Package ‘ggtree’

March 6, 2024

Type Package

Title an R package for visualization of tree and annotation data

Version 3.10.1

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description ‘ggtree’ extends the ‘ggplot2’ plotting system which implemented the grammar of graphics. ‘ggtree’ is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data.

Depends R (>= 3.5.0)

Imports ape, aplot, dplyr, ggplot2 (> 3.3.6), grid, magrittr, methods, purrr, rlang, ggfun (>= 0.0.9), yulab.utils, tidyverse, tidytree (>= 0.4.5), treeio (>= 1.8.0), utils, scales, stats, cli

Suggests emojifont, ggimage, ggplotify, shadowtext, grDevices, knitr, prettydoc, rmarkdown, testthat, tibble, glue

Remotes GuangchuangYu/treeio

VignetteBuilder knitr

ByteCompile true

Encoding UTF-8

License Artistic-2.0

BugReports https://github.com/YuLab-SMU/ggtree/issues

biocViews Alignment, Annotation, Clustering, DataImport, MultipleSequenceAlignment, Phylogenetics, ReproducibleResearch, Software, Visualization

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)
git_url https://git.bioconductor.org/packages/ggtree

git_branch RELEASE_3_18

git_last_commit 5014378

git_last_commit_date 2024-02-25

Repository Bioconductor 3.18

Date/Publication 2024-03-06

Author Guangchuang Yu [aut, cre, cph]
 (https://orcid.org/0000-0002-6485-8781),
 Tommy Tsan-Yuk Lam [aut, ths],
 Shuangbin Xu [aut] (https://orcid.org/0000-0003-3513-5362),
 Lin Li [ctb],
 Bradley Jones [ctb],
 Justin Silverman [ctb],
 Watal M. Iwasaki [ctb],
 Yonghe Xia [ctb],
 Ruizhu Huang [ctb]

R topics documented:

ggtree-package ... 4
add_colorbar .. 5
applyLayoutDaylight ... 6
as.polytomy .. 6
collapse.ggtree .. 7
Date2decimal .. 8
decimal2Date ... 8
expand ... 9
facet_data ... 9
facet_labeller ... 10
facet_plot ... 11
facet_widths ... 12
flip ... 12
geom_aline ... 13
geom_balance ... 14
geom_cladelab ... 15
geom_cladelabel .. 18
geom_cladelabel2 ... 20
geom_hilight ... 21
geom_inset .. 24
geom_label2 ... 25
geom_motif ... 27
geom_nodelab .. 28
geom_nodelab2 ... 29
geom_nodepoint .. 30
geom_point2 ... 31
geom_range ... 33
R topics documented:

- geom_rootedge .. 34
- geom_rootpoint .. 35
- geom_segment2 .. 37
- geom_strip ... 38
- geom_taxilab .. 40
- geom_text2 ... 44
- geom_tiplab ... 45
- geom_tiplab2 .. 48
- geom_tippoint .. 49
- geom_tree ... 50
- geom_tree2 ... 51
- geom_treescale ... 52
- geom_zoom_clade .. 53
- getNodeAngle.df .. 54
- getNodesBreadthFirst.df ... 55
- getSubtree ... 55
- getSubtree.df .. 56
- getSubtreeUnrooted ... 56
- getSubtreeUnrooted.df .. 57
- getTreeArcAngles .. 57
- get_clade_position ... 58
- get_heatmap_column_position .. 58
- get_taxa_name .. 59
- ggdenstree ... 60
- ggtree ... 62
- gheatmap ... 64
- gzoom ... 65
- gzoom.phylo .. 66
- hexpand ... 67
- label_pad ... 68
- layoutDaylight .. 69
- layoutEqualAngle .. 69
- layout_rectangular .. 70
- msaplot ... 71
- multiplot ... 72
- nodebar ... 73
- nodepie ... 73
- open_tree ... 74
- range_format ... 75
- reexports ... 75
- revts ... 76
- rotate ... 76
- rotateTreePoints.df .. 77
- rotate_tree ... 78
- scaleClade ... 78
- scale_color ... 79
Description

'ggtree' extends the 'ggplot2' plotting system which implemented the grammar of graphics. 'ggtree' is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data.

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [copyright holder]

Authors:

- Tommy Tsan-Yuk Lam <tylam.tommy@gmail.com> [thesis advisor]
- Shuangbin Xu <xshuangbin@163.com> (ORCID)

Other contributors:

- Lin Li <williamlee2220@qq.com> [contributor]
- Bradley Jones <bjones@cfenet.ubc.ca> [contributor]
- Justin Silverman <jsilve24@gmail.com> [contributor]
- Watal M. Iwasaki <heavy.watal@gmail.com> [contributor]
- Yonghe Xia <xiyah17@gmail.com> [contributor]
- Ruizhu Huang <ruizhuRH@gmail.com> [contributor]
See Also

Useful links:

- https://www.amazon.com/Integration-Manipulation-Visualization-Phylogenetic-Computational-ebook, dp/B0B5NLZ89Z (book)
- Report bugs at https://github.com/YuLab-SMU/ggtree/issues

Description

add colorbar legend

Usage

```r
add_colorbar(p, color, x = NULL, ymin = NULL, ymax = NULL, font.size = 4)
```

Arguments

- `p` tree view
- `color` output of `scale_color` function
- `x` x position
- `ymin` ymin
- `ymax` ymax
- `font.size` font size

Value

ggplot2 object

Author(s)

Guangchuang Yu
applyLayoutDaylight

Description

Apply the daylight algorithm to adjust the spacing between the subtrees and tips of the specified node.

Usage

applyLayoutDaylight(df, node_id)

Arguments

df tree data.frame
node_id is id of the node from which daylight is measured to the other subtrees.

Value

list with tree data.frame with updated layout using daylight algorithm and max_change angle.

as.polytomy

Description

collapse binary tree to polytomy by applying 'fun' to 'feature'

Usage

as.polytomy(tree, feature, fun)

Arguments

tree tree object, 'phylo' object only
feature selected feature
fun function to select nodes to collapse

Value

polytomy tree

Author(s)

Guangchuan Yu
Description

collapse a selected clade, which can later be expanded with the 'expand()' function if necessary

Usage

```r
## S3 method for class 'ggtree'
collapse(x = NULL, node, mode = "none", clade_name = NULL, ...)
```

Arguments

- `x`: tree view (i.e. the ggtree object). If tree_view is NULL, the last ggplot will be used.
- `node`: internal node number
- `mode`: one of 'none' (default), 'max', 'min' and 'mixed'. 'none' would simply collapse the clade as 'tip' and the rest will display a triangle, whose shape is determined by the farest/closest tip of the collapsed clade to indicate it
- `clade_name`: set a name for the collapsed clade. If clade_name = NULL, do nothing
- `...`: additional parameters to set the color or transparency of the triangle

Value

tree view

Author(s)

Guangchuang Yu

See Also

expand

Examples

```r
x <- rtree(15)
p <- ggtree(x) + geom_tiplab()
p
p1 <- collapse(p, node = 17, mode = "mixed",
               clade_name = "cclade", alpha = 0.8,
               color = "grey", fill = "light blue")
```
Description
convert Date to decimal format, eg "2014-05-05" to "2014.34"

Usage
$\text{Date2decimal}(x)$

Arguments
\begin{itemize}
 \item x Date
\end{itemize}

Value
numeric

Author(s)
Guangchuang Yu

Description
convert decimal format to Date, eg "2014.34" to "2014-05-05"

Usage
$\text{decimal2Date}(x)$

Arguments
\begin{itemize}
 \item x numerical number, eg 2014.34
\end{itemize}

Value
Date

Author(s)
Guangchuang Yu
Description

expand collapsed clade

Usage

expand(tree_view = NULL, node)

Arguments

tree_view tree view (i.e. the ggtree object). If tree_view is NULL, the last ggplot object will be used.

node internal node number to specify a clade. If NULL, using the whole tree

Value

tree view

Author(s)

Guangchuang Yu

See Also

collapse

Examples

x <- rtree(15)
p <- ggtree(x) + geom_tiplab()
p1 <- collapse(p, 17)
expand(p1, 17)

Description

extract data used in facet_plot or geom_facet

Usage

facet_data(tree_view, panel)
facet_labeller

Arguments

- **tree_view**: ggtree object
- **panel**: data plotted in specific panel. If only one dataset used in the panel, return the data frame, else return a list of data frames.

Value

data frame or a list of data frames

Author(s)

Guangchuang Yu

References

Description

function to relable selected panels created by 'geom_facet' or 'facet-plot'

Usage

```r
facet_labeller(p, label)
```

Arguments

- **p**: facet_plot output
- **label**: new labels of facet panels

Value

ggplot object

Author(s)

Guangchuang Yu
Description

plot tree associated data in an additional panel

Usage

facet_plot(p, mapping = NULL, data, geom, panel, ...)

geom_facet(mapping = NULL, data, geom, panel, ...)

Arguments

p tree view
mapping aes mapping for 'geom'
data data to plot by 'geom', first column should be matched with tip label of tree
geom geom function to plot the data
panel panel name for plot of input data
... additional parameters for 'geom'

Details

'facet_plot()' automatically re-arranges the input 'data' according to the tree structure, visualizes the
'data' on specific 'panel' using the 'geom' function with aesthetic 'mapping' and other parameters,
and align the graph with the tree 'p' side by side. 'geom_facet' is a 'ggplot2' layer version of
'facet_plot'

Value

ggplot object

Author(s)

Guangchuang Yu

References

G Yu, TTY Lam, H Zhu, Y Guan (2018). Two methods for mapping and visualizing associated
Examples

```r
tr <- rtree(10)
dd = data.frame(id=tr$tip.label, value=abs(rnorm(10)))
p <- ggtree(tr)
facet_plot(p, 'Trait', data = dd, geom=geom_point, mapping=aes(x=value))
```

facet_widths

Set relative widths (for column only) of facet plots.

Usage

```r
facet_widths(p, widths)
```

Arguments

- `p`: ggplot or ggtree object
- `widths`: relative widths of facet panels

Value

A ggplot object by redrawing the figure (not a modified version of input object).

Author(s)

Guangchuang Yu

flip

Exchange the position of 2 clades.

Usage

```r
flip(tree_view = NULL, node1, node2)
```

Arguments

- `tree_view`: tree view (i.e. the ggtree object). If tree_view is NULL, the last ggplot will be used.
- `node1`: node number of clade 1. It should share a same parent node with node2
- `node2`: node number of clade 2. It should share a same parent node with node1
Value

ggplot object

Author(s)

Guangchuang Yu

Examples

```r
set.seed(123)
x <- rtree(15)
p <- ggtree(x) + geom_tiplab() +
  geom_nodelab(aes(subset=!isTip, label=node), hjust = -.1, color = "red")
flip(p, 23, 24)  ## Depends on the condition of your tree
```

Description

add horizontal align lines layer to a tree

Usage

```r
geom_aline(mapping = NULL, linetype = "dotted", linewidth = 1, ...)
```

Arguments

- **mapping**: aes mapping
- **linetype**: set line type of the line, defaults to "dotted"
- **linewidth**: set width of the line, defaults to 1
- **...**: additional parameter

Details

'geom_aline' align all tips to the longest one by adding padding characters to the right side of the tip.

Value

aline layer

Author(s)

Yu Guangchuang
Description

highlights the two direct descendant clades of an internal node

Usage

```r
geom_balance(
  node,
  fill = "steelblue",
  color = "white",
  alpha = 0.5,
  extend = 0,
  extendto = NULL
)
```

Arguments

- **node**: selected node (balance) to highlight its two direct descendant
- **fill**: color to fill in the highlight rectangle, default to "steelblue"
- **color**: color to outline highlight rectangle and divide balance, defaults to "white"
- **alpha**: alpha (transparency) for the highlight rectangle, defaults to 0.5
- **extend**: extend xmax of the highlight rectangle by the value of extend
- **extendto**: extend xmax of the highlight rectangle to the value of extendto

Details

Particularly useful when studying neighboring clades. Note that balances that correspond to multichotomies will not be displayed.

