Package ‘gpls’

May 29, 2024

Title Classification using generalized partial least squares
Version 1.76.0
Author Beiying Ding
Description Classification using generalized partial least squares for
two-group and multi-group (more than 2 group) classification.
Maintainer Bioconductor Package Maintainer
maintainer@bioconductor.org
Imports stats
Suggests MASS
License Artistic-2.0
biocViews Classification, Microarray, Regression
git_url https://git.bioconductor.org/packages/gpls
git_branch RELEASE_3_19
git_last_commit c48f123
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29

Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>glpls1a</td>
<td>2</td>
</tr>
<tr>
<td>glpls1a.cv.error</td>
<td>3</td>
</tr>
<tr>
<td>glpls1a.logit.all</td>
<td>4</td>
</tr>
<tr>
<td>glpls1a.mlogit</td>
<td>5</td>
</tr>
<tr>
<td>glpls1a.mlogit.cv.error</td>
<td>7</td>
</tr>
<tr>
<td>glpls1a.train.test.error</td>
<td>8</td>
</tr>
<tr>
<td>gpls</td>
<td>9</td>
</tr>
<tr>
<td>predict.gpls</td>
<td>11</td>
</tr>
</tbody>
</table>

Index 13
glpls1a Fit IRWPLS and IRWPLSF model

Description

Fit Iteratively ReWeighted Least Squares (IRWPLS) with an option of Firth’s bias reduction procedure (IRWPLSF) for two-group classification.

Usage

```r
glpls1a(X, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom.eps = 1e-20, family = "binomial", link = NULL, br = TRUE)
```

Arguments

- `X` n by p design matrix (with no intercept term)
- `y` response vector 0 or 1
- `K.prov` number of PLS components, default is the rank of X
- `eps` tolerance for convergence
- `lmax` maximum number of iteration allowed
- `b.ini` initial value of regression coefficients
- `denom.eps` small quantity to guarantee nonzero denominator in deciding convergence
- `family` glm family, `binomial` is the only relevant one here
- `link` link function, `logit` is the only one practically implemented now
- `br` TRUE if Firth’s bias reduction procedure is used

Value

- `coefficients` regression coefficients
- `convergence` whether convergence is achieved
- `niter` total number of iterations
- `bias.reduction` whether Firth’s procedure is used
- `loading.matrix` the matrix of loadings

Author(s)

Beiying Ding, Robert Gentleman

References

glpls1a.cv.error

See Also

See Also

glpls1a.mlogit, glpls1a.logit.all, glpls1a.train.test.error, glpls1a.cv.error, glpls1a.mlogit.cv.error

Examples

```r
x <- matrix(rnorm(20), ncol=2)
y <- sample(0:1, 10, TRUE)
## no bias reduction
glpls1a(x, y, br=FALSE)

## no bias reduction and 1 PLS component
glpls1a(x, y, K.prov=1, br=FALSE)

## bias reduction
glpls1a(x, y, br=TRUE)
```

glpls1a.cv.error

Leave-one-out cross-validation error using IRWPLS and IRWPLSF model

Description

Leave-one-out cross-validation training set classification error for fitting IRWPLS or IRWPLSF model for two group classification

Usage

```r
glpls1a.cv.error(train.X, train.y, K.prov=NULL, eps=1e-3, lmax=100, family="binomial", link="logit", br=T)
```

Arguments

- `train.X` - n by p design matrix (with no intercept term) for training set
- `train.y` - response vector (0 or 1) for training set
- `K.prov` - number of PLS components, default is the rank of `train.X`
- `eps` - tolerance for convergence
- `lmax` - maximum number of iteration allowed
- `family` - glm family, `binomial` is the only relevant one here
- `link` - link function, `logit` is the only one practically implemented now
- `br` - TRUE if Firth’s bias reduction procedure is used

Value

- `error` - LOOCV training error
- `error.obs` - the misclassified error observation indices
Author(s)
Beijing Ding, Robert Gentleman

References

See Also
glpls1a.train.test.error, glpls1a.mlogit.cv.error, glpls1a, glpls1a.mlogit.glpls1a.logit.all

