_seq .. 6
facet_msa ... 6
geom_GC .. 7
geom_helix .. 8
geom_msa .. 9
geom_msaBar ... 11
gem_seed .. 11
geom_seqlogo ... 12
gg_helix .. 13
ggmaf ... 14
ggmsa ... 15
ggSeqBundle ... 17
Gram-negative_AKL.fasta 18
Gram-positive_AKL.fasta 18
GVariation ... 19
LeaderRepeat_All.fa .. 19
merge_seq ... 20
plot ... 20
readSSfile ... 21
read_maf ... 22
reset_pos ... 22
Rfam ... 23
sample.fasta ... 23
seedSample.fa ... 24
seqdiff .. 24
seqlogo ... 25
sequence-link-tree.fasta 26
show ... 26
simplify_hdata .. 27
Description

adjust the tree branch position after assigning ancestor node

Usage

adjust_ally(tree, node, sub = FALSE, seq_colname = "mol_seq")

Arguments

tree ggtree object
node internal node in tree
sub logical value.
seq_colname the colname of MSA on tree$data

Value

tree

Author(s)

Lang Zhou
assign_dms

Description

assign dms value to alignments.

Usage

```r
assign_dms(x, dms)
```

Arguments

- `x`: data frame from `tidy_msa()`
- `dms`: dms data frame

Value

tree

Author(s)

Lang Zhou

available_colors

List Color Schemes currently available

Description

This function lists color schemes currently available that can be used by `ggmsa`

Usage

```r
available_colors()
```

Value

A character vector of available color schemes

Author(s)

Lang Zhou

Examples

```r
available_colors()
```
available_fonts

available_fonts
List Font Families currently available

Description
This function lists font families currently available that can be used by `ggmsa`.

Usage
```r
available_fonts()
```

Value
A character vector of available font family names

Author(s)
Lang Zhou

Examples
```r
available_fonts()
```

available_msa

available_msa
List MSA objects currently available

Description
This function lists MSA objects currently available that can be used by `ggmsa`.

Usage
```r
available_msa()
```

Value
A character vector of available objects

Author(s)
Lang Zhou

Examples
```r
available_msa()
```
extract_seq

Description
extract ancestor sequence from tree data

Usage
```r
extract_seq(tree_adjust, seq_colname = "mol_seq")
```

Arguments
- `tree_adjust`: ggtree object
- `seq_colname`: the colname of MSA on tree$data

Value
character

Author(s)
Lang Zhou

facet_msa

Description
The MSA would be plot in a field that you set.

Usage
```r
facet_msa(field)
```

Arguments
- `field`: a numeric vector of the field size.

Value
ggplot layers

Author(s)
Lang Zhou
Examples

```r
library(ggplot2)
f <- system.file("extdata/sample.fasta", package="ggmsa")
# 2 fields
ggmsa(f, end = 120, font = NULL, color="Chemistry_AA") +
  facet_msa(field = 60)
# 3 fields
ggmsa(f, end = 120, font = NULL, color="Chemistry_AA") +
  facet_msa(field = 40)
```

Description

Multiple sequence alignment layer for ggplot2. It plot points of GC content.

Usage

```r
geom_GC(show.legend = FALSE)
```

Arguments

- `show.legend` logical. Should this layer be included in the legends?

Value

a ggplot layer

Author(s)

Lang Zhou

Examples

```r
#plot GC content
f <- system.file("extdata/LeaderRepeat_All.fa", package="ggmsa")
ggmsa(f, font = NULL, color="Chemistry_NT") + geom_GC()
```
Description

The layer of helix plot

Usage

geom_helix(helix_data, color_by = "length", overlap = FALSE, ...)