Value

ggplot2

Author(s)

Justin Silverman and modified by Guangchuang Yu

References

Examples

```r
library(ggtree)
set.seed(123)
tr <- rtree(15)
x <- ggtree(tr)
x + geom_balance(17)
```

Description
annotate a clade with bar and text label or (image)

Usage

```r
geom_cladelab(
  node = NULL,
  label = NULL,
  data = NULL,
  mapping = NULL,
  geom = "text",
  parse = FALSE,
  ...
)
```

Arguments

- `node` selected node to annotate, when data and mapping is NULL, it is required.
- `label` character, character to be showed, when data and mapping is NULL, it is re-
 quired.
- `data` data.frame, the data to be displayed in the annotation, defaults to NULL.
- `mapping` Set of aesthetic mappings, defaults to NULL. The detail see the following ex-
 planation.
- `geom` character, one of 'text', 'label', 'shadowtext', 'image' and 'phylopic', defaults to 'text', and the parameter see the Aesthetics For Specified Geom.
- `parse` logical, whether parse label to emoji font, defaults to FALSE.
- `...` additional parameters, see also following section.

Additional parameters can refer the following parameters.

- `offset` distance bar and tree, offset of bar and text from the clade, defaults to 0.
- `offset.text` distance bar and text, offset of text from bar, defaults to 0.
- `align` logical, whether align clade lab, defaults to FALSE.
• extend numeric, extend the length of bar, defaults to 0.
• angle numeric or 'auto', if angle is auto, the angle of text will be calculated automatically, which is useful for the circular etc layout, defaults to 0.
• horizontal logical, whether set label to horizontal, defaults to TRUE.
• barsize the width of line, defaults to 0.5.
• barcolour the colour of line, defaults to 'black'.
• fontsize the size of text, defaults to 3.88.
• textcolour the colour of text, defaults to 'black'.
• imagesize the size of image, defaults to 0.05.
• imagecolor the colour of image, defaults to NULL, when geom="phylopic", it should be required.

The parameters also can be set in mapping, when data is provided. Note: the barsize, barcolour, fontsize, textcolour, imagesize and imagecolor should not be set in mapping (aesthetics). When the color and size are not be set in mapping, user can modify them to adjust the attributes of specified geom.

Aesthetics For Specified Geom

geom_cladelab() understands the following aesthetics for geom="text"(required aesthetics are in bold):

- node selected node to hight light, it is required.
- label labels to be shown, it is required.
- colour the colour of text, defaults to "black".
- size the size of text, defaults to 3.88.
- angle the angle of text, defaults to 0.
- hjust A numeric vector specifying horizontal justification, defaults to 0.
- vjust A numeric vector specifying vertical justification, defaults to 0.5.
- alpha the transparency of text, defaults to NA.
- family the family of text, defaults to 'sans'.
- fontface the font face of text, defaults to 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
- lineHeight The height of a line as a multiple of the size of text, defaults to 1.2.

When the colour, size are not be set in mapping, and user want to modify the colour of text, they should use textcolour, fontsize to avoid the confusion with bar layer annotation.

geom_cladelab() understands the following aesthetics for geom="label" (required aesthetics are in bold):

- node selected node to hight light, it is required.
- label labels to be shown, it is required.
- colour the colour of text, defaults to "black".
- fill the background colour of the label, defaults to "white".
- size the size of text, defaults to 3.88.
• angle the angle of text, defaults to 0.
• hjust A numeric vector specifying horizontal justification, defaults to 0.
• vjust A numeric vector specifying vertical justification, defaults to 0.5.
• alpha the transparency of text, defaults to NA.
• family the family of text, defaults to "sans".
• fontface the font face of text, defaults to 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineheight The height of a line as a multiple of the size of text, defaults to 1.2.

when the colour, size are not be set in mapping, and user want to modify the colour of text, they should use textcolour, fontsize to avoid the confusion with bar layer annotation.

`geom_cladelab()` understands the following aesthetics for `geom="shadowtext"` (required aesthetics are in bold):

• node selected node to hight light, it is required.
• label labels to be shown, it is required.
• colour the colour of text, defaults to "black".
• bg.colour the background colour of text, defaults to 'black'.
• bg.r the width of background text, defaults to 0.1.
• size the size of text, defaults to 3.88.
• angle the angle of text, defaults to 0.
• hjust A numeric vector specifying horizontal justification, defaults to 0.
• vjust A numeric vector specifying vertical justification, defaults to 0.5.
• alpha the transparency of text, defaults to NA.
• family the family of text, defaults to 'sans'.
• fontface the font face of text, defaults to 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineheight The height of a line as a multiple of the size of text, defaults to 1.2.

when the colour, size are not be set in mapping, and user want to modify the colour of image, they should use imagecolour, imagesize to avoid the confusion with bar layer annotation.

`geom_cladelab()` understands the following aesthetics for `geom="image"` or `geom="phylopic"` (required aesthetics are in bold):

• node selected node to hight light, it is required.
• label labels to be shown, it is required.
• image the image to be annotated, when `geom="phylopic"`, the uid of phylopic databases, it is required.
• colour the color of image, defaults to NULL.
• size the size of image, defaults to 0.05.
• alpha the alpha of image, defaults to 0.8.

when the colour, size are not be set in mapping, and user want to modify the colour of image, they should use imagecolour, imagesize to avoid the confusion with bar layer annotation.
Examples

```r
set.seed(2015-12-21)
tree <- rtree(30)
data <- data.frame(id=c(34, 56),
                  annote=c("another clade", "long clade names"),
                  image=c("7fb9bea8-e758-4986-afb2-95a2c3bf983d",
                          "0174801d-15a6-4668-bfe0-4c421fbe51e8"),
                  group=c("A", "B"),
                  offset=c(0.1, 0.1),
                  offset.text=c(0.1, 0.2))
p <- ggtree(tree) + xlim(NA, 6)

p + geom_cladelab(node=45, label="test label") +
  geom_cladelab(node=34, label="another clade")
p2 <- p + geom_cladelab(data=data,
                         mapping=aes(
                             node=id, 
                             label=annotate, 
                             image=image, 
                             color=group, 
                             offset=offset 
                         ),
                         geom="shadowtext", 
                         hjust=0.5, 
                         align=TRUE, 
                         horizontal=FALSE, 
                         angle=90, 
                         show.legend = FALSE 
                      )

p2
```

Description

annotate a clade with bar and text label

Usage

```r
geom_cladelabel(
    node, 
    label, 
    offset = 0, 
    offset.text = 0, 
    extend = 0, 
    align = FALSE, 
    barsize = 0.5, 
)```
geom_cladelabel

    fontsize = 3.88,
    angle = 0,
    geom = "text",
    hjust = 0,
    color = NULL,
    fill = NA,
    family = "sans",
    parse = FALSE,
    horizontal = TRUE,
    ...  
  )

Arguments

  node         selected node
  label        clade label
  offset       offset of bar and text from the clade
  offset.text  offset of text from bar
  extend       extend bar height
  align        logical
  barsize      size of bar
  fontsize     size of text
  angle        angle of text
  geom         one of 'text' or 'label'
  hjust        justify text horizontally
  color        color for clade & label, of length 1 or 2
  fill         fill label background, only work with geom='label'
  family       sans by default, can be any supported font
  parse        logical, whether parse label
  horizontal   logical, whether set label to horizontal, defaults to TRUE.
  ...          additional parameter

Value

  ggplot layers

Author(s)

  Guangchuang Yu

See Also

  geom_cladelabel2
Description

annotate a clade with bar and text label

Usage

```r
geom_cladelabel2(
 node,
 label,
 offset = 0,
 offset.text = 0,
 offset.bar = 0,
 align = FALSE,
 barsize = 0.5,
 fontsize = 3.88,
 hjust = 0,
 geom = "text",
 color = NULL,
 family = "sans",
 parse = FALSE,
 horizontal = TRUE,
 ...
)
```

Arguments

- `node` selected node
- `label` clade label
- `offset` offset of bar and text from the clade
- `offset.text` offset of text from bar
- `offset.bar` offset of bar from text
- `align` logical
- `barsize` size of bar
- `fontsize` size of text
- `hjust` justify text horizontally
- `geom` one of 'text' or 'label'
- `color` color for clade & label, of length 1 or 2
- `family` sans by default, can be any supported font
- `parse` logical, whether parse label
- `horizontal` logical, whether set label to horizontal, defaults to TRUE.
- `...` additional parameter
Value

ggplot layers

Author(s)

JustGitting

See Also

geom_cladelabel

geom_hilight

geom_hilight

Description

layer of hilight clade

Usage

geom_hilight(
  data = NULL,
  mapping = NULL,
  node = NULL,
  type = "auto",
  to.bottom = FALSE,
  ...
)

geom_highlight(
  data = NULL,
  mapping = NULL,
  node = NULL,
  type = "auto",
  to.bottom = FALSE,
  ...
)

Arguments

data data.frame, The data to be displayed in this layer, defaults to NULL.
mapping Set of aesthetic mappings, defaults to NULL.
node selected node to hilight, when data and mapping is NULL, it is required.
the type of layer, defaults to auto, meaning rectangular, circular, slanted, fan, inward_circular, radial, equal_angle, ape layout tree will use rectangular layer, unrooted and daylight layout tree use will use encircle layer. You can specify this parameter to rect (rectangular layer) or encircle (encircle layer), 'gradient' (gradient color), 'roundrect' (round rectangular layer).

to.bottom logical, whether set the high light layer to the bottom in all layers of 'ggtree' object, default is FALSE.

... additional parameters, see also the below and Aesthetics section.

• align control the align direction of the edge of high light rectangular. Options is 'none' (default), 'left', 'right', 'both'. This argument only work when the 'geom_hilight' is plotting using geom_hilight(mapping=aes(...)).
• gradient.direction character, the direction of gradient color, defaults to 'rt' meaning the locations of gradient color is from root to tip, options are 'rt' and 'tr'.
• gradient.length.out integer, desired length of the sequence of gradient color, defaults to 2.
• roundrect.r numeric, the radius of the rounded corners, when roundrect=TRUE, defaults to 0.05.

Details
gem_hilight supports data.frame as input. And aesthetics of layer can be mapped. you can see the Aesthetics section to set parameters.

Value
a list object.

Aesthetics
gem_hilight() understands the following aesthetics for rectangular layer (required aesthetics are in bold):

• node selected node to hight light, it is required.
• colour the colour of margin, defaults to NA.
• fill the colour of fill, defaults to 'steelblue'.
• alpha the transparency of fill, defaults to 0.5.
• extend extend xmax of the rectangle, defaults to 0.
• extendto specify a value, meaning the rectangle extend to, defaults to NULL.
• linetype the line type of margin, defaults to 1.
• linewidth the width of line of margin, defaults to 0.5.
gem_hilight() understands the following aesthethics for encircle layer (required aesthetics are in bold):

• node selected node to hight light, it is required.
• colour the colour of margin, defaults to 'black'.
• fill the colour of fill, defaults to 'steelblue'.
• alpha the transparency of fill, defaults to 0.5.
• expand expands the xspline clade region, defaults to 0.
• spread control the size, when only one point.
• linewidth the width of line of margin, defaults to 0.5.
• linetype the line type of margin, defaults to 1.
• s_shape the shape of the spline relative to the control points, defaults to 0.5.
• s_open whether the spline is a line or a closed shape, defaults to FALSE.

Author(s)
Guangchuang Yu and Shuangbin Xu

References
For more detailed demonstration, please refer to chapter 5.2.2 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.

Examples

library(ggplot2)
set.seed(102)
tree <- rtree(60)
p <- ggtree(tree)
p1 <- p + geom_hilight(node=62) + geom_hilight(node=88, fill="red")
p1
dat <- data.frame(id=c(62, 88), type=c("A", "B"))
p2 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type))
p2
p3 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type), align="left")
p4 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type), align="right")
p5 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type), align="both")
# display the high light layer with gradiental color rectangular.
p6 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type), type = "gradient", alpha=0.68)
p7 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type),
    type = "gradient", gradient.direction="tr", alpha=0.68)
# display the high light layer with round rectangular.
p8 <- p + geom_hilight(data=dat, mapping=aes(node=id, fill=type), type = "roundrect", alpha=0.68)
**Description**

gemo_inset can add subplots to tree by accepting a list of ggplot objects that are ancestral stats or data associated with selected nodes in the tree. These ggplot objects can be any kind of charts or hybrid of these charts.

add subplots as insets in a tree

**Usage**

```r
geom_inset(
 insets,
 width = 0.1,
 height = 0.1,
 hjust = 0,
 vjust = 0,
 x = "node",
 reverse_x = FALSE,
 reverse_y = FALSE
)
```