Examples

```r
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
## no bias reduction
glpls1a.cv.error(x,y,br=FALSE)
## bias reduction and 1 PLS component
glpls1a.cv.error(x,y,K.prov=1, br=TRUE)
```

glpls1a.logit.all
Fit MIRWPLS and MIRWPLSF model separately for logits

Description
Apply Iteratively ReWeighted Least Squares (MIRWPLS) with an option of Firth’s bias reduction procedure (MIRWPLSF) for multi-group (say C+1 classes) classification by fitting logit models for all C classes vs baseline class separately.

Usage

```r
glpls1a.logit.all(X, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom.eps = 1e-20, family = "binomial", link = "logit", br = T)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>n by p design matrix (with no intercept term)</td>
</tr>
<tr>
<td>y</td>
<td>response vector with class labels 1 to C+1 for C+1 group classification, baseline class should be 1</td>
</tr>
<tr>
<td>K.prov</td>
<td>number of PLS components</td>
</tr>
<tr>
<td>eps</td>
<td>tolerance for convergence</td>
</tr>
<tr>
<td>lmax</td>
<td>maximum number of iteration allowed</td>
</tr>
<tr>
<td>b.ini</td>
<td>initial value of regression coefficients</td>
</tr>
<tr>
<td>denom.eps</td>
<td>small quantity to guarantee nonzero denominator in deciding convergence</td>
</tr>
</tbody>
</table>
family glm family, binomial (i.e. multinomial here) is the only relevant one here
link link function, logit is the only one practically implemented now
br TRUE if Firth’s bias reduction procedure is used

Value

coefficients regression coefficient matrix

Author(s)

Beiying Ding, Robert Gentleman

References

See Also

glpls1a.mlogit, glpls1a.glpls1a.mlogit.cv.error, glpls1a.train.test.error, glpls1a.cv.error

Examples

x <- matrix(rnorm(20), ncol=2)
y <- sample(1:3, 10, TRUE)
no bias reduction
 glpls1a.logit.all(x, y, br=FALSE)
bias reduction
 glpls1a.logit.all(x, y, br=TRUE)

glpls1a.mlogit Fit MIRWPLS and MIRWPLSF model

Description

Fit multi-logit Iteratively ReWeighted Least Squares (MIRWPLS) with an option of Firth’s bias reduction procedure (MIRWPLSF) for multi-group classification

Usage

 glpls1a.mlogit(x, y, K.prov = NULL, eps = 0.001, lmax = 100, b.ini = NULL, denom.eps = 1e-20, family = "bi"
Arguments

- **x**: n by p design matrix (with intercept term)
- **y**: response vector with class labels 1 to C+1 for C+1 group classification, baseline class should be 1
- **K.prov**: number of PLS components
- **eps**: tolerance for convergence
- **lmax**: maximum number of iteration allowed
- **b.ini**: initial value of regression coefficients
- **denom.eps**: small quantity to guarantee nonzero denominator in deciding convergence
- **family**: glm family, binomial (i.e. multinomial here) is the only relevant one here
- **link**: link function, logit is the only one practically implemented now
- **br**: TRUE if Firth’s bias reduction procedure is used

Value

- **coefficients**: regression coefficient matrix
- **convergence**: whether convergence is achieved
- **niter**: total number of iterations
- **bias.reduction**: whether Firth’s procedure is used

Author(s)

Beiying Ding, Robert Gentleman

References

See Also

- `glpls1a`, `glpls1a.mlogit.cv.error`, `glpls1a.train.test.error`, `glpls1a.cv.error`

Examples

