Package ‘ggsc’

March 6, 2024

Title Visualizing Single Cell Data

Version 1.0.2

Description Useful functions to visualize single cell and spatial data. It supports both 'SingleCellExperiment' and 'Seurat' objects. It also supports visualizing the data using grammar of graphics implemented in 'ggplot2'.

Imports Rcpp, RcppParallel, cli, dplyr, ggplot2, grDevices, grid, methods, rlang, scattermore, stats, Seurat, SingleCellExperiment, SummarizedExperiment, tidydr, tidyr, tibble, utils, yulab.utils

Suggests aplot, BiocParallel, forcats, ggforce, ggnewscale, igraph, knitr, ks, Matrix, prettydoc, rmarkdown, scran, scater, scuttle, shadowtext, sf, SeuratObject, SpatialExperiment, STexampleData, testthat (>= 3.0.0)

BugReports https://github.com/YuLab-SMU/ggsc/issues

URL https://github.com/YuLab-SMU/ggsc

biocViews DimensionReduction, GeneExpression, SingleCell, Software, Spatial, Transcriptomics, Visualization

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo, RcppParallel

git_url https://git.bioconductor.org/packages/ggsc

git_branch RELEASE_3_18

git_last_commit 67f8871

git_last_commit_date 2023-10-31
ggsc-package

Description

Useful functions to visualize single cell and spatial data. It supports both 'SingleCellExperiment' and 'Seurat' objects. It also supports visualizing the data using grammar of graphics implemented in 'ggplot2'.

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [copyright holder]
Authors:
 • Shuangbin Xu <xshuangbin@163.com> (ORCID)

See Also

Useful links:
 • https://github.com/YuLab-SMU/ggsc
 • Report bugs at https://github.com/YuLab-SMU/ggsc/issues
CalWkdeCpp

Two-Dimensional Weighted Kernel Density Estimation And Mapping the Result To Original Dimension

Description

Two-Dimensional Weighted Kernel Density Estimation And Mapping the Result To Original Dimension

Usage

CalWkdeCpp(x, w, l, h, adjust = 1, n = 400L)

Arguments

x
The 2-D coordinate matrix

w
The weighted sparse matrix, the number columns the same than the number rows than x.

l
The limits of the rectangle covered by the grid as c(xl, xu, yl, yu)

h
The vector of bandwidths for x and y directions, defaults to normal reference bandwidth (see bandwidth.nrd), A scalar value will be taken to apply to both directions (see ks::hpi).

adjust
numeric value to adjust to bandwidth, default is 1.

n
number of grid points in the two directions, default is 400.

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

 ggplot2
aes, theme

Value

Depending on the re-exported function
Description

sc_dim

Usage

sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

S4 method for signature 'Seurat'
sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

S4 method for signature 'SingleCellExperiment'
sc_dim(
 object,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ...
)

Arguments

object Seurat object
dims selected dimensions (must be a two-length vector) that are used in visualization
reduction reduction method, default is NULL and will use the default setting stored in the object
The `sc_dim_count` function is used to select cells to plot and pull expression data from a specified slot.

Arguments
- `cells`: selected cells to plot (default is all cells)
- `slot`: slot to pull expression data from (e.g., 'count' or 'data')
- `mapping`: aesthetic mapping
- `...`: additional parameters pass to `scattermore::geom_scattermore()`

Value
The function returns a dimension reduction plot.

See Also
- `geom_scattermore`

Examples
```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP', mapping = aes(colour = Cell_Cycle))
p2 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_label()
f2 <- p2 +
  sc_dim_geom_label(
    geom = shadowtext::geom_shadowtext,
    color='black',
    bg.color='white'
  )
```

Description

The `sc_dim_count` function allows for the selection of cells to plot and the specification of a slot for expression data, with additional aesthetic mapping parameters.