Arguments

- **helix_data**: a data frame. The file of nucleotide secondary structure and then read by readSS-file().
- **color_by**: generate colors for helices by various rules, including integer counts and value ranges one of "length" and "value"
- **overlap**: Logicals. If TRUE, two structures data called predict and known must be given (e.g., helix_data = list(known = data1, predicted = data2)), plots the predicted helices that are known on top, predicted helices that are not known on the bottom, and finally plots unpredicted helices on top in black.
- **...**: additional parameter

Value

ggplot2 layers

Author(s)

Lang Zhou

Examples

```r
RF03120 <- system.file("extdata/Rfam/RF03120_SS.txt", package="ggmsa")
RF03120_fas <- system.file("extdata/Rfam/RF03120.fasta", package="ggmsa")
SS <- readSSfile(RF03120, type = "Vienna")
ggmsa(RF03120_fas, font = NULL, border = NA,
      color = "Chemistry_NT", seq_name = FALSE) +
geom_helix(SS)
```
Description

Multiple sequence alignment layer for ggplot2. It creates background tiles with/without sequence characters.

Usage

```r
geom_msa(
  data,
  font = "helvetical",
  mapping = NULL,
  color = "Chemistry_AA",
  custom_color = NULL,
  char_width = 0.9,
  none_bg = FALSE,
  by_conservation = FALSE,
  position_highlight = NULL,
  seq_name = NULL,
  border = NULL,
  consensus_views = FALSE,
  use_dot = FALSE,
  disagreement = TRUE,
  ignore_gaps = FALSE,
  ref = NULL,
  position = "identity",
  show.legend = FALSE,
  dms = FALSE,
  position_color = FALSE,
  ...)
```

Arguments

- **data**: sequence alignment with data frame, generated by tidy_msa().
- **font**: font families, possible values are 'helvetical', 'mono', and 'DroidSansMono', 'TimesNewRoman'. Defaults is 'helvetical'.
- **mapping**: aes mapping If font = NULL, only plot the background tile.
- **custom_color**: A data frame with two column called "names" and "color".Customize the color scheme.
char_width a numeric vector. Specifying the character width in the range of 0 to 1. Defaults is 0.9.
none_bg a logical value indicating whether background should be displayed. Defaults is FALSE.
by_conservation a logical value. The most conserved regions have the brightest colors.
position_highlight A numeric vector of the position that need to be highlighted.
seq_name a logical value indicating whether sequence names should be displayed. Defaults is 'NULL' which indicates that the sequence name is displayed when 'font = null', but 'font = char' will not be displayed. If 'seq_name = TRUE' the sequence name will be displayed in any case. If 'seq_name = FALSE' the sequence name will not be displayed under any circumstances.
border a character string. The border color.
consensus_views a logical value that opening consensus views.
use_dot a logical value. Displays characters as dots instead of fading their color in the consensus view.
disagreement a logical value. Displays characters that disagreement to consensus(excludes ambiguous disagreements).
ignore_gaps a logical value. When selected TRUE, gaps in column are treated as if that row didn’t exist.
ref a character string. Specifying the reference sequence which should be one of input sequences when ‘consensus_views’ is TRUE.
position Position adjustment, either as a string, or the result of a call to a position adjustment function, default is 'identity' meaning ‘position_identity()’.
show.legend logical. Should this layer be included in the legends?
dms logical.
position_color logical.
... additional parameter

Value
A list

Author(s)
Guangchuang Yu, Lang Zhou seq_name’ work position_highlight’ work border’ work none_bg’ work

Examples
library(ggplot2)
aln <- system.file("extdata", "sample.fasta", package = "ggmsa")
tidy_aln <- tidy_msa(aln, start = 150, end = 170)
ggplot() + geom_msa(data = tidy_aln, font = NULL) + coord_fixed()
geom_msaBar

Description

Multiple sequence alignment layer for ggplot2. It plots sequence conservation bars.

Usage

`geom_msaBar()`

Value

A list

Author(s)

Lang Zhou

Examples

```r
# plot multiple sequence alignment and conservation bar.
f <- system.file("extdata/sample.fasta", package="ggmsa")
ggmsa(f, 221, 280, font = NULL, seq_name = TRUE) + geom_msaBar()
```

geom_seed

Description

Highlighting the seed in miRNA sequences

Usage

`geom_seed(seed, star = FALSE)`

Arguments

- `seed`: a character string. Specifying the miRNA seed sequence like 'GAGGUAG'.
- `star`: a logical value indicating whether asterisks should be displayed.