```r
x <- matrix(rnorm(20), ncol=2)
y <- sample(1:3, 10, TRUE)
## no bias reduction and 1 PLS component
glpls1a.mlogit(cbind(rep(1, 10), x), y, K.prov=1, br=FALSE)
## bias reduction
glpls1a.mlogit(cbind(rep(1, 10), x), y, br=TRUE)
```
glpls1a.mlogit.cv.error

Leave-one-out cross-validation error using MIRWPLS and MIRWPLSF model

Description

Leave-one-out cross-validation training set error for fitting MIRWPLS or MIRWPLSF model for multi-group classification

Usage

glpls1a.mlogit.cv.error(train.X, train.y, K.prov = NULL, eps = 0.001, lmax = 100, mlogit = T, br = T)

Arguments

- **train.X**: n by p design matrix (with no intercept term) for training set
- **train.y**: response vector with class labels 1 to C+1 for C+1 group classification, baseline class should be 1
- **K.prov**: number of PLS components
- **eps**: tolerance for convergence
- **lmax**: maximum number of iteration allowed
- **mlogit**: if TRUE use the multinomial logit model, otherwise fit all C-1 logistic models (vs baseline class 1) separately
- **br**: TRUE if Firth’s bias reduction procedure is used

Value

- **error**: LOOCV training error
- **error.obs**: the misclassified error observation indices

Author(s)

Beiying Ding, Robert Gentleman

References

See Also

glpls1a.cv.error, glpls1a.train.test.error, glpls1a, glpls1a.mlogit, glpls1a.logit, glpls1a.logit.all
Examples

```r
x <- matrix(rnorm(20),ncol=2)
y <- sample(1:3,10,TRUE)

## no bias reduction
glplsl1a.mlogit.cv.error(x,y,br=FALSE)
glplsl1a.mlogit.cv.error(x,y,mlogit=FALSE,br=FALSE)

## bias reduction
glplsl1a.mlogit.cv.error(x,y,br=TRUE)
glplsl1a.mlogit.cv.error(x,y,mlogit=FALSE,br=TRUE)
```

glplsl1a.train.test.error

out-of-sample test set error using IRWPLS and IRWPLSF model

Description

Out-of-sample test set error for fitting IRWPLS or IRWPLSF model on the training set for two-group classification

Usage