Usage

```r
sc_dim_count(sc_dim_plot)
```

Arguments
- `sc_dim_plot`: dimension reduction plot of single cell data
Value

a bar plot to present the cell numbers of different clusters

See Also

sc_dim()

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p <- sc_dim(sce, reduction = 'UMAP')
p1 <- sc_dim_count(p)

sc_dim_geom_ellipse

Description

sc_dim_geom_ellipse

Usage

sc_dim_geom_ellipse(mapping = NULL, level = 0.95, ...)

Arguments

mapping
aesthetic mapping

level
the level at which to draw an ellipse

...
additional parameters pass to the stat_ellipse

Value

layer of ellipse

See Also

stat_ellipse:
Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP', mapping = aes(colour = Cell_Cycle))
p2 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_ellipse()
```

Description

sc_dim_geom_feature

Usage

```r
sc_dim_geom_feature(
  object,
  features,
  dims = c(1, 2),
  ncol = 3,
  ...
  .fun = function(.data) dplyr::filter(.data, .data$value > 0)
)
```

Arguments

- **object**: Seurat or SingleCellExperiment object
- **features**: selected features (i.e., genes)
- **dims**: selected dimensions (must be a two-length vector) that are used in visualization
- **ncol**: number of facet columns if `length(features) > 1`
- **...**: additional parameters pass to `scattermore::geom_scattermore()`
- **.fun**: user defined function that will be applied to selected features (default is to filter out genes with no expression values)

Value

layer of points for selected features
See Also

sc_feature()

Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP')
set.seed(123)
genes <- rownames(sce) |> sample(6)
f1 <- p1 +
    sc_dim_geom_feature(
        object = sce,
        features = genes
    )
```

sc_dim_geom_label

Description

sc_dim_geom_label

Usage

`sc_dim_geom_label(geom = ggplot2::geom_text, ...)`

Arguments

- `geom`: geometric layer (default: geom_text) to display the labels
- `...`: additional parameters pass to the geom

Value

layer of labels

See Also

sc_dim_geom_label()
Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP', mapping = aes(colour = Cell_Cycle))
p2 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_label()
```

Description

sc_dim_geom_subset

Usage

```r
sc_dim_geom_sub(mapping = NULL, subset, .column = "ident", ...)
```

Arguments

- `mapping`: aesthetic mapping
- `subset`: subset of clusters to be displayed
- `.column`: which column represents cluster (e.g., 'ident')
- `...`: additional parameters pass to `sc_geom_point`

Value

plot with a layer of specified clusters

See Also

- `sc_dim_geom_sub`

Examples

```r
library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
```
clusters <- clusterCells(sce, assay.type = 'logcounts')
collLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
p1 <- sc_dim(sce, reduction = 'UMAP')
f1 <- p1 + sc_dim_geom_sub(subset = c(1, 2), .column = 'label')
Description

sc_feature

Usage

sc_feature(
 object,
 features,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ncol = 3,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 ...
)

S4 method for signature 'Seurat'
sc_feature(
 object,
 features,
 dims = c(1, 2),
 reduction = NULL,
 cells = NULL,
 slot = "data",
 mapping = NULL,
 ncol = 3,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 ...
)

S4 method for signature 'SingleCellExperiment'
sc_feature(
 object,
features,
dims = c(1, 2),
reduction = NULL,
cells = NULL,
slot = "data",
mapping = NULL,
ncol = 3,
density = FALSE,
grid.n = 100,
joint = FALSE,
joint.fun = prod,
common.legend = TRUE,
...)

Arguments

object Seurat object
features selected features (i.e., genes)
dims selected dimensions (must be a two-length vector) that are used in visualization
reduction reduction method, default is NULL and will use the default setting store in the object
cells selected cells to plot (default is all cells)
slot slot to pull expression data from (e.g., 'count' or 'data')
mapping aesthetic mapping
ncol number of facet columns if 'length(features) > 1'
density whether plot the 2D weighted kernel density, default is FALSE.
grid.n number of grid points in the two directions to estimate 2D weighted kernel density, default is 100.
joint whether joint the multiple features with joint.fun, default is FALSE.
joint.fun how to joint the multiple features if joint=TRUE, default is prod.
common.legend whether to use facet_wrap to display the multiple features, default is TRUE.
... additional parameters pass to 'scattermore::geom_scattermore()'

Value
dimension reduction plot colored by selected features

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
collLabels(sce) <- clusters
sce <- runTSNE(sce, assay.type = 'logcounts')
set.seed(123)
genes <- rownames(sce) |> sample(6)
p1 <- sc_feature(sce, genes[1], slot='logcounts', reduction = 'TSNE')
p2 <- sc_feature(sce, genes, slot='logcounts', reduction = 'TSNE')
f1 <- sc_dim(sce, slot='logcounts', reduction = 'TSNE') +
 sc_dim_geom_feature(sce, genes[1], color='black')
f2 <- sc_dim(sce, alpha=.3, slot='logcounts', reduction = 'TSNE') +
 ggnewscale::new_scale_color() +
 sc_dim_geom_feature(sce, genes, mapping=aes(color=features)) +
 scale_color_viridis_d()
p1 + p2 + f1 + f2

sc_geom_point

Description

A scatter plot of the data.

Usage