Value

A ggplot layer
Author(s)

Lang Zhou

Examples

```r
miRNA_sequences <- system.file("extdata/seedSample.fa", package="ggmsa")
ggmsa(miRNA_sequences, font = 'DroidSansMono',
      color = "Chemistry_NT", none_bg = TRUE) +
      geom_seed(seed = "GAGGUAG", star = FALSE)
ggmsa(miRNA_sequences, font = 'DroidSansMono',
      color = "Chemistry_NT") +
      geom_seed(seed = "GAGGUAG", star = TRUE)
```

Description

Multiple sequence alignment layer for ggplot2. It plot sequence motifs.

Usage

```r
geom_seqlogo(
  font = "DroidSansMono",
  color = "Chemistry_AA",
  adaptive = TRUE,
  top = TRUE,
  custom_color = NULL,
  show.legend = FALSE,
  ...
)
```

Arguments

- **font**: font families, possible values are 'helvetical', 'mono', and 'DroidSansMono', 'TimesNewRoman'. Defaults is 'DroidSansMono'.
- **adaptive**: A logical value indicating whether the overall height of seqlogo corresponds to the number of sequences. If is FALSE, seqlogo overall height = 4, fixedly.
- **top**: A logical value. If TRUE, seqlogo is aligned to the top of MSA.
- **custom_color**: A data frame with two column called "names" and "color". Customize the color scheme.
- **show.legend**: logical. Should this layer be included in the legends?
- **...**: additional parameter
gghelix

Value

A list

Author(s)

Lang Zhou

Examples

```r
#plot multiple sequence alignment and sequence motifs
f <- system.file("extdata/LeaderRepeat_All.fa", package="ggmsa")
ggmsa(f,font = NULL,color = "Chemistry_NT") + geom_seqlogo()
```

Description

Plots nucleotide secondary structure as helices in arc diagram

Usage

```r
gghelix(helix_data, color_by = "length", overlap = FALSE)
```

Arguments

- `helix_data`: a data frame. The file of nucleotide secondary structure and then read by `readSSfile()`.
- `color_by`: generate colors for helices by various rules, including integer counts and value ranges one of "length" and "value"
- `overlap`: Logicals. If TRUE, two structures data called predict and known must be given (e.g.: `heilx_data = list(known = data1, predicted = data2)`), plots the predicted helices that are known on top, predicted helices that are not known on the bottom, and finally plots unpredicted helices on top in black.

Value

`ggplot` object

Author(s)

Lang Zhou

Examples

```r
RF03120 <- system.file("extdata/Rfam/RF03120_SS.txt", package="ggmsa")
helix_data <- readSSfile(RF03120, type = "Vienna")
gghelix(helix_data)
```
Description

plot MAF

Usage

```r
ggmaf(
  data,
  ref,
  block_start = NULL,
  block_end = NULL,
  facet_field = NULL,
  heights = c(0.4, 0.6),
  facet_heights = NULL
)
```

Arguments

- `data`: a tidy MAF data frame. You can get it by tidy_maf_df()
- `ref`: character, the name of reference genome. eg:"hg38 chr1_KI270707v1_random"
- `block_start`: a numeric vector(>0). The start block to plot.
- `block_end`: a numeric vector(< max block). The end block to plot.
- `facet_field`: a numeric vector. The field in a facet panel.
- `heights`: two numeric vector. The plot proportion between "Genomic location" panel(upon) and "Alignment" panel(down). Default:c(0.4,0.6)
- `facet_heights`: Numeric vectors. The facet proportion.

Value

- `ggplot object`

Author(s)

- Lang Zhou
Description

Plot multiple sequence alignment using ggplot2 with multiple color schemes supported.

Usage

ggmsa(
 msa,
 start = NULL,
 end = NULL,
 font = "helvetical",
 color = "Chemistry_AA",
 custom_color = NULL,
 char_width = 0.9,
 none_bg = FALSE,
 by_conservation = FALSE,
 position_highlight = NULL,
 seq_name = NULL,
 border = NULL,
 consensus_views = FALSE,
 use_dot = FALSE,
 disagreement = TRUE,
 ignore_gaps = FALSE,
 ref = NULL,
 show.legend = FALSE
)