```r
inset(
 tree_view,
 insets,
 width,
 height,
 hjust = 0,
 vjust = 0,
 x = "node",
 reverse_x = FALSE,
 reverse_y = FALSE
)
```

**Arguments**

- **insets**: a list of ggplot objects, named by node number
- **width**: width of the inset, relative to the range of x-axis, defaults to .1
- **height**: height of the inset, relative to the range of y-axis, defaults to .1
- **hjust**: adjust the horizontal position of the charts, charts will go left if hjust > 0
- **vjust**: adjust the vertical position of the charts, charts will go down if vjust > 0
- **x**: the position where users want to place the charts, one of 'node' (default) and 'branch'
**Details**

Users can also use

**Value**

inset layer
tree view with insets

**Author(s)**

Guangchuang Yu

**References**

For demonstration of this function, please refer to chapter 8.3 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* [http://yulab-smu.top/treedata-book/index.html](http://yulab-smu.top/treedata-book/index.html) by Guangchuang Yu.

---

**Description**

.geom_label2 support aes(subset) via setup_data

**Usage**

```r
geom_label2(
 mapping = NULL,
 data = NULL,
 ...,
 stat = "identity",
 position = "identity",
 family = "sans",
 parse = FALSE,
 nudge_x = 0,
 nudge_y = 0,
 label.padding = unit(0.25, "lines"),
 label.r = unit(0.15, "lines"),
 label.size = 0.25,
)```
Arguments

- **mapping**: Set of aesthetic mappings, defaults to NULL.
- **data**: A layer specific dataset - only needed if you want to override the plot defaults.
- **position**: The position adjustment to use for overlapping points on this layer.
- **family**: “sans” by default, can be any supported font.
- **parse**: if ’TRUE’, the labels will be parsed as expressions, defaults to ’FALSE’.
- **nudge_x**: adjust the horizontal position of the labels.
- **nudge_y**: adjust the vertical position of the labels.
- **label.padding**: Amount of padding around label, defaults to ‘unit(0.25, "lines")’.
- **label.r**: Use to set the radius of rounded corners of the label, defaults to ’unit(0.15, "lines")’.
- **label.size**: Size of label border, in mm, defaults to 0.25.
- **na.rm**: If ”FALSE” (default), missing values are removed with a warning. If ”TRUE”, missing values are silently removed, logical.
- **show.legend**: Whether to show legend, logical, defaults to ”NA”.
- **inherit.aes**: Whether to inherit aesthetic mappings, logical, defaults to ”TRUE”.

Details

’geom_label2’ is a modified version of geom_label, with subset aesthetic supported

Value

label layer

Author(s)

Guangchuang Yu

References

See Also

-.geom_label
Examples

```r
library(ggtree)
set.seed(123)
tr <- rtree(15)
x <- ggtree(tr)
x + geom_label2(aes(label = node, subset = isTip == FALSE))
```

Description

geom layer to draw aligned motif

Usage

```r
geom_motif(mapping, data, on, label, align = "centre", ...)```

Arguments

- `mapping`: aes mapping
- `data`: data
- `on`: gene to center (i.e. set middle position of the on gene to 0)
- `label`: specify a column to be used to label genes
- `align`: where to place gene label, default is 'centre' and can be set to 'left' and 'right'
- `...`: additional parameters

Value

geom layer

Author(s)

Guangchuan Yu
Description

add node label layer for a tree

Usage

```r
gem_nodelab(
 mapping = NULL,
 nudge_x = 0,
 nudge_y = 0,
 geom = "text",
 hjust = 0.5,
 node = "internal",
 ...
)
```

Arguments

- `mapping`: aesthetic mappings, defaults to NULL
- `nudge_x`: horizontal adjustment to nudge labels, defaults to 0
- `nudge_y`: vertical adjustment to nudge labels, defaults to 0
- `geom`: one of 'text', 'shadowtext', 'label', 'image' and 'phylopic'
- `hjust`: horizontal alignment, defaults to 0.5
- `node`: a character indicating which node labels will be displayed, it should be one of 'internal', 'external' and 'all'. If it is set to 'internal' will display internal node labels, 'external' will display the tip labels, and 'all' will display internal node and tip labels.
- `...`: additional parameters, see also the additional parameters of `geom_tiplab()`.

Value

gem layer

Author(s)

Guangchuang Yu

References

For demonstration of this function, please refer to chapter A.4.5 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.
geom_nodelab2

See Also

geom_tiplab()

Description

add node label for circular layout

Usage

geom_nodelab2(
  mapping = NULL,
  nudge_x = 0,
  nudge_y = 0,
  geom = "text",
  hjust = 0.5,
  ...
)

Arguments

mapping   aesthetic mappings, defaults to NULL
nudge_x   horizontal adjustment to nudge labels, defaults to 0
nudge_y   vertical adjustment to nudge labels, defaults to 0
geom      one of 'text', 'shadowtext', 'label', 'image' and 'phylopic'
hjust     horizontal alignment, defaults to 0.5
...       additional parameters, see also the additional parameters of geom_tiplab().

Value

node label layer

Author(s)

Guangchuang Yu
Description

add node point layer to a tree

Usage

geom_nodepoint(
mapping = NULL,
data = NULL,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)

Arguments

mapping Set of aesthetic mapping created by aes(). If inherit.aes = TRUE, the mapping can be inherited from the plot mapping as specified in the call to ggplot().
data The data to be displayed in this layer. If 'NULL' (the default), the data is inherited from the plot data as specified in the call to ggplot().
position Position adjustment.
na.rm logical. If 'FALSE' (default), missing values are removed with a warning. If 'TRUE', missing values are silently removed.
show.legend logical. Should this layer be included in the legends? 'NA', the default, includes if any aesthetics are mapped. 'FALSE' never includes, and 'TRUE' always includes.
inherit.aes logical (defaults to 'TRUE'). If 'FALSE', overrides the default aesthetics, rather then combining with them.
... additional parameters that passed on to this layer. These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3.

Value

node point layer

Author(s)

Guangchuang Yu library(ggtree) tr<- rtree(15) x <- ggtree(tr) x + geom_nodepoint()
References


---

**Description**

`geom_point2` is a modified version of `geom_point` that supports `aes(subset)`

**Usage**

```r
geom_point2(
 mapping = NULL,
 data = NULL,
 stat = "identity",
 position = "identity",
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 ...
)
```

**Arguments**

- **mapping**: Set of aesthetic mapping created by `aes()`. If `inherit.aes = TRUE`, the mapping can be inherited from the plot mapping as specified in the call to `ggplot()`.
- **data**: The data to be displayed in this layer. If 'NULL' (the default), the data is inherited from the plot data as specified in the call to `ggplot()`.
- **stat**: Name of the statistical transformation to be used on the data for this layer.
- **position**: Position adjustment.
- **na.rm**: logical. If 'FALSE' (default), missing values are removed with a warning. If 'TRUE', missing values are silently removed.
- **show.legend**: logical. Should this layer be included in the legends? 'NA', the default, includes if any aesthetics are mapped. 'FALSE' never includes, and 'TRUE' always includes.
- **inherit.aes**: logical (defaults to 'TRUE'). If 'FALSE', overrides the default aesthetics, rather than combining with them.
- **...**: additional parameters that passed on to this layer. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. 
Details

`geom_point2` creates scatterplots, just similar to `ggplot2::geom_point`. It extends the `ggplot2::geom_point` to support filtering via the subset aesthetic mapping (see Aesthetics section).

Value

point layer

Aesthetics

`geom_point2()` understands the following aesthetics

- `subset` logical expression indicating elements or rows to keep: missing values are taken as false; should be in aes()
- `colour` the colour of point, defaults to "black"
- `fill` the colour of fill, defaults to "black"
- `alpha` the transparency of fill, defaults to 1.
- `size` the size of point, defaults to 1.5.
- `shape` specify a shape, defaults to 19.
- `stroke` control point border thickness of point, defaults to 0.5.

Author(s)

Guangchuang Yu

References


For more information about tree visualization, please refer to the online book https://yulab-smu.top/treedata-book/

See Also

`geom_point`; `geom_rootpoint` add point of root; `geom_nodepoint` add points of internal nodes; `geom_tippoint` add points of external nodes (also known as tips or leaves).
Examples

```
library(ggtree)
add point by aes(subset)
tr <- rtree(10)
group tip and node
ggtree(tr) + geom_point2(aes(shape=isTip, color=isTip), size=3)
specify a node to display
ggtree(tr) + geom_point2(aes(subset=(node==15)), shape=21, size=5, fill='green')
specify a tip to display
ggtree(tr) + geom_point2(aes(subset=(label %in% c("t1", "t3"))), shape=21, size=5, fill='green')

color point with continuous variables
library(ggtree)
library(treeio)
library(ggplot2)
beast_file <- system.file("examples/MCC_FluA_H3.tree", package="ggtree")
beast_tree <- read.beast(beast_file)
p <- ggtree(beast_tree) +
 geom_tiplab(hjust = -.1) +
 geom_nodepoint(aes(fill = rate), shape = 21, size = 4) +
 scale_fill_continuous(low = 'blue', high = 'red') +
 theme_tree2() + theme(legend.position = 'right')
p
```

Description

horizontal bar of range (HPD, range etc) on nodes to present uncertainty of evolutionary inference

Usage

gem_range(range, center = "auto", ...)

Arguments

- **range**: range(interval) to be displayed, e.g. "height_0.95_HPD"
- **center**: center of the range, mean, median or auto (default, the center of the range)
- **...**: additional parameter, e.g. color, linewidth, alpha

Value

ggplot layer

Author(s)

Guangchuang Yu
geom_rootedge

Description

display root edge layer for a tree

Usage

geom_rootedge(rootedge = NULL, ...)

Arguments

rootedge

length of rootedge; use phylo$root.edge if rootedge = NULL (default).

...  

additional parameters

Additional parameters can be referred to the following parameters:

• size control the width of rootedge, defaults to 0.5.
• colour color of rootedge, defaults to black.
• linetype the type of line, defaults to 1.
• alpha modify colour transparency, defaults to 1.

Details

geom_rootedge is used to create a rootedge as ggtree doesn’t plot the root edge by default.

Value

ggtree rootedge layer

Author(s)

Guangchuang Yu

References

Examples

```r
library(ggtree)
set.seed(123)
with root edge = 1
tree1 <- read.tree(text='((A:1,B:2):3,C:2):1;')
ggtree(tree1) + geom_tiplab() + geom_rootedge()

without root edge
tree2 <- read.tree(text='((A:1,B:2):3,C:2);')
ggtree(tree2) + geom_tiplab() + geom_rootedge()

setting root edge
tree2$root.edge <- 2
ggtree(tree2) + geom_tiplab() + geom_rootedge()

specify length of root edge for just plotting
this will ignore tree$root.edge
ggtree(tree2) + geom_tiplab() + geom_rootedge(rootedge = 3)
```

## For more detailed demonstration of this function, please refer to chapter A.4.5 of
## *Data Integration, Manipulation and Visualization of Phylogenetic Trees*

---

**geom_rootpoint**

`geom_rootpoint` is used to add root point layer to a tree

**Usage**

```r
geom_rootpoint(
 mapping = NULL,
 data = NULL,
 position = "identity",
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 ...)
```

**Arguments**

- **mapping**: Set of aesthetic mapping created by `aes()`. If `inherit.aes = TRUE`, the mapping can be inherited from the plot mapping as specified in the call to `ggplot()`. 
data  The data to be displayed in this layer. If 'NULL' (the default), the data is inherited from the plot data as specified in the call to ggplot().

position  Position adjustment.

na.rm  logical. If 'FALSE' (default), missing values are removed with a warning. If 'TRUE', missing values are silently removed.

show.legend  logical. Should this layer be included in the legends? 'NA', the default, includes if any aesthetics are mapped. 'FALSE' never includes, and 'TRUE' always includes.

inherit.aes  logical (defaults to 'TRUE'). If 'FALSE', overrides the default aesthetics, rather then combining with them.

...  additional parameters that passed on to this layer. These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3.

Details

geom_rootpoint inherit from geom_point2, and it is used to display and customize the points on the root

Value

root point layer

Author(s)

Guangchuang Yu

References


For more information, please refer to the online book: Data Integration, Manipulation and Visualization of Phylogenetic Trees. http://yulab-smu.top/treedata-book/

See Also

geom_point; geom_rootpoint add point of root; geom_nodepoint add points of internal nodes; geom_tippoint add points of external nodes (also known as tips or leaves).
Examples