```r
sc_geom_point(mapping = NULL, ...)
```

Arguments

- **mapping**: aesthetic mapping
- **...**: additional parameters pass to `scattermore::geom_scattermore()`

Value

A scatter plot of the data.

See Also

`sc_dim()` and `sc_feature()`

Examples

```r
library(ggplot2)
ggplot(iris, aes(x = Sepal.Length, y = Petal.Width, color=Species)) +
    sc_geom_point()
```
sc_spatial

Description

sc_spatial

Usage

sc_spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 point.size = 5,
 ...
)

S4 method for signature 'Seurat'
sc_spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
sc_spatial

 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 point.size = 5,
 ...
)

S4 method for signature 'SingleCellExperiment'
sc_spatial(
 object,
 features = NULL,
 sample.id = NULL,
 image.id = NULL,
 slot = "data",
 image.plot = TRUE,
 image.first.operation = "rotate",
 image.rotate.degree = NULL,
 image.mirror.axis = NULL,
 remove.point = FALSE,
 mapping = NULL,
 ncol = 6,
 density = FALSE,
 grid.n = 100,
 joint = FALSE,
 joint.fun = prod,
 common.legend = TRUE,
 point.size = 5,
 ...
)

Arguments

object Seurat object
features selected features to be visualized
sample.id the index name of sample id, which only work with SingleCellExperiment or SpatialExperiment.
image.id the index name of image id, which only work with SingleCellExperiment or SpatialExperiment.
slot if plotting a feature, which data will be used (e.g., 'data', 'counts'), the assay name if object is SingleCellExperiment or SpatialExperiment.
image.plot whether to display the issue image as background.
image.first.operation character which the first operation to image, 'rotate' or 'mirror', default is 'rotate'.
image.rotate.degree integer the degree to rotate image, default is NULL.
image.mirror.axis
 character the direction to mirror the image, default is 'h'.
remove.point
 whether to remove the spot points, it is nice if your just view the issue image, default is FALSE.
mapping
 aesthetic mapping, default is NULL.
ncol
 integer number of facet columns if 'length(features) > 1', default is 6.
density
 whether plot the 2D weighted kernel density, default is FALSE.
grid.n
 number of grid points in the two directions to estimate 2D weighted kernel density, default is 100.
joint
 whether joint the multiple features with joint.fun, default is FALSE.
joint.fun
 how to joint the multiple features if joint = TRUE, default is prod.
common.legend
 whether to use facet_wrap to display the multiple features, default is TRUE.
point.size
 the size of point, default is 5.
...
 additional parameters.

Value

ggplot object

Examples

```r
## Not run:
library(STexampleData)
# create ExperimentHub instance
eh <- ExperimentHub()
# query STexampleData datasets
myfiles <- query(eh, "STexampleData")
spe <- myfiles["EH7538"]
spe <- spe[, colData(spe)$in_tissue == 1]
set.seed(123)
genes <- rownames(spe) |> sample(6)
p <- sc.spatial(spe, features = genes,
  image.rotate.degree = -90,
  image.mirror.axis = NULL,
  ncol = 3)