```r
glplsl1a.train.test.error(train.X,train.y,test.X,test.y,K.prov=NULL,eps=1e-3,lmax=100,family="binomial",link="logit",br=T)
```

Arguments

- `train.X`: n by p design matrix (with no intercept term) for training set
- `train.y`: response vector (0 or 1) for training set
- `test.X`: transpose of the design matrix (with no intercept term) for test set
- `test.y`: response vector (0 or 1) for test set
- `K.prov`: number of PLS components, default is the rank of train.X
- `eps`: tolerance for convergence
- `lmax`: maximum number of iteration allowed
- `family`: glm family, binomial is the only relevant one here
- `link`: link function, logit is the only one practically implemented now
- `br`: TRUE if Firth’s bias reduction procedure is used

Value

- `error`: out-of-sample test error
- `error.obs`: the misclassified error observation indices
- `predict.test`: the predicted probabilities for test set
gpls

Author(s)
Beijing Ding, Robert Gentleman

References

See Also
glpls1a.cv.error, glpls1a.mlogit.cv.error, glpls1a, glpls1a.mlogit, glpls1a.logit.all

Examples
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
x1 <- matrix(rnorm(10),ncol=2)
y1 <- sample(0:1,5,TRUE)

no bias reduction
glpls1a.train.test.error(x,y,x1,y1,br=FALSE)
bias reduction
glpls1a.train.test.error(x,y,x1,y1,br=TRUE)

gpls

A function to fit Generalized partial least squares models.

Description
Partial least squares is a commonly used dimension reduction technique. The paradigm can be extended to include generalized linear models in several different ways. The code in this function uses the extension proposed by Ding and Gentleman, 2004.

Usage
gpls(x, ...)

Default S3 method:
gpls(x, y, K.prov=NULL, eps=1e-3, lmax=100, b.ini=NULL,
 denom.eps=1e-20, family="binomial", link=NULL, br=TRUE, ...)

S3 method for class 'formula'
gpls(formula, data, contrasts=NULL, K.prov=NULL,
 eps=1e-3, lmax=100, b.ini=NULL, denom.eps=1e-20, family="binomial",
 link=NULL, br=TRUE, ...)

Usage

gpls(x, ...)

Default S3 method:
gpls(x, y, K.prov=NULL, eps=1e-3, lmax=100, b.ini=NULL,
 denom.eps=1e-20, family="binomial", link=NULL, br=TRUE, ...)

S3 method for class 'formula'
gpls(formula, data, contrasts=NULL, K.prov=NULL,
 eps=1e-3, lmax=100, b.ini=NULL, denom.eps=1e-20, family="binomial",
 link=NULL, br=TRUE, ...)
Arguments

- **x**: The matrix of covariates.
- **formula**: A formula of the form `y ~ x1 + x2 + ...`, where `y` is the response and the other terms are covariates.
- **y**: The vector of responses.
- **data**: A data.frame to resolve the formula, if used.
- **K.prov**: Number of PLS components, default is the rank of X.
- **eps**: Tolerance for convergence.
- **lmax**: Maximum number of iteration allowed.
- **b.ini**: Initial value of regression coefficients.
- **denom.eps**: Small quantity to guarantee nonzero denominator in deciding convergence.
- **family**: GLM family, binomial is the only relevant one here.
- **link**: Link function, logit is the only one practically implemented now.
- **br**: TRUE if Firth’s bias reduction procedure is used.
- **...**: Additional arguments.
- **contrasts**: An optional list. See the `contrasts.arg` of `model.matrix.default`.

Details

This is a different interface to the functionality provided by `glpls1a`. The interface is intended to be simpler to use and more consistent with other machine learning code in R.

The technology is intended to deal with two class problems where there are more predictors than cases. If a response variable (y) is used that has more than two levels the behavior may be unusual.

Value

An object of class `gpls` with the following components:

- **coefficients**: The estimated coefficients.
- **convergence**: A boolean indicating whether convergence was achieved.
- **niter**: The total number of iterations.
- **bias.reduction**: A boolean indicating whether Firth’s procedure was used.
- **family**: The family argument that was passed in.
- **link**: The link argument that was passed in.
- **terms**: The constructed terms object.
- **call**: The call.
- **levs**: The factor levels for prediction.

Author(s)

B. Ding and R. Gentleman
References

See Also

glplsl1a

Examples

```r
library(MASS)
m1 = gpls(type~., data=Pima.tr, K=3)
```

Description

A simple prediction method for gpls objects.

Usage

```r
## S3 method for class 'gpls'
predict(object, newdata, ...)
```

Arguments

- `object` A gpls object, typically obtained from a call to `gpls`
- `newdata` New data, for which predictions are desired.
- `...` Other arguments to be passed on

Details

The prediction method is straight forward. The estimated coefficients from `object` are used, together with the new data to produce predicted values. These are then split, according to whether the predicted values is larger or smaller than 0.5 and predictions returned.

The code is similar to that in `glplsl1a.train.test.error` except that in that function both the test and train matrices are centered and scaled (the covariates) by the same values (those from the test data set).

Value

A list of length two:

- `class` The predicted classes; one for each row of `newdata`.
- `predicted` The estimated predictors.
Author(s)

B. Ding and R. Gentleman

See Also

gpls

Examples

example(gpls)
p1 = predict(m1)
Index

* classif
 gpls, 9
 predict.gpls, 11
* regression
 glpls1a, 2
 glpls1a.cv.error, 3
 glpls1a.logit.all, 4
 glpls1a.mlogit, 5
 glpls1a.mlogit.cv.error, 7
 glpls1a.train.test.error, 8
 glpls1a, 2, 4–7, 9–11
 glpls1a.cv.error, 3, 3, 5–7, 9
 glpls1a.logit.all, 3, 4, 4, 7, 9
 glpls1a.mlogit, 3–5, 5, 7, 9
 glpls1a.mlogit.cv.error, 3–6, 7, 9
 glpls1a.train.test.error, 3–7, 8, 11
 gpls, 9, 11, 12

predict.gpls-method (predict.gpls), 11
predict.gpls, 11
print.gpls (gpls), 9