```r
library(ggtree)
tr <- rtree(10)
add root point
ggtree(tr) + geom_rootpoint()
ggtree(tr) + geom_rootpoint(size=2, color="red", shape=2)
```

Description

`geom_segment2` support `aes(subset)` via `setup_data`

Usage

```r
geom_segment2(
 mapping = NULL,
 data = NULL,
 stat = "identity",
 position = "identity",
 lineend = "butt",
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 nudge_x = 0,
 arrow = NULL,
 arrow.fill = NULL,
 ...
)
```

Arguments

- `mapping` Set of aesthetic mappings, defaults to `NULL`
- `data` A layer specific dataset - only needed if you want to override the plot defaults.
- `stat` Name of stat to modify data.
- `position` The position adjustment to use for overlapping points on this layer.
- `lineend` Line end style, one of butt (default), round and square.
- `na.rm` If "FALSE" (default), missing values are removed with a warning. If "TRUE", missing values are silently removed, logical.
- `show.legend` Whether to show legend, logical.
- `inherit.aes` Whether to inherit aesthetic mappings, logical, defaults to "TRUE".
- `nudge_x` adjust the horizontal position of the segments.
- `arrow` specification for arrow heads, as created by `arrow()`.
- `arrow.fill` fill color to use for the arrow head (if closed). NULL means use `colour` aesthetic.
- `...` additional parameter
Details

'geom_segment2' is a modified version of geom_segment, with subset aesthetic supported

Value

add segment layer

Author(s)

Guangchuang Yu

See Also

geom_segment

Description

annotate associated taxa (from taxa1 to taxa2, can be Monophyletic, Polyphyletic or Paraphylete
Taxa) with bar and (optional) text label

Usage

geom_strip(
  taxa1, 
  taxa2, 
  label, 
  offset = 0, 
  offset.text = 0, 
  align = TRUE, 
  barsize = 0.5, 
  extend = 0, 
  fontsize = 3.88, 
  angle = 0, 
  geom = "text", 
  hjust = 0, 
  color = "black", 
  fill = NA, 
  family = "sans", 
  parse = FALSE, 
  ... 
)
Arguments

taxa1, taxa2 : add label alongside the bar (optional)
offset, offset.text : offset of bar and text from the clade
align : logical, whether to align bars to the most distant bar, defaults to "TRUE" Note that if "FALSE", the bars might cross the tree
barsize, extend, fontsize, angle : set size of the bar and text
geom : one of 'text' or 'label'
hjust : adjust the horizontal position of the bar
color, fill : set color for bar and label
family : "sans" by default, can be any supported font
parse : logical, whether to parse labels, if "TRUE", the labels will be parsed into expressions, defaults to "FALSE"

Value

ggplot layers

Author(s)

Guangchuang Yu

References

For more detailed demonstration of this function, please refer to chapter 5.2.1 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.

Examples

```r
library(ggtree)
tr <- rtree(15)
x <- ggtree(tr)
x + geom_strip(13, 1, color = "red") + geom_strip(3, 7, color = "blue")
```
Description

annotate associated taxa (from taxa1 to taxa2, can be Monophyletic, Polyphyletic or Paraphyletic Taxa) with bar and (optional) text label or image

Usage

```
geom_striplab(
 taxa1 = NULL,
 taxa2 = NULL,
 label = NULL,
 data = NULL,
 mapping = NULL,
 geom = "text",
 parse = FALSE,
 ...
)
```

Arguments

taxa1 can be label or node number

taxa2 can be label or node number

label character, character to be showed, when data and mapping is NULL, it is required.

data data.frame, the data to be displayed in the annotation, default is NULL.

mapping Set of aesthetic mappings, default is NULL. The detail see the following explanation.

geom character, one of 'text', 'label', 'shadowtext', 'image' and 'phylopic', default is 'text', and the parameter see the Aesthetics For Specified Geom.

pars logical, whether parse label to emoji font, default is FALSE.

additional parameters can refer the following parameters. ##'

- offset distance bar and tree, offset of bar and text from the clade, default is 0.
- offset.text distance bar and text, offset of text from bar, default is 0.
- align logical, whether align clade lab, default is FALSE.
- extend numeric, extend the length of bar, default is 0.
- angle numeric or 'auto', if angle is auto, the angle of text will be calculated automatically, which is useful for the circular etc layout, default is 0.
- horizontal logical, whether set label to horizontal, default is TRUE.
geom_striplab

• barsize the width of line, default is 0.5.
• barcolour the colour of line, default is 'black'.
• fontsize the size of text, default is 3.88.
• textcolour the colour of text, default is 'black'.
• imagesize the size of image, default is 0.05.
• imagecolor the colour of image, default is NULL, when geom="phylopic", it should be required.

The parameters also can be set in mapping, when data is provided. Note: the barsize, barcolour, fontsize, textcolour, imagesize and imagecolor should not be set in mapping (aesthetics). When the color and size are not be set in mapping, user can modify them to adjust the attributes of specified geom.

Aesthetics For Specified Geom

geom_striplab() understands the following aesthetics for geom="text"(required aesthetics are in bold):

• taxa1 selected tip label or tip node, it is required.
• taxa2 selected another tip label or tip node, it is required.
• label labels to be shown, it is required.
• colour the colour of text, default is "black".
• size the size of text, default is 3.88.
• angle the angle of text, default is 0.
• hjust A numeric vector specifying horizontal justification, default is 0.
• vjust A numeric vector specifying vertical justification, default is 0.5.
• alpha the transparency of text, default is NA.
• family the family of text, default is 'sans'.
• fontface the font face of text, default is 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineheight The height of a line as a multiple of the size of text, default is 1.2.

when the colour, size are not be set in mapping, and user want to modify the colour of text, they should use textcolour, fontsize to avoid the confusion with bar layer annotation.

geom_striplab() understands the following aesthethics for geom="label" (required aesthetics are in bold):

• taxa1 selected node to hight light, it is required.
• taxa2 selected another tip label or tip node, it is required.
• label labels to be shown, it is required.
• colour the colour of text, default is "black".
• fill the background colour of the label, default is "white".
• size the size of text, default is 3.88.
• angle the angle of text, default is 0.
• hjust A numeric vector specifying horizontal justification, default is 0.
• vjust A numeric vector specifying vertical justification, default is 0.5.
• alpha the transparency of text, default is NA.
• family the family of text, default is 'sans'.
• fontface the font face of text, default is 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineHeight The height of a line as a multiple of the size of text, default is 1.2.

when the colour, size are not be set in mapping, and user want to modify the colour of text, they should use textcolour, fontsize to avoid the confusion with bar layer annotation.

geom_striplab() understands the following aesthetics for geom="shadowtext" (required aesthetics are in bold):

• taxa1 selected node to high light, it is required.
• taxa2 selected another tip label or tip node, it is required.
• label labels to be shown, it is required.
• colour the colour of text, default is "black".
• bg.colour the background colour of text, default is 'black'.
• bg.r the width of background text, default is 0.1.
• size the size of text, default is 3.88.
• angle the angle of text, default is 0.
• hjust A numeric vector specifying horizontal justification, default is 0.
• vjust A numeric vector specifying vertical justification, default is 0.5.
• alpha the transparency of text, default is NA.
• family the family of text, default is 'sans'.
• fontface the font face of text, default is 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineHeight The height of a line as a multiple of the size of text, default is 1.2.

when the colour, size are not be set in mapping, and user want to modify the colour of text, they should use textcolour, fontsize to avoid the confusion with bar layer annotation.

geom_striplab() understands the following aesthetics for geom="image" or geom="phylopic" (required aesthetics are in bold):

• taxa1 selected node to hight light, it is required.
• taxa2 selected another tip label or tip node, it is required.
• label labels to be shown, it is required.
• image the image to be annotated, when geom="phylopic", the uid of phylopic databases, it is required.
• colour the color of image, default is NULL.
• size the size of image, default is 0.05.
• alpha the alpha of image, default is 0.8.

when the colour, size are not be set in mapping, and user want to modify the colour of image, they should use imagecolour, imagesize to avoid the confusion with bar layer annotation.
Examples

```r
set.seed(123)
tr <- rtree(10)
dt <- data.frame(ta1=c("t5", "t1"), ta2=c("t6", "t3"), group=c("A", "B"))
p <- ggtree(tr) + geom_tiplab()
p2 <- p + geom_striplab(
 data = dt,
 mapping = aes(taxa1 = ta1, taxa2 = ta2,
 label = group, color=group),
 align = TRUE,
 show.legend = FALSE
)
p2
```

---

**geom_taxalink**  
*link between taxa*

**Description**

`geom_taxalink` supports `data.frame` as input, the `colour`, `linewidth`, `linetype` and `alpha` can be mapped. When the data was provided, the mapping should be also provided, which `taxa1` and `taxa2` should be mapped created by `aes`, `aes_` or `aes_string`. In addition, the `hratio`, control the height of curve line, when tree layout is circular, default is 1. `ncp`, the number of control points used to draw the curve, more control points creates a smoother curve, default is 1. They also can be mapped to a column of data.

**Usage**

```r
geom_taxalink(
 data = NULL,
 mapping = NULL,
 taxa1 = NULL,
 taxa2 = NULL,
 offset = NULL,
 outward = "auto",
 ...)
```

**Arguments**

- `data`  
data.frame, The data to be displayed in this layer, default is NULL.
- `mapping`  
Set of aesthetic mappings, default is NULL.
- `taxa1`  
can be label or node number.
- `taxa2`  
can be label or node number.
- `offset`  
numeric, control the shift of curve line (the ratio of axis value, range is "(0-1)"), default is NULL.
outward logical, control the orientation of curve when the layout of tree is circular, fan or other layout in polar coordinate, default is "auto", meaning it will automatically.

..., additional parameter.

**Value**

a list object.

**Aesthetics**

`geom_taxalink()` understands the following aesthetics (required aesthetics are in bold):

- `taxa1` label or node number of tree.
- `taxa2` label or node number of tree.
- `group` group category of link.
- `colour` control the color of line, default is black.
- `linetype` control the type of line, default is 1 (solid).
- `linewidth` control the width of line, default is 0.5.
- `curvature` control the curvature of line, default is 0.5, it will be created automatically in polar coordinate.
- `hratio` control the height of curve line, default is 1.
- `ncp` control the smooth of curve line, default is 1.

---

**Description**

`geom_text2` support aes(subset) via setup_data

**Usage**