## End(Not run)
```

Description

sc_violin
Usage

```r
sc_violin(
  object, 
  features, 
  cells = NULL, 
  slot = "data", 
  .fun = NULL, 
  mapping = NULL, 
  ncol = 3, 
  ...
)
```

```r
## S4 method for signature 'Seurat'
sc_violin(
  object, 
  features, 
  cells = NULL, 
  slot = "data", 
  .fun = NULL, 
  mapping = NULL, 
  ncol = 3, 
  ...
)
```

```r
## S4 method for signature 'SingleCellExperiment'
sc_violin(
  object, 
  features, 
  cells = NULL, 
  slot = "data", 
  .fun = NULL, 
  mapping = NULL, 
  ncol = 3, 
  ...
)
```

Arguments

- **object**: Seurat object
- **features**: selected features
- **cells**: selected cells to plot (default is all cells)
- **slot**: slot to pull expression data from (e.g., 'count' or 'data')
- **.fun**: user defined function that will be applied to selected features (default is NULL and there is no data operation)
- **mapping**: aesthetic mapping
- **ncol**: number of facet columns if `length(features) > 1`
- **...**: additional parameters pass to `ggplot2::geom_violin()`
Value

violin plot to visualize feature expression distribution

See Also

geom_violin;

Examples

library(scuttle)
library(scater)
library(scran)
library(ggplot2)
sce <- mockSCE()
sce <- logNormCounts(sce)
clusters <- clusterCells(sce, assay.type = 'logcounts')
colLabels(sce) <- clusters
sce <- runUMAP(sce, assay.type = 'logcounts')
set.seed(123)
genes <- rownames(sce) |> sample(6)
sc_violin(sce, genes[1], slot = 'logcounts')
sc_violin(sce, genes[1], slot = 'logcounts',
.fun=function(d) dplyr::filter(d, value > 0)
) +
 ggforce::geom_sina(size=.1)
sc_violin(sce, genes, slot = 'logcounts') +
 theme(axis.text.x = element_text(angle=45, hjust=1))
Index

* internal
 ggsc-package, 2
 reexports, 3
aes, 3
aes(reexports), 3
CalWkdeCpp, 3
geom_scattermore, 5
geom_violin, 18
ggsc(ggsc-package), 2
ggsc-package, 2
reexports, 3
sc_dim, 4, 10
sc_dim(), 6, 13
sc_dim, Seurat(sc_dim), 4
sc_dim, Seurat-method(sc_dim), 4
sc_dim, SingleCellExperiment(sc_dim), 4
sc_dim, SingleCellExperiment-method(sc_dim), 4
sc_dim_count, 5
sc_dim_geom_ellipse, 6
sc_dim_geom_feature, 7
sc_dim_geom_label, 8
sc_dim_geom_label(), 8
sc_dim_geom_sub, 9, 9
sc_dim_sub, 10
sc_feature, 11
sc_feature(), 8, 13
sc_feature, Seurat(sc_feature), 11
sc_feature, Seurat-method(sc_feature), 11
sc_feature, SingleCellExperiment(sc_feature), 11
sc_feature, SingleCellExperiment-method(sc_feature), 11
sc_geom_point, 13
sc_spatial, 14
sc_spatial, Seurat(sc_spatial), 14
sc_spatial, Seurat-method(sc_spatial), 14
sc_spatial, SingleCellExperiment(sc_spatial), 14
sc_spatial, SingleCellExperiment-method(sc_spatial), 14
sc_violin, 16
sc_violin, Seurat(sc_violin), 16
sc_violin, Seurat-method(sc_violin), 16
sc_violin, SingleCellExperiment(sc_violin), 16
sc_violin, SingleCellExperiment-method(sc_violin), 16
stat_ellipse, 6
theme, 3
theme(reexports), 3