Arguments

msa Multiple aligned sequence files or objects representing either nucleotide sequences or AA sequences.
start a numeric vector. Start position to plot.
end a numeric vector. End position to plot.
font font families, possible values are 'helvetical', 'mono', and 'DroidSansMono', 'TimesNewRoman'. Defaults is 'helvetical'. If font = NULL, only plot the background tile.
custom_color A data frame with two column called "names" and "color". Customize the color scheme.
char_width a numeric vector. Specifying the character width in the range of 0 to 1. Defaults is 0.9.
none_bg a logical value indicating whether background should be displayed. Defaults is FALSE.

by_conservation a logical value. The most conserved regions have the brightest colors.

position_highlight A numeric vector of the position that need to be highlighted.

seq_name a logical value indicating whether sequence names should be displayed. Defaults is 'NULL' which indicates that the sequence name is displayed when 'font = null', but 'font = char' will not be displayed. If 'seq_name = TRUE' the sequence name will be displayed in any case. If 'seq_name = FALSE' the sequence name will not be displayed under any circumstances.

border a character string. The border color.

consensus_views a logical value that opening consensus views.

use_dot a logical value. Displays characters as dots instead of fading their color in the consensus view.

disagreement a logical value. Displays characters that disagreement to consensus(excludes ambiguous disagreements).

ignore_gaps a logical value. When selected TRUE, gaps in column are treated as if that row didn't exist.

ref a character string. Specifying the reference sequence which should be one of input sequences when 'consensus_views' is TRUE.

show.legend logical. Should this layer be included in the legends?

Value

ggplot object

Author(s)

Guangchuang Yu

Examples

#plot multiple sequences by loading fasta format
fasta <- system.file("extdata", "sample.fasta", package = "ggmsa")
ggmsa(fasta, 164, 213, color="Chemistry_AA")

Not run:
#XMultipleAlignment objects can be used as input in the 'ggmsa'
AAMultipleAlignment <- readAAMultipleAlignment(fasta)
ggmsa(AAMultipleAlignment, 164, 213, color="Chemistry_AA")

#XStringSet objects can be used as input in the 'ggmsa'
AAStringSet <- readAAStringSet(fasta)
ggmsa(AAStringSet, 164, 213, color="Chemistry_AA")

#Xbin objects from 'seqmagick' can be used as input in the 'ggmsa'
AAbin <- fa_read(fasta)
ggmsa(AAbin, 164, 213, color="Chemistry_AA")

End(Not run)

Description
plot Sequence Bundles for MSA based 'ggolot2'

Usage

```r
ggSeqBundle(
  msa,
  line_width = 0.3,
  line_thickness = 0.3,
  line_high = 0,
  spline_shape = 0.3,
  size = 0.5,
  alpha = 0.2,
  bundle_color = c("#2ba0f5", "#424242"),
                   "Y", "N", "Q", "D", "E", "K", "R", "H")
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>msa</td>
<td>Multiple sequence alignment file(FASTA) or object for representing either nucleotide sequences or peptide sequences. Also receives multiple MSA files. eg: msa = c("Gram-negative_AKL.fasta", "Gram-positive_AKL.fasta").</td>
</tr>
<tr>
<td>line_width</td>
<td>The width of bundles at each site, default is 0.3.</td>
</tr>
<tr>
<td>line_thickness</td>
<td>The thickness of bundles at each site, default is 0.3.</td>
</tr>
<tr>
<td>line_high</td>
<td>The high of bundles at each site, default is 0.</td>
</tr>
<tr>
<td>spline_shape</td>
<td>A numeric vector of values between -1 and 1, which control the shape of the spline relative to the control points. From geom_xspline() in ggalt package.</td>
</tr>
<tr>
<td>size</td>
<td>A numeric vector of values between 0 and 1, which control the size of each lines.</td>
</tr>
<tr>
<td>alpha</td>
<td>A numeric vector of values between 0 and 1, which control the alpha of each lines.</td>
</tr>
<tr>
<td>bundle_color</td>
<td>The colors of each sequence bundles. eg: bundle_color = c("#2ba0f5","#424242").</td>
</tr>
</tbody>
</table>
Value

ggplot object

Author(s)

Lang Zhou

Examples