```r
geom_text2(
 mapping = NULL,
 data = NULL,
 ...,
 stat = "identity",
 position = "identity",
 family = "sans",
 parse = FALSE,
 na.rm = TRUE,
 show.legend = NA,
 inherit.aes = TRUE,
 nudge_x = 0,
 nudge_y = 0,
 check_overlap = FALSE
)
```
Arguments

- mapping: the aesthetic mapping
- data: A layer specific dataset - only needed if you want to override the plot defaults.
- ...: other arguments passed on to 'layer'
- stat: Name of stat to modify data
- position: The position adjustment to use for overlapping points on this layer
- family: sans by default, can be any supported font
- parse: if TRUE, the labels will be passed into expressions
- na.rm: logical
- show.legend: logical
- inherit.aes: logical
- nudge_x: horizontal adjustment
- nudge_y: vertical adjustment
- check_overlap: if TRUE, text that overlaps previous text in the same layer will not be plotted

Value

text layer

Author(s)

Guangchuang Yu

See Also

geom_text

des

Description

add tip label layer for a tree

Usage

geom_tiplab(
  mapping = NULL,
  hjust = 0,
  align = FALSE,
  linetype = "dotted",
  linesize = 0.5,
  geom = "text",
  offset = 0,
  as_ylab = FALSE,
  ...)
)
Arguments

mapping     aes mapping
hjust       horizontal adjustment, defaults to 0
align       if TRUE, align all tip labels to the longest tip by adding padding characters to
            the left side of tip labels, defaults to "FALSE" with a line connecting each tip
            and its corresponding label, defaults to "FALSE"
linetype    set linetype of the line if align = TRUE, defaults to "dotted"
linesize    set line width if align = TRUE, defaults to 0.5
geom        one of 'text', 'label', 'shadowtext', 'image' and 'phylopic'
offset      tiplab offset, horizontal adjustment to nudge tip labels, defaults to 0
as_ylab     display tip labels as y-axis label, only works for rectangular and dendrogram
             layouts, defaults to "FALSE"
...          additional parameter

The following parameters can refer the following parameters.
The following parameters for geom="text".

• size control the size of tip labels, defaults to 3.88.
• colour control the colour of tip labels, defaults to "black".
• angle control the angle of tip labels, defaults to 0.
• vjust A numeric vector specifying vertical justification, defaults to 0.5.
• alpha the transparency of text, default to NA.
• family the family of text, defaults to 'sans'.
• fontface the font of text, defaults to 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineheight The height of a line as a multiple of the size of text, defaults to 1.2.
• nudge_x horizontal adjustment to nudge labels, defaults to 0.
• nudge_y vertical adjustment to nudge labels, defaults to 0.
• check_overlap if TRUE, text that overlaps previous text in the same layer
  will not be plotted.
• parse if TRUE, the labels will be parsed into expressions, if it is 'emoji',
  the labels will be parsed into emojifont.

The following parameters for geom="label".

• size the size of tip labels, defaults to 3.88.
• colour the colour of tip labels, defaults to "black".
• fill the colour of rectangular box of labels, defaults to "white".
• vjust numeric vector specifying vertical justification, defaults to 0.5.
• alpha the transparency of labels, defaults to NA.
• family the family of text, defaults to 'sans'.
• fontface the font of text, defaults to 1 (plain), others are 2 (bold), 3 (italic), 4 (bold.italic).
• lineheight The height of a line as a multiple of the size of text, defaults to 1.2.
• `nudge_x` horizontal adjustment to nudge labels, defaults to 0.
• `nudge_y` vertical adjustment, defaults to 0.
• `check.overlap` if TRUE, text that overlaps previous text in the same layer will not be plotted.
• `parse` if TRUE, the labels will be parsed into expressions, if it is ‘emoji’, the labels will be parsed into emojifont.
• `label.padding` Amount of padding around label, defaults to `unit(0.25, "lines")`.
• `label.r` Radius of rounded corners, defaults to `unit(0.15, "lines")`.
• `label.size` Size of label border, in mm, defaults to 0.25.
The following parameters for `geom="shadowtext"`, some parameters are like to `geom="text"`.
  • `bg.colour` the background colour of text, defaults to "black".
  • `bg.r` the width of background of text, defaults to 0.1.
The following parameters for `geom="image"` or `geom="phylopic"`.
  • `image` the image file path for `geom='image'`, but when `geom='phylopic'`, it should be the uid of phylopic databases.
  • `size` the image size, defaults to 0.05.
  • `colour` the color of image, defaults to NULL.
  • `alpha` the transparency of image, defaults to 0.8.
The following parameters for the line when `align = TRUE`.
  • `colour` the colour of line, defaults to 'black'.
  • `alpha` the transparency of line, defaults to NA.
  • `arrow` specification for arrow heads, as created by arrow(), defaults to NULL.
  • `arrow.fill` fill color to usse for the arrow head (if closed), defaults to 'NULL', meaning use 'colour' aesthetic.

Details

'geom_tiplab' not only supports using text or label geom to display tip labels, but also supports image geom to label tip with image files or phylopics.

For adding tip labels to a tree with circular layout, 'geom_tiplab' will automatically adjust the angle of the tip labels to the tree by internally calling 'geom_tiplab2'.

Value

tip label layer

Author(s)

Guangchuang Yu

References

Examples

```r
require(ape)
tr <- rtree(10)
ggtree(tr) + geom_tiplab()
```

---

### Description

add tip label for circular layout

### Usage

```r
geom_tiplab2(mapping = NULL, hjust = 0, ...)
```

### Arguments

- `mapping`: aes mapping
- `hjust`: horizontal adjustment, defaults to 0
- `...`: additional parameter, see `geom_tiplab`

### Details

'geom_tiplab2' will automatically adjust the angle of the tip labels to the tree with circular layout

### Value

tip label layer

### Author(s)

Guangchuang Yu

### References

https://groups.google.com/forum/#!topic/bioc-ggtree/o35PV3iHO-0

### See Also

geom_tiplab

### Examples

```r
library(ggtree)
set.seed(123)
tr <- rtree(10)
ggtree(tr, layout = "circular") + geom_tiplab2()
```
Description

add tip point layer for a tree

Usage

```r
geom_tippoint(
 mapping = NULL,
 data = NULL,
 position = "identity",
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 ...
)
```

Arguments

- **mapping**
  Set of aesthetic mapping created by `aes()`. If `inherit.aes = TRUE`, the mapping can be inherited from the plot mapping as specified in the call to `ggplot()`.

- **data**
  The data to be displayed in this layer. If 'NULL' (the default), the data is inherited from the plot data as specified in the call to `ggplot()`.

- **position**
  Position adjustment.

- **na.rm**
  logical. If 'FALSE' (default), missing values are removed with a warning. If 'TRUE', missing values are silently removed.

- **show.legend**
  logical. Should this layer be included in the legends? 'NA', the default, includes if any aesthetics are mapped. 'FALSE' never includes, and 'TRUE' always includes.

- **inherit.aes**
  logical (defaults to 'TRUE'). If 'FALSE', overrides the default aesthetics, rather then combining with them.

- **...**
  additional parameters that passed on to this layer. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`.

Value

tip point layer

Author(s)

Guangchuang Yu
References


Examples

```r
library(ggtree)
tr<- rtree(15)
x <- ggtree(tr)
x + geom_tippoint()
```

Description

add tree layer

Usage

```r
geom_tree(
mapping = NULL,
data = NULL,
layout = "rectangular",
multiPhylo = FALSE,
continuous = "none",
position = "identity",
...)
```

Arguments

- `mapping` aesthetic mapping
- `data` data of the tree
- `layout` one of 'rectangular', 'dendrogram', 'slanted', 'ellipse', 'roundrect', 'fan', 'circular', 'inward_circular', 'radial', 'equal_angle', 'daylight' or 'ape'
- `multiPhylo` logical, whether input data contains multiple phylo class, defaults to "FALSE".
- `continuous` character, continuous transition for selected aesthetic ('size' or 'color'('colour')). It should be one of 'color' (or 'colour'), 'size', 'all' and 'none', default is 'none'
- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function, default is "identity".
- `...` additional parameter
  - `nsplit` integer, the number of branch blocks divided when 'continuous' is not "none", default is 200.
**Value**

tree layer

**Aesthetics**

geom_tree() understands the following aesthetics:

- **color** character, control the color of line, default is black (continuous is "none").
- **linetype** control the type of line, default is 1 (solid).
- **linewidth** numeric, control the width of line, default is 0.5 (continuous is "none").

**Author(s)**

Yu Guangchuang

**References**

For demonstration of this function, please refer to chapter 4.2.1 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* [http://yulab-smu.top/treedata-book/index.html](http://yulab-smu.top/treedata-book/index.html) by Guangchuang Yu.

**Examples**

tree <- rtree(10)
ggplot(tree) + geom_tree()

```
geom_tree2 geom_tree2
```

**Description**

add tree layer

**Usage**

geom_tree2(layout = "rectangular", ...)

**Arguments**

- **layout** one of 'rectangular', 'slanted', 'circular', 'radial' or 'unrooted'
- ... additional parameter

**Value**

tree layer

**Author(s)**

Yu Guangchuang
Description

add tree scale to a tree

Usage

geom_treescale(
  x = NULL,  
  y = NULL,  
  width = NULL,  
  offset = NULL,  
  offset.label = NULL,  
  label = NULL,  
  color = "black",  
  linesize = 0.5,  
  fontsize = 3.88,  
  family = "sans"
)

Arguments

x  set x position of the scale
y  set y position of the scale
width  set the length of the tree scale
offset  set offset of text to line, defaults to NULL
offset.label  set offset of the scale title to line.
label  set the title of tree scale, defaults to NULL.
color  set color of the scale
linesize  set size of line
fontsize  set size of text
family  'sans' by default, can be any supported font

Details

'geom_treescale' automatically adds a scale bar for evolutionary distance

Value

ggplot layers

Author(s)

Guangchuang Yu
References

For demonstration of this function, please refer to chapter 4.3.1 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* [http://yulab-smu.top/treedata-book/index.html](http://yulab-smu.top/treedata-book/index.html) by Guangchuang Yu.

**Description**

zoom selected clade of a tree

**Usage**

```r
geom_zoom_clade(node, xexpand = NULL)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>internal node number to zoom in its corresponding clade</td>
</tr>
<tr>
<td>xexpand</td>
<td>numeric, extend x, meaning the ratio of range of the xlim of the original tree, defaults to NULL.</td>
</tr>
</tbody>
</table>

**Details**

'geom_zoom_clade' zooms in on a selected clade of a tree, while showing its on the full view of tree as a separated panel for reference

**Value**

updated tree view

**Author(s)**

Guangchuang Yu
get.path

Description
path from start node to end node

Usage
get.path(phylo, from, to)

Arguments
phylo phylo object
from start node
to end node

Value
node vector

Author(s)
Guangchuang Yu

getNodeAngle.df

description
Get the angle between the two nodes specified.

Usage
getNodeAngle.df(df, origin_node_id, node_id)

Arguments
df tree data.frame
origin_node_id origin node id number
node_id end node id number

Value
angle in range [-1, 1], i.e. degrees/180, radians/pi
getNodesBreadthFirst.df

Description

Get the nodes of tree from root in breadth-first order.

Usage

getNodesBreadthFirst.df(df)

Arguments

- df: tree data.frame

Value

list of node id’s in breadth-first order.

getSubtree

Description

Get all children of node from tree, including start_node.

Usage

getSubtree(tree, node)

Arguments

- tree: ape phylo tree object
- node: is the tree node id from which the tree is derived.

Value

list of all child node id’s from starting node.
getSubtree.df

Description
Get all children of node from df tree using breath-first.

Usage
getSubtree.df(df, node)

Arguments
- df: tree data.frame
- node: id of starting node.

Value
list of all child node id’s from starting node.

getSubtreeUnrooted

Description
Get all subtrees of specified node. This includes all ancestors and relatives of node and return named list of subtrees.

Usage
getSubtreeUnrooted(tree, node)

Arguments
- tree: ape phylo tree object
- node: is the tree node id from which the subtrees are derived.

Value
named list of subtrees with the root id of subtree and list of node id’s making up subtree.
**getSubtreeUnrooted**

**Description**

Get all subtrees of node, as well as remaining branches of parent (ie, rest of tree structure as subtree) return named list of subtrees with list name as starting node id.

**Usage**

```
getSubtreeUnrooted(df, node)
```

**Arguments**

- `df`  
  tree data.frame
- `node`  
  is the tree node id from which the subtrees are derived.

**Value**

named list of subtrees with the root id of subtree and list of node id’s making up subtree.

---

**getTreeArcAngles**

**Description**

Find the right (clockwise rotation, angle from +ve x-axis to furthest subtree nodes) and left (anti-clockwise angle from +ve x-axis to subtree) returning arc angle in \([0, 2]\) (0 to 360) domain.

**Usage**

```
getTreeArcAngles(df, origin_id, subtree)
```

**Arguments**

- `df`  
  tree data.frame
- `origin_id`  
  node id from which to calculate left and right hand angles of subtree.
- `subtree`  
  named list of root id of subtree (node) and list of node ids for given subtree (subtree).

**Value**

named list with right and left angles in range \([0, 2]\) i.e 1 = 180 degrees, 1.5 = 270 degrees.
get_clade_position

Description
get position of clade (xmin, xmax, ymin, ymax)

Usage
get_clade_position(treeview, node)

Arguments
treeview
tree view
nodeselected node

Value
data.frame

Author(s)
Guangchuang Yu

get_heatmap_column_position

Description
return a data.frame that contains position information for labeling column names of heatmap pro-
duced by gheatmap function

Usage
get_heatmap_column_position(treeview, by = "bottom")

Arguments
treeviewoutput of gheatmap
byone of 'bottom' or 'top'

Value
data.frame
get_taxa_name

Author(s)
Guangchuang Yu

Description
get taxa name of a selected node (or tree if node=NULL) sorted by their position in plotting

Usage
get_taxa_name(tree_view = NULL, node = NULL)

Arguments
tree_view tree view (i.e. the ggtree object). If tree_view is NULL, the last ggplot object will be used.
node internal node number to specify a clade. If NULL, using the whole tree

Details
This function extract an ordered vector of the tips from selected clade or the whole tree based on the ggtree() plot.

Value
ordered taxa name vector

Author(s)
Guangchuang Yu

Examples
tree <- rtree(30)
p <- ggtree(tree)
get_taxa_name(p)
**Description**

drawing phylogenetic trees from list of phylo objects

**Usage**

```r
ggdensitree(
 data = NULL,
 mapping = NULL,
 layout = "slanted",
 tip.order = "mode",
 align.tips = TRUE,
 jitter = 0,
 ...)
```

**Arguments**

- `data` a list of phylo objects or any object with an as.phylo and fortify method
- `mapping` aesthetic mapping
- `layout` one of 'slanted', 'rectangular', 'fan', 'circular' or 'radial' (default: 'slanted')
- `tip.order` the order of the tips by a character vector of taxa names; or an integer, N, to order the tips by the order of the tips in the Nth tree; 'mode' to order the tips by the most common order; 'mds' to order the tips based on MDS of the path length between the tips; or 'mds_dist' to order the tips based on MDS of the distance between the tips (default: 'mode')
- `align.tips` TRUE (default) to align trees by their tips and FALSE to align trees by their root
- `jitter` deviation to jitter tips
- `...` additional parameters passed to fortify, ggtree and geom_tree

**Details**

The trees plotted by `ggdensitree()` will be stacked on top of each other and the structures of the trees will be rotated to ensure the consistency of the tip order.

**Value**

tree layer

**Author(s)**

Yu Guangchuang, Bradley R. Jones
References

For more detailed demonstration of this function, please refer to chapter 4.4.2 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* [http://yulab-smu.top/treedata-book/index.html](http://yulab-smu.top/treedata-book/index.html) by Guangchuang Yu.

Examples

```r
require(ape)
require(dplyr)
require(tidyr)

Plot multiple trees with aligned tips
trees <- list(read.tree(text="((a:1,b:1):1.5,c:2.5);"), read.tree(text="((a:1,c:1):1,b:2);"));
ggdensitree(trees) + geom_tiplab()

Plot multiple trees with aligned tips with tip labels and separate tree colors
trees.fort <- list(trees[[1]] %>% fortify %>% mutate(tree="a"), trees[[2]] %>% fortify %>% mutate(tree="b"));
ggdensitree(trees.fort, aes(colour=tree)) + geom_tiplab(colour='black')

Generate example data
set.seed(1)
random.trees <- rmtree(5, 10)
time.trees <- lapply(seq_along(random.trees), function(i) {
 tree <- random.trees[[i]]
 tree$tip.label <- paste0("t", 1:10)
 dates <- estimate.dates(tree, 1:10, mu=1, nsteps=1)
 tree$edge.length <- dates[tree$edge[, 2]] - dates[tree$edge[, 1]]
 fortify(tree) %>% mutate(tree=factor(i, levels=as.character(1:10)))
})

Plot multiple trees with aligned tips from multiple time points
ggdensitree(time.trees, aes(colour=tree), tip.order=paste0("t", 1:10)) + geom_tiplab(colour='black')

Read example data
eexample.trees <- read.tree(system.file("examples", "ggdensitree_example.tree", package="ggtree"))

Compute OTU
group <- list(A = c("a.t1", "a.t2", "a.t3", "a.t4"),
 B = c("b.t1", "b.t2", "b.t3", "b.t4"),
 C = c("c.t1", "c.t2", "c.t3", "c.t4"))

Plot multiple trees colored by OTU
ggdensitree(otu.trees, aes(colour=group), alpha=1/6, tip.order='mds') + scale_colour_manual(values=c("black", "red", "green", "blue"))
```
**Description**

drawing phylogenetic tree from phylo object

**Usage**

ggtree(
  tr,
  mapping = NULL,
  layout = "rectangular",
  open.angle = 0,
  mrsd = NULL,
  as.Date = FALSE,
  yscale = "none",
  yscale_mapping = NULL,
  ladderize = TRUE,
  right = FALSE,
  branch.length = "branch.length",
  root.position = 0,
  xlim = NULL,
  layout.params = list(),
  hang = 0.1,
  ...
)

**Arguments**

- **tr**  
  phylo object
- **mapping**  
  aesthetic mapping
- **layout**  
  one of 'rectangular', 'dendrogram', 'slanted', 'ellipse', 'roundrect', 'fan', 'circular', 'inward_circular', 'radial', 'equal_angle', 'daylight' or 'ape'
- **open.angle**  
  open angle, only for 'fan' layout
- **mrsd**  
  most recent sampling date
- **as.Date**  
  logical whether using Date class in time tree
- **yscale**  
  y scale
- **yscale_mapping**  
  yscale mapping for category variable
- **ladderize**  
  logical (default TRUE). Should the tree be re-organized to have a 'ladder' aspect?
- **right**  
  logical. If ladderize = TRUE, should the ladder have the smallest clade on the right-hand side? See `ape::ladderize()` for more information.
- **branch.length**  
  variable for scaling branch, if 'none' draw cladogram
- **root.position**  
  position of the root node (default = 0)
**xlim**

x limits, only works for 'inward_circular' layout

**layout.params**

list, the parameters of layout, when layout is a function.

**hang**

numeric The fraction of the tree plot height by which labels should hang below the rest of the plot. A negative value will cause the labels to hang down from 0. This parameter only work with the 'dendrogram' layout for 'hclust' like class, default is 0.1.

... additional parameter

some dot arguments:

• nsplit integer, the number of branch blocks divided when 'continuous' is not "none", default is 200.

**Value**

tree

**Author(s)**

Yu Guangchuang

**References**


**See Also**

geom_tree()

**Examples**

```r
require(ape)
tr <- rtree(10)
ggtree(tr)
```
Description
append a heatmap of a matrix to the right side of a phylogenetic tree

Usage
gheatmap(
P, data, offset = 0, width = 1, low = "green", high = "red", color = "white", colnames = TRUE, colnames_position = "bottom", colnames_angle = 0, colnames_level = NULL, colnames_offset_x = 0, colnames_offset_y = 0, font.size = 4, family = "", hjust = 0.5, legend_title = "value", custom_column_labels = NULL)

Arguments

- **p**: tree view
- **data**: matrix or data.frame
- **offset**: set offset of the heatmap to tree
- **width**: total width of heatmap, compare to width of tree, defaults to 1, which means they are of the same length
- **low**: set color of the lowest value, defaults to "green"
- **high**: set color of the highest value, defaults to "red"
- **color**: set color of heatmap cell border, defaults to "white"
- **colnames**: logical, whether to add matrix colnames, defaults to "TRUE"
- **colnames_position**: set the position of the colnames, one of 'bottom' (default) or 'top'
- **colnames_angle**: set the angle of colnames
colnames_level  set levels of colnames
colnames_offset_x  set x offset for colnames
colnames_offset_y  set y offset for colnames
font.size  set font size of matrix colnames
family  font of matrix colnames, can be any supported font
hjust  adjust horizontal position of column names (0: align left, 0.5: align center (default), 1: align right)
legend_title  title of fill legend
custom_column_labels  instead of using the colnames from the input matrix/data.frame, input a custom vector to be set as column labels

Value

  tree view

Author(s)

  Guangchuang Yu

References

  For demonstration of this function, please refer to chapter 7.3 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.

gzoom

gzoom method

description

gzoom method

gzoom method

zoom selected subtree

Usage

gzoom(object, focus, subtree = FALSE, widths = c(0.3, 0.7), ...)

## S4 method for signature 'ggtree'
gzoom(object, focus, widths = c(0.3, 0.7), xmax_adjust = 0)

## S4 method for signature 'treedata'
gzoom(object, focus, subtree = FALSE, widths = c(0.3, 0.7))

## S4 method for signature 'phylo'
gzoom(object, focus, subtree = FALSE, widths = c(0.3, 0.7))

### Arguments

- **object**: supported tree objects
- **focus**: selected tips
- **subtree**: logical
- **widths**: widths
- **...**: additional parameter
- **xmax_adjust**: adjust xmax (xlim[2])

### Value

- figure

---

gzoom.phylo  gzoom

### Description

plots simultaneously a whole phylogenetic tree and a portion of it.

### Usage

gzoom.phylo(phy, focus, subtree = FALSE, widths = c(0.3, 0.7))

### Arguments

- **phy**: phylo object
- **focus**: selected tips
- **subtree**: logical
- **widths**: widths

### Value

- a list of ggplot object

### Author(s)

- ygc
**Description**

**hexexpand**

**vexpand**

expand xlim (ylim) by ratio of x (y) axis range

**Usage**

hexexpand(ratio, direction = 1)

vexpand(ratio, direction = 1)

ggexpand(ratio, direction = 1, side = "hv")

**Arguments**

- **ratio**: expand x (y) axis limits by amount of xrange (yrange) * ratio
- **direction**: expand x axis limit at right hand side if direction is 1 (default), or left hand side if direction is -1
- **side**: one of 'h' for horizontal and 'v' for vertical or 'hv' for both (default).

**Value**

ggexpand object

**Author(s)**

Guangchuang Yu

**Examples**

```r
x <- rtree(20)
x$tip.label <- paste0('RRRRREEEEEEAAAAALLLLYY_Long_Label', x$tip.label)
p1 <- ggtree(x) + geom_tiplab()
p1 + ggexpand(1.5, side = "h")
```
label_pad

Padding taxa labels

Description

This function adds padding characters to the left side of taxa labels, adjust their length to the longest label.

Usage

label_pad(label, justify = "right", pad = ".")

Arguments

label    taxa label
justify   should a character vector be right-justified (default), left-justified, centred or left alone.
pad      padding character (defaults to dots)

Value

Taxa labels with padding characters added

Author(s)

Guangchuang Yu and Yonghe Xia

References

https://groups.google.com/g/bioc-ggtree/c/INJ0Nfkq3b0/m/lXefnfV5AQAJ

Examples

library(ggtree)
set.seed(2015-12-21)
tree <- rtree(5)
tree$tip.label[2] <- "long string for test"
label_pad(tree$tip.label)
**layoutDaylight**

*Equal daylight layout method for unrooted trees.*

**Description**

```
@title
```

**Usage**

```
layoutDaylight(model, branch.length, MAX_COUNT = 5)
```

**Arguments**

- **model**: tree object, e.g. phylo or treedata
- **branch.length**: set to 'none' for edge length of 1. Otherwise the phylogenetic tree edge length is used.
- **MAX_COUNT**: the maximum number of iterations to run (default 5)

**Value**

tree as data.frame with equal angle layout.

**References**

The following algorithm aims to implement the vague description of the "Equal-daylight Algorithm" in "Inferring Phylogenies" pp 582-584 by Joseph Felsenstein.

- Leave are subtrees with no children
- Initialise tree using equal angle algorithm
- `tree_df = equal_angle(tree)`
- `nodes = get list of nodes in tree_df breadth-first`
- `nodes = remove tip nodes`.

---

**layoutEqualAngle**

*layoutEqualAngle*

**Description**

'Equal-angle layout algorithm for unrooted trees'

**Usage**

```
layoutEqualAngle(model, branch.length = "branch.length")
```
### Arguments
- **model**
  - tree object, e.g. phylo or treedata
- **branch.length**
  - set to ‘none’ for edge length of 1. Otherwise the phylogenetic tree edge length is used.

### Value
- tree as data.frame with equal angle layout.

### References
- "Inferring Phylogenies" by Joseph Felsenstein.

### Description
- transform circular/fan layout to rectangular layout
- transform rectangular layout to circular layout
- transform rectangular/circular layout to inward circular layout
- transform rectangular/circular layout to fan layout
- transform rectangular layout to dendrogram layout

### Usage
- `layout_rectangular()`
- `layout_circular()`
- `layout_inward_circular(xlim = NULL)`
- `layout_fan(angle = 180)`
- `layout_dendrogram()`

### Arguments
- **xlim**
  - setting x limits, which will affect the center space of the tree
- **angle**
  - open tree at specific angle

### Author(s)
- Guangchuang Yu
Examples

```r
tree <- rtree(20)
p <- ggtree(tree, layout = "circular") + layout_rectangular()
tree <- rtree(20)
p <- ggtree(tree)
p + layout_circular()
tree <- rtree(20)
p <- ggtree(tree)
p + layout_inward_circular(xlim=4) + geom_tiplab(hjust=1)
tree <- rtree(20)
p <- ggtree(tree)
p + layout_fan(angle=90)
tree <- rtree(20)
p <- ggtree(tree)
p + p + layout_dendrogram()
```

**Description**

visualize phylogenetic tree with multiple sequence alignment

**Usage**

```r
msaplot(
 p,
 fasta,
 offset = 0,
 width = 1,
 color = NULL,
 window = NULL,
 bg_line = TRUE,
 height = 0.8
)
```

**Arguments**

- `p`: tree view
- `fasta`: fasta file that contains multiple sequence alignment information
- `offset`: set the offset of MSA to tree
- `width`: total width of alignment, compare to width of tree, defaults to 1, which means they are of the same length
- `color`: set color of the tree
- `window`: specific a slice of alignment to display
- `bg_line`: whether to add background line in alignment, defaults to "TRUE"
- `height`: height ratio of sequence, defaults to 0.8
multiplot

Value

tree view

Author(s)

Guangchuang Yu

References

For demonstration of this function, please refer to chapter 7.4 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.