```r
aln <- system.file("extdata", "Gram-negative_AKL.fasta", package = "ggmsa")
ggSeqBundle(aln)
```

Gram-negative_AKL.fasta

Gram-negative_AKL

Description

Amino acids in the adenylate kinase lid (AKL) domain from Gram-negative bacteria.

Format

A MSA fasta with 100 sequences and 36 positions.

Source

http://biovis.net/year/2013/info/redesign-contest

Gram-positive_AKL.fasta

Gram-positive_AKL

Description

Amino acids in the adenylate kinase lid (AKL) domain from Gram-positive bacteria.

Format

A MSA fasta with 100 sequences and 36 positions.

Source

http://biovis.net/year/2013/info/redesign-contest
Description

A folder containing 4 MAS files as a sample data set to identify the sequence recombination event.

Format

A folder

Details

• A.Mont.fas MSA with sequences of 'Mont' and 'CF_YL21'
• B.Oz.fas MSA with sequences of 'Oz' and 'CF_YL21'
• C.Wilga5.fas MSA with sequences of 'Wilga5' and 'CF_YL21'
• sample_alignment.fa MSA with sequences of 'Mont’, 'CF_YL21’, 'Oz’, and 'Wilga5’

Source

Description

DNA alignment sequences with 24 sequences and 56 positions.

Format

A MSA fasta
merge_seq

Description
merge two MSA

Usage
merge_seq(previous_seq, gap, subsequent_seq, adjust_name = TRUE)

Arguments

previous_seq previous MSA

gap gap length

subsequent_seq subsequent MSA

adjust_name logical value. merge seq name or not

Value
tidy MSA data frame

Author(s)
Lang Zhou

plot

plot method for SeqDiff object

Description
plot method for SeqDiff object

Usage

S4 method for signature 'SeqDiff,ANY'
plot(
 x,
 width = 50,
 title = "auto",
 xlab = "Nucleotide Position",
 by = "bar",
 fill = "firebrick",
 colors = c(A = "#ff6d6d", C = "#769dcc", G = "#f2be3c", T = "#74ce98"),
 xlim = NULL
)
readSSfile

Arguments

- `x`
 SeqDiff object
- `width`
 bin width
- `title`
 plot title
- `xlab`
 xlab
- `by`
 one of 'bar' and 'area'
- `fill`
 fill color of upper part of the plot
- `colors`
 color of lower part of the plot
- `xlim`
 limits of x-axis

Value

plot

Author(s)

guangchuang yu

Examples

```r
fas <- list.files(system.file("extdata", "GVariation", package="ggmsa"),
                 pattern="fas", full.names=TRUE)
x1 <- seqdiff(fas[1], reference=1)
plot(x1)
```

readSSfile

Description

Read secondary structure file

Usage

`readSSfile(file, type = NULL)`

Arguments

- `file`
 A text file in connect format
- `type`
 file type. one of "Helix", "Connect", "Vienna" and "Bpseq"

Value

data frame
Author(s)
Lang Zhou

Examples
RF03120 <- system.file("extdata/Rfam/RF03120_SS.txt", package="ggmsa")
helix_data <- readSSfile(RF03120, type = "Vienna")

Description
read 'multiple alignment format'(MAF) file

Usage
read_maf(multiple_alignment_format)

Arguments
multiple_alignment_format
a multiple alignment format(MAF) file

Value
data frame

Author(s)
Lang Zhou

Description
reset MSA position

Usage
reset_pos(seq_df)

Arguments
seq_df MSA data
Value
data frame

Author(s)
Lang Zhou

Description
A folder containing seed alignment sequences and corresponding consensus RNA secondary structure.

Format
a folder

Details
• RF00458.fasta seed alignment sequences of Cripavirus internal ribosome entry site (IRES)
• RF03120.fasta seed alignment sequences of Sarbecovirus 5’UTR
• RF03120_SS.txt consensus RNA secondary structure of Sarbecovirus 5’UTR

Source
https://rfam.xfam.org/

Description
A dataset containing the alignment sequences of the phenylalanine hydroxylase protein (PH4H) within nine species

Format
A MSA fasta with 9 sequences and 456 positions.
Description

Fasta format sequences of mature miRNA sequences from miRBase

Format

A MSA fasta with 6 sequences and 22 positions.

Source

https://www.mirbase.org/ftp.shtml

Description

calculate difference of two aligned sequences

Usage

seqdiff(fasta, reference = 1)

Arguments

 fasta fasta file
 reference which sequence serve as reference, 1 or 2

Value

SeqDiff object

Author(s)

guangchuang yu

Examples

fas <- list.files(system.file("extdata", "GVariation", package="ggmsa"),
 pattern="fas", full.names=TRUE)
seqdiff(fas[1], reference=1)
Description
plot sequence logo for MSA based 'ggolot2'

Usage
```r
seqlogo(
  msa,
  start = NULL,
  end = NULL,
  font = "DroidSansMono",
  color = "Chemistry_AA",
  adaptive = FALSE,
  top = FALSE,
  custom_color = NULL
)
```

Arguments
- **msa**: Multiple sequence alignment file or object for representing either nucleotide sequences or peptide sequences.
- **start**: Start position to plot.
- **end**: End position to plot.
- **font**: font families, possible values are 'helvetical', 'mono', and 'DroidSansMono', 'TimesNewRoman'. Defaults is 'DroidSansMono'. If font=NULL, only the background tiles is drawn.
- **adaptive**: A logical value indicating whether the overall height of seqlogo corresponds to the number of sequences. If FALSE, seqlogo overall height = 4, fixedly.
- **top**: A logical value. If TRUE, seqlogo is aligned to the top of MSA.
- **custom_color**: A data frame with two columns called "names" and "color". Customize the color scheme.

Value
ggplot object

Author(s)
Lang Zhou
Examples