Description

plot multiple ggplot objects in one page

Usage

multiplot(
  ..., 
  plotlist = NULL, 
  ncol, 
  widths = rep_len(1, ncol), 
  labels = NULL, 
  label_size = 5 
)

Arguments

... plots
plotlist plot list
ncol set the number of column to display the plots
widths the width of each plot
labels set labels for labeling the plots
label_size set font size of the label

Value

plot

Author(s)

Guangchuang Yu
**nodebar**

**Description**

Generate a list of bar charts for results of ancestral state reconstruction.

**Usage**

```r
nodebar(data, cols, color, alpha = 1, position = "stack")
```

**Arguments**

- `data`: a data.frame of stats with an additional column of node number named "node".
- `cols`: columns of the data.frame that store the stats.
- `color`: set color of bars.
- `alpha`: set transparency of the charts.
- `position`: position of bars, if 'stack' (default) make bars stacked atop one another, 'dodge' make them dodged side-to-side.

**Value**

List of ggplot objects.

**Author(s)**

Guangchuang Yu

**nodepie**

**Description**

Generate a list of pie charts for results of ancestral state reconstruction.

**Usage**

```r
nodepie(
 data,
 cols,
 color,
 alpha = 1,
 outline.color = "transparent",
 outline.size = 0
)
```
open_tree

Arguments

data a data.frame of stats with an additional column of node number named "node"
cols columns of the data.frame that store the stats
color set color of bars
alpha set transparency of the charts
outline.color color of outline
outline.size size of outline

Value

list of ggplot objects

Author(s)

Guangchuang Yu

Description

transform a tree in either rectangular or circular layout into the fan layout that opens with a specific angle

Usage

open_tree(treeview, angle)

Arguments

treeview tree view in rectangular/circular layout
angle open the tree at a specific angle

Value

updated tree view

Author(s)

Guangchuang Yu

Examples

tree <- rtree(15)
p <- ggtree(tree) + geom_tiplab()
open_tree(p, 180)
range_format

range_format  range_format

Description

format a list of range (HPD, CI, etc that has length of 2)

Usage

range_format(x, trans = NULL)

Arguments

x
input list

trans
transformation function

Value

character vector of [lower, upper]

Author(s)

Guangchuang Yu

reexports                          Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

ape  read.tree, rtree
aplot plot_list
dplyr collapse
ggfun identify
ggplot2  aes, fortify, geom_label, geom_point, geom_text, ggplot, ggsave, guide_legend,
        margin, scale_color_manual, scale_colour_manual, scale_fill_manual, scale_x_continuous,
        theme, xlim
grid  arrow, unit
magrittr %>%
tidytree  groupClade, groupOTU, MRCA, nodeid, nodelab
revts

Description

reverse timescale x-axis by setting the most recent tip to 0

Usage

revts(treeview)

Arguments

treeview original tree view

Details

'scale_x_continuous(labels=abs)' is required if users want to set the x-axis label to absolute value

Value

updated tree view

Author(s)

Guangchuang Yu

Examples

tr <- rtree(10)
p <- ggtree(tr) + theme_tree2()
p2 <- revts(p)
p2 + scale_x_continuous(labels=abs)

rotate

Description

rotate selected clade by 180 degree

Usage

rotate(tree_view = NULL, node)
Arguments

tree_view  
  tree view (i.e. the ggtree object). If tree_view is NULL, the last ggplot object will be used.

node  
  internal node number to specify a clade. If NULL, using the whole tree

Value

  ggplot2 object

Author(s)

  Guangchuang Yu

Examples

  x <- rtree(15)
  p <- ggtree(x) + geom_tiplab()
  rotate(p, 17)

Description

  Rotate the points in a tree data.frame around a pivot node by the angle specified.

Usage

  rotateTreePoints.df(df, pivot_node, nodes, angle)

Arguments

  df  
    tree data.frame

  pivot_node  
    is the id of the pivot node.

  nodes  
    list of node numbers that are to be rotated by angle around the pivot_node

  angle  
    in range [0,2], ie degrees/180, radians/pi

Value

  updated tree data.frame with points rotated by angle
**Description**

rotate circular tree in a certain angle

**Usage**

```r
rotate_tree(treeview, angle)
```

**Arguments**

- `treeview` : tree view in circular layout
- `angle` : the angle of rotation

**Value**

updated tree view

**Author(s)**

Guangchuang Yu

**Examples**

```r
tree <- rtree(15)
p <- ggtree(tree) + geom_tiplab()
p2 <- open_tree(p, 180)
rotate_tree(p2, 180)
```

---

**Description**

zoom out/in a selected clade to emphasize or de-emphasize it

**Usage**

```r
scaleClade(tree_view = NULL, node, scale = 1, vertical_only = TRUE)
```
**scale_color**

**Arguments**

- `tree_view` tree view (i.e. the ggtree object). If `tree_view` is NULL, the last ggplot object will be used.
- `node` internal node number to specify a clade. If NULL, using the whole tree
- `scale` the scale of the selected clade. The clade will be zoom in when `scale > 1`, and will be zoom out when `scale < 1`
- `vertical_only` logical. If TRUE (default), only vertical will be scaled. If FALSE, the clade will be scaled vertical and horizontally.

**Value**

tree view

**Author(s)**

Guangchuang Yu

**Examples**

```r
x <- rtree(15)
p <- ggtree(x) + geom_tiplab() +
 geom_nodelab(aes(subset=!isTip, label=node), hjust = -.1, color = "red")
scaleClade(p, 24, scale = .1)
```

---

**Description**

scale_color method

scale color by a numerical tree attribute

**Usage**

```r
scale_color(object, by, ...)

S4 method for signature 'treedata'
scale_color(object, by, ...)

S4 method for signature 'phylo'
scale_color(object, by, ...)
```

**Arguments**

- `object` treedata object
- `by` one of numerical attributes
- `...` additional parameter
scale_color_subtree

**Description**

Scale tree color by subtree (e.g., output of cutree, kmeans, or other clustering algorithm).

**Usage**

```r
scale_color_subtree(group)
```

**Arguments**

- `group` - taxa group information

**Value**

Updated tree view

**Author(s)**

Guangchuang Yu

---

scale_x_ggtree

**Description**

Scale x for tree with gheatmap.

**Usage**

```r
scale_x_ggtree(breaks = waiver(), labels = waiver())
```

**Arguments**

- `breaks` - set breaks for tree
- `labels` - labels for corresponding breaks
Details
Since setting x-axis for tree with gheatmap by using 'theme_tree2()' is quite tricky, 'scale_x_ggtree' can help set the x-axis more reasonably.

Value
updated tree view

Author(s)
Guangchuang Yu

References
For more detailed demonstration of this function, please refer to chapter 7.3 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.

---

scale_x_range

Description
add second x-axis for geom_range

Usage
scale_x_range()

Details
notice that the first axis is disabled in the default theme thus users need to enable it first before using scale_x_range

Value
ggtree object

Author(s)
Guangchuang Yu

References
For demonstration of this function, please refer to chapter 5.2.4 of Data Integration, Manipulation and Visualization of Phylogenetic Trees http://yulab-smu.top/treedata-book/index.html by Guangchuang Yu.
**Description**

set legend for multiple `geom_hilight` layers

**Usage**

```r
set_hilight_legend(p, color, label, alpha = 1)
```

**Arguments**

- `p`: ggtree object
- `color`: color vector
- `label`: label vector
- `alpha`: transparency of color

**Value**

updated ggtree object

**Author(s)**

Guangchuang Yu
Description

filter data for tree annotation layer

Usage

td_filter(..., .f = NULL)

Arguments

... Expressions that return a logical value.
.f a function (if any, defaults to NULL) that pre-operate the data

Details

The `td_filter()` function returns another function that can be used to subset ggtree() plot data. The function can be passed to the 'data' parameter of geom layer to perform subsetting. All rows that satisfy your conditions will be retained.

Value

A function to filter ggtree plot data using conditions defined by `...`.

Author(s)

Guangchuang Yu

References

For more detailed demonstration of this function, please refer to chapter 12.5.1 of *Data Integration, Manipulation and Visualization of Phylogenetic Trees* [http://yulab-smu.top/treedata-book/index.html](http://yulab-smu.top/treedata-book/index.html) by Guangchuang Yu.

See Also

filter

Examples

tree <- rtree(30)
## similar to 'ggtree(tree) + geom_tippoint()'
ggtree(tree) + geom_point(data = td_filter(isTip))
### td_mutate

**Description**

mutate data for tree annotation layer

**Usage**

```r
td_mutate(..., .f = NULL)
```

**Arguments**

- `...` additional parameters that pass to `dplyr::mutate`
- `.f` a function (if any, defaults to `NULL`) that pre-operate the data

**Details**

The `td_mutate()` function returns another function that can be used to mutate `ggtree()` plot data. The function can be passed to the 'data' parameter of geom layer to perform adding new variables and preserving existing ones.

**Value**

A function to mutate ggtree plot data

**See Also**

- `mutate`

### td_unnest

**Description**

flattens a list-column of data frame

**Usage**

```r
td_unnest(cols, ..., .f = NULL)
```

**Arguments**

- `cols` columns to unnest
- `...` additional parameters that pass to `tidyr::unnest`
- `.f` a function (if any, defaults to `NULL`) that pre-operate the data
Details

The `td_unnest` function returns another function that can be used to unnest `ggtree()` plot data. The function can be passed to the 'data' parameter of a geom layer to flatten list-column tree data.

Value

A function to unnest `ggtree` plot data

Author(s)

Guangchuang Yu

References


See Also

`unnest`

---

### theme_dendrogram

**Description**

dendrogram theme

**Usage**

```r
theme_dendrogram(bgcolor = "white", fgcolor = "black", ...)
```

**Arguments**

- `bgcolor`:
  - set background color, defaults to "white"
- `fgcolor`:
  - set color of axis
- `...`:
  - additional parameter

**Author(s)**

Guangchuang Yu
**theme_inset**  

**Description**  
inset theme  

**Usage**  
  
  theme_inset(legend.position = "none", ...)  

**Arguments**  

  legend.position  
set the position of legend  

  ...  
additional parameter  

**Details**  
theme for inset function  

**Value**  
ggplot object  

**Author(s)**  
Guangchuang Yu  

---  

**theme_tree**  

**Description**  
tree theme  

**Usage**  
  
  theme_tree(bgcolor = "white", ...)  