```r
#plot sequence motif independently
nt_sequence <- system.file("extdata", "LeaderRepeat_All.fa",
                          package = "ggmsa")
seqlogo(nt_sequence, color = "Chemistry_NT")
```

sequence-link-tree.fasta

sequence-link-tree

Description

Alignment sequences used to demonstrate circular MSA layout

Format

A MSA fasta with 28 sequences and 480 positions.

show

show method

Description

show method

Usage

```r
show(object)
```

Arguments

- `object` SeqDiff object

Value

message

Examples

```r
fas <- list.files(system.file("extdata", "GVariation", package="ggmsa"),
                  pattern="fas", full.names=TRUE)
x1 <- seqdiff(fas[1], reference=1)
x1
```
simplify_hdata

Description
reset hdata data position

Usage
simplify_hdata(hdata, sim_msa)

Arguments

hdata data from tidy_hdata()
sim_msa MSA data frame

Value
data frame

Author(s)
Lang Zhou

simplot

Description
Sequence similarity plot

Usage
simplot(
 file,
 query,
 window = 200,
 step = 20,
 group = FALSE,
 id,
 sep,
 sd = FALSE,
 smooth = FALSE,
 smooth_params = list(method = "loess", se = FALSE)
)

27
Arguments

- **file**: alignment fast file
- **query**: query sequence
- **window**: sliding window size (bp)
- **step**: step size to slide the window (bp)
- **group**: whether grouping sequence. (e.g., for "A-seq1,A-seq-2,B-seq1 and B-seq2", using sep = "." and id = 1 to divide sequences into groups A and B)
- **id**: position to extract id for grouping; only works if group = TRUE
- **sep**: separator to split sequence name; only works if group = TRUE
- **sd**: whether display standard deviation of similarity among each group; only works if group=TRUE
- **smooth**: FALSE (default) or TRUE; whether display smoothed spline.
- **smooth_params**: a list that add params for geom_smooth, (default: smooth_params = list(method = "loess", se = FALSE))

Value

ggplot object

Author(s)

guangchuang yu

Examples

```r
fas <- system.file("extdata/GVariation/sample_alignment.fa", package="ggmsa")
simplot(fas, 'CF_YL21')
```

Description

Theme for ggmsa.

Usage

```r
theme_msa()
```

Author(s)

Lang Zhou
tidy_hdata

Description

tidy protein-protein interactive position data

Usage

```r
tidy_hdata(gap, inter, previous_seq, subsequent_seq)
```

Arguments

- `gap`
 gap length
- `inter`
 protein-protein interactive position data
- `previous_seq`
 previous MSA
- `subsequent_seq`
 subsequent MSA

Value

helix data

Author(s)

Lang Zhou

tidy_maf_df

Description

tidy MAF data frame

Usage