**Arguments**  

  bgcolor  
set background color, defaults to "white"  

  ...  
additional parameter
theme_tree2

Details
'theme_tree' defines a blank background to display tree

Value
updated ggplot object with new theme

Author(s)
Guangchuang Yu

Examples
```
require(ape)
tr <- rtree(10)
ggtree(tr) + theme_tree()
```

theme_tree2

Description
tree2 theme

Usage
```
theme_tree2(bgcolor = "white", fgcolor = "black", ...)
```

Arguments
```
bgcolor set background color, defaults to "white"
fgcolor set foreground color, defaults to "black"
... additional parameter
```

Details
'theme_tree2’ supports displaying phylogenetic distance by setting x-axis

Value
updated ggplot object with new theme

Author(s)
Guangchuang Yu
**Examples**

```r
require(ape)
tr <- rtree(10)
ggtree(tr) + theme_tree2()
```

**Description**

view a selected clade of tree, clade can be selected by specifying a node number or determined by the most recent common ancestor of selected tips

**Usage**

```r
viewClade(tree_view = NULL, node, xmax_adjust = 0)
```

**Arguments**

- `tree_view` tree view (i.e. the ggtree object). If `tree_view` is NULL, the last ggplot object will be used.
- `node` internal node number to specify a clade. If NULL, using the whole tree
- `xmax_adjust` adjust the max range of x axis

**Value**

clade plot

**Author(s)**

Guangchuang Yu

**Examples**

```r
x <- rtree(15)
p <- ggtree(x) + geom_tiplab()
viewClade(p, 18, xmax_adjust = 0.)
```
xlim_expand

Description
expand x axis limits for specific panel

Usage
xlim_expand(xlim, panel)

Arguments
- xlim: x axis limits
- panel: name of the panel to expand

Value
updated tree view

Author(s)
Guangchuang Yu

Examples
```r
x <- rtree(30)
p <- ggtree(x) + geom_tiplab()
d <- data.frame(label = x$tip.label,
 value = rnorm(30))
p2 <- p + geom_facet(panel = "Dot", data = d,
 geom = geom_point, mapping = aes(x = value))
p2 + xlim_expand(c(-10, 10), 'Dot')
```

xlim_tree

Description
set x axis limits specially for Tree panel

Usage
xlim_tree(xlim)
**Arguments**

`xlim` x axis limits

**Value**

updated tree view

**Author(s)**

Guangchuang Yu

**Examples**

```r
x <- rtree(30)
p <- ggtree(x) + geom_tiplab()
d <- data.frame(label = x$tip.label,
 value = rnorm(30))
p2 <- p + geom_facet(panel = "Dot", data = d,
 geom = geom_point, mapping = aes(x = value))
p2 + xlim_tree(6)
```

**Description**

zoom in on a selected clade of a tree, while showing its on the full view of tree as a separated panel for reference

**Usage**

`zoomClade(tree_view = NULL, node, xexpand = NULL)`

**Arguments**

`tree_view` tree view (i.e. the ggtree object). If `tree_view` is NULL, the last ggplot object will be used.

`node` internal node number to specify a clade. If NULL, using the whole tree

`xexpand` numeric, expend the xlim of the zoom area. default is NULL.

**Value**

full tree with zoom in clade

**Author(s)**

Guangchuang Yu
Examples

```r
Not run:
x <- rtree(15)
p <- ggtree(x) + geom_tiplab() +
 geom_nodelab(aes(subset=!isTip, label=node), hjust = -.1, color = "red")
zoomClade(p, 21, xexpand = .2)

End(Not run)
```

Description

update data with tree info (y coordination and panel)

Usage

```
p %>% .data
```

Arguments

- `p` tree view
- `.data` data.frame

Details

add tree information to an input data. This function will setup y coordination and panel info for data used in facet_plot and geom_faceet

Value

updated data.frame

Author(s)

Guangchuang Yu

References

Description

add annotation data to a tree

Usage

pg %<+% data

Arguments

pg ggplot2 object
data annotation data that contains a column of “node”, or the first column of taxa labels

Details

This operator attaches annotation data to a ggtree graphic object

Value

ggplot object with annotation data added

Author(s)

Guangchuang Yu

References


See Also

geom_facet

Examples

nwk <- system.file("extdata", "sample.nwk", package="treeio")
tree <- read.tree(nwk)
p <- ggtree(tree)
dd <- data.frame(taxa=LETTERS[1:13],
                  place=c(rep("GZ", 5), rep("HK", 3), rep("CZ", 4), NA),
                  value=round(abs(rnorm(13, mean=70, sd=10)), digits=1))
row.names(dd) <- NULL
p %<+% dd + geom_text(aes(color=place, label=label), hjust=-0.5)
Description

update tree

Usage

pg %<% x

Arguments

pg            ggtree object
x             tree object

Details

This operator apply the visualization directives in ggtree object (lhs) to visualize another tree object (rhs), that is similar to Format Painter.

Value

updated ggplot object

Author(s)

Guangchuang Yu

Examples

library("ggplot2")
nwk <- system.file("extdata", "sample.nwk", package="treeio")
tree <- read.tree(nwk)
p <- ggtree(tree) + geom_tippoint(color="#b5e521", alpha=1/4, size=10)
p %<% rtree(30)
Index

* datasets
  StatBalance, 82
* internal
  ggtree-package, 4
  reexports, 75
%>% (reexports), 75
%+% (reexports), 75
%<% (reexports), 75
%>% (reexports), 75
_PKGNAME (ggtree-package), 4
  add_colorbar, 5
  aes, 75
  aes (reexports), 75
  ape:::ladderize(), 62
  applyLayoutDaylight, 6
  arrow, 75
  arrow (reexports), 75
  as.polytomy, 6
  collapse, 75
  collapse (reexports), 75
  collapse.ggtree, 7
  Date2decimal, 8
  decimal2Date, 8
  expand, 9
  facet.data, 9
  facet.labeller, 10
  facet.plot, 11
  facet.widths, 12
  filter, 83
  flip, 12
  fortify, 75
  fortify (reexports), 75
  geom_aline, 13
  geom_balance, 14
  geom_cladelab, 15
  geom_cladelabel, 18, 21
  geom_cladelabel2, 19, 20
  geom_dilp2 (geom_pilot), 11
  geom_highlight (geom_hilight), 21
  geom_hilight, 21
  geom_inset, 24
  geom_label, 26, 75
  geom_label (reexports), 75
  geom_label2, 25
  geom_motif, 27
  geom_nodealab, 28
  geom_nodealab2, 29
  geom_nodelpoint, 30, 32, 36
  geom_nodepoint, 32, 36, 75
  geom_nodepoint (reexports), 75
  geom_nodepoint2, 31
  geom_range, 33
  geom_rootedge, 34
  geom_rootpoint, 32, 35, 36
  geom_segment, 38
  geom_segment2, 37
  geom_strip, 38
  geom_strip2, 40
  geom_taxaline, 43
  geom_text, 45, 75
  geom_text (reexports), 75
  geom_text2, 44
  geom_tiplab, 45, 48
  geom_tiplab2, 48
  geom_tiplab2, 48
  geom_tippoint, 32, 36, 49
  geom_tree, 50
  geom_tree, 50
  geom_tree2, 51
  geom_treescale, 52
  geom_zoom_clade, 53
  get.path, 54
  get_clade_position, 58
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_heatmap_column_position</td>
<td>58</td>
</tr>
<tr>
<td>get_taxa_name</td>
<td>59</td>
</tr>
<tr>
<td>getNodeAngle.df</td>
<td>54</td>
</tr>
<tr>
<td>getNodesBreadthFirst.df</td>
<td>55</td>
</tr>
<tr>
<td>getSubtree</td>
<td>55</td>
</tr>
<tr>
<td>getSubtree.df</td>
<td>56</td>
</tr>
<tr>
<td>getSubtreeUnrooted</td>
<td>56</td>
</tr>
<tr>
<td>getTreeArcAngles</td>
<td>57</td>
</tr>
<tr>
<td>ggdensitree</td>
<td>60</td>
</tr>
<tr>
<td>ggexpand (hexpand)</td>
<td>67</td>
</tr>
<tr>
<td>ggplot</td>
<td>75</td>
</tr>
<tr>
<td>ggplot (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>ggsave</td>
<td>75</td>
</tr>
<tr>
<td>ggsave (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>ggtree</td>
<td>62</td>
</tr>
<tr>
<td>ggtree-package</td>
<td>4</td>
</tr>
<tr>
<td>gheatmap</td>
<td>64</td>
</tr>
<tr>
<td>groupClade</td>
<td>75</td>
</tr>
<tr>
<td>groupClade (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>groupOTU</td>
<td>75</td>
</tr>
<tr>
<td>groupOTU (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>guide_legend</td>
<td>75</td>
</tr>
<tr>
<td>guide_legend (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>gzoom</td>
<td>65</td>
</tr>
<tr>
<td>gzoom, ggtree-method (gzoom)</td>
<td>65</td>
</tr>
<tr>
<td>gzoom, phylo-method (gzoom)</td>
<td>65</td>
</tr>
<tr>
<td>gzoom, treedata-method (gzoom)</td>
<td>65</td>
</tr>
<tr>
<td>gzoom, phylo</td>
<td>66</td>
</tr>
<tr>
<td>hexexpand</td>
<td>67</td>
</tr>
<tr>
<td>identify</td>
<td>75</td>
</tr>
<tr>
<td>identify (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>inset (geom_inset)</td>
<td>24</td>
</tr>
<tr>
<td>label_pad</td>
<td>68</td>
</tr>
<tr>
<td>layout_circular (layout_rectangular)</td>
<td>70</td>
</tr>
<tr>
<td>layout_dendrogram (layout_rectangular)</td>
<td>70</td>
</tr>
<tr>
<td>layout_fan (layout_rectangular)</td>
<td>70</td>
</tr>
<tr>
<td>layout_inward_circular (layout_rectangular)</td>
<td>70</td>
</tr>
<tr>
<td>layout_rectangular</td>
<td>70</td>
</tr>
<tr>
<td>layoutDaylight</td>
<td>69</td>
</tr>
<tr>
<td>layoutEqualAngle</td>
<td>69</td>
</tr>
<tr>
<td>margin</td>
<td>75</td>
</tr>
<tr>
<td>margin (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>MRCA</td>
<td>75</td>
</tr>
<tr>
<td>MRCA (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>msaplot</td>
<td>71</td>
</tr>
<tr>
<td>multiplot</td>
<td>72</td>
</tr>
<tr>
<td>mutate</td>
<td>84</td>
</tr>
<tr>
<td>nodebar</td>
<td>73</td>
</tr>
<tr>
<td>nodeid</td>
<td>75</td>
</tr>
<tr>
<td>nodeid (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>nodelab</td>
<td>75</td>
</tr>
<tr>
<td>nodelab (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>nodepie</td>
<td>73</td>
</tr>
<tr>
<td>open_tree</td>
<td>74</td>
</tr>
<tr>
<td>package-ggtree (ggtree-package)</td>
<td>4</td>
</tr>
<tr>
<td>plot_list</td>
<td>75</td>
</tr>
<tr>
<td>plot_list (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>range_format</td>
<td>75</td>
</tr>
<tr>
<td>read.tree</td>
<td>75</td>
</tr>
<tr>
<td>read.tree (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>reexports</td>
<td>75</td>
</tr>
<tr>
<td>revts</td>
<td>76</td>
</tr>
<tr>
<td>rotate</td>
<td>76</td>
</tr>
<tr>
<td>rotate_tree</td>
<td>78</td>
</tr>
<tr>
<td>rotateTreePoints.df</td>
<td>77</td>
</tr>
<tr>
<td>rtree</td>
<td>75</td>
</tr>
<tr>
<td>rtree (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>scale_color</td>
<td>79</td>
</tr>
<tr>
<td>scale_color, phylo-method (scale_color)</td>
<td>79</td>
</tr>
<tr>
<td>scale_color, treedata-method</td>
<td>79</td>
</tr>
<tr>
<td>(scale_color)</td>
<td>79</td>
</tr>
<tr>
<td>scale_color_manual</td>
<td>75</td>
</tr>
<tr>
<td>scale_color_manual (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>scale_color_subtree</td>
<td>80</td>
</tr>
<tr>
<td>scale_colour_manual</td>
<td>75</td>
</tr>
<tr>
<td>scale_colour_manual (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>scale_colour_subtree</td>
<td>80</td>
</tr>
<tr>
<td>(scale_colour_subtree)</td>
<td>80</td>
</tr>
<tr>
<td>scale_fill_manual</td>
<td>75</td>
</tr>
<tr>
<td>scale_fill_manual (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>scale_x_continuous</td>
<td>75</td>
</tr>
<tr>
<td>scale_x_continuous (reexports)</td>
<td>75</td>
</tr>
<tr>
<td>scale_x_ggtree</td>
<td>80</td>
</tr>
<tr>
<td>scale_x_range</td>
<td>81</td>
</tr>
<tr>
<td>scaleClade</td>
<td>78</td>
</tr>
</tbody>
</table>
set_hilight_legend, 82
StatBalance, 82
td_filter, 83
td_mutate, 84
td_unnest, 84
theme, 75
theme(reexports), 75
theme_dendrogram, 85
theme_inset, 86
theme_tree, 86
theme_tree2, 87
unit, 75
unit(reexports), 75
unnest, 85
vexpand(hexpand), 67
viewClade, 88
xlim, 75
xlim(reexports), 75
xlim_expand, 89
xlim_tree, 89
zoomClade, 90