```r
tidy_maf_df(maf_df, ref)
```

Arguments

- `maf_df`
 a MAF data frame. You can get it by `read_maf()`
- `ref`
 character, the name of reference genome. eg:"hg38.chr1_KI270707v1_random"

Value

data frame
Author(s)

Lang Zhou

Description

Convert msa file/object to tidy data frame.

Usage

tidy_msa(msa, start = NULL, end = NULL)

Arguments

- msa: multiple sequence alignment file or sequence object in DNAStringSet, RNASTringSet, AAStringSet, BStringSet, DNAMultipleAlignment, RNAMultipleAlignment, AAMultipleAlignment, DNAbin or AAbin
- start: start position to extract subset of alignment
- end: end position to extract subset of alignment

Value

tibble data frame

Author(s)

Guangchuang Yu

Examples

```r
fasta <- system.file("extdata", "sample.fasta", package = "ggmsa")
aln <- tidy_msa(msa = fasta, start = 10, end = 100)
```

Description

Alignment sequences of used to show graphical combination

Format

A MSA fasta with 5 sequences and 404 positions.
Description
The local genome map shows the 30000 sites around the TP53 gene.

Format
xlsx

treeMSA_plot

description
plot Tree-MSA plot

Usage
treeMSA_plot(
 p_tree,
 tidymsa_df,
 ancestral_node = "none",
 sub = FALSE,
 panel = "MSA",
 font = NULL,
 color = "Chemistry_AA",
 seq_colname = NULL,
 ...
)

Arguments
p_tree tree view
tidymsa_df tidy MSA data
ancestral_node vector, internal node in tree. Assigning a internal node to display "ancestral sequences". If ancestral_node = "none" hides all ancestral sequences, if ancestral_node = "all" shows all ancestral sequences.
sub logical value. Displaying a subset of ancestral sequences or not.
panel panel name for plot of MSA data
font font families, possible values are 'helvetica', 'mono', and 'DroidSansMono', 'TimesNewRoman'. Defaults is 'helvetical'. If font = NULL, only plot the background tile.
color a Color scheme. One of 'Clustal', 'Chemistry_AA', 'Shapely_AA', 'Zappo_AA',
'Taylor_AA', 'LETTER', 'CN6', 'Chemistry_NT', 'Shapely_NT', 'Zappo_NT',
'Taylor_NT'. Defaults is 'Chemistry_AA'.

seq_colname the colname of MSA on tree$data

Details

'treeMSA_plot()' automatically re-arranges the MSA data according to the tree structure,

Value

ggplot object

Author(s)

Lang Zhou
Index

* datasets
 Gram-negative_AKL.fasta, 18
 Gram-positive_AKL.fasta, 18
 GVariation, 19
 LeaderRepeat_All.fa, 19
 Rfam, 23
 sample.fasta, 23
 seedSample.fa, 24
 sequence-link-tree.fasta, 26
 tp53.fa, 30
 TP53_genes.xlsx, 31

adjust_ally, 3
assign_dms, 4
available_colors, 4
available_fonts, 5
available_msa, 5

effect_seq, 6

facet_msa, 6

gem_GC, 7
gem_helix, 8
gem_msa, 9
gem_msaBar, 11
gem_seed, 11
gem_seqlogo, 12
gghelix, 13
ggmaf, 14
ggmsa, 15
ggSeqBundle, 17
Gram-negative_AKL.fasta, 18
Gram-positive_AKL.fasta, 18
GVariation, 19

LeaderRepeat_All.fa, 19

merge_seq, 20

plot, 20

plot, SeqDiff, ANY-method (plot), 20

read_maf, 22
readSSfile, 21
reset_pos, 22
Rfam, 23

sample.fasta, 23
seedSample.fa, 24
seqdiff, 24
SeqDiff-class (show), 26
seqlogo, 25
sequence-link-tree.fasta, 26
show, 26
show, SeqDiff-method (show), 26
simplify_hdata, 27

simplot, 27

theme_msa, 28
tidy_hdata, 29
tidy_maf_df, 29
tidy_msa, 30

tp53.fa, 30
TP53_genes.xlsx, 31
treeMSA_plot, 31