Package ‘graphite’

May 17, 2024

Version 1.50.0
Date 2024-04-29
Title GRAPH Interaction from pathway Topological Environment
Description Graph objects from pathway topology derived from KEGG, Panther, PathBank, PharmGKB, Reactome SMPDB and WikiPathways databases.
License AGPL-3
URL https://github.com/sales-lab/graphite
BugReports https://github.com/sales-lab/graphite/issues
Depends R (>= 4.2), methods
Imports AnnotationDbi, graph (>= 1.67.1), httr, rappdirs, stats, utils, graphics, rlang, purrr
Suggests checkmate, a4Preproc, ALL, BiocStyle, codetools, hgu133plus2.db, hgu95av2.db, impute, knitr, org.Hs.eg.db, parallel, R.rsp, RCy3, rmarkdown, SPIA (>= 2.2), testthat, topologyGSA (>= 1.4.0)
VignetteBuilder R.rsp
biocViews Pathways, ThirdPartyClient, GraphAndNetwork, Network, Reactome, KEGG, Metabolomics
git_url https://git.bioconductor.org/packages/graphite
git_branch RELEASE_3_19
git_last_commit 0b9f354
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-17
Author Gabriele Sales [cre], Enrica Calura [aut], Chiara Romualdi [aut]
Maintainer Gabriele Sales <gabriele.sales@unipd.it>
Description

Converts a `PathwayList` into a list of `Pathways`.

Usage

```r
## S3 method for class 'PathwayList'
as.list(x, ...)
```

Arguments

- `x` a `PathwayList` object
- `...` extra arguments to as.list

Value

A list of pathways.

Author(s)

Gabriele Sales

See Also

`PathwayList`

Examples

```r
as.list(pathways("hsapiens", "kegg"))
```
buildPathway

Build a Pathway object.

Description

This function creates a new object of type Pathway given a data frame describing its edges.

Usage

```r
buildPathway(id, title, species, database, proteinEdges, 
              metaboliteEdges = NULL, mixedEdges = NULL, 
              timestamp = NULL)
```

Arguments

- `id`
 the pathway identifier.
- `title`
 the title of the pathway.
- `species`
 the species the pathway belongs to.
- `database`
 the name of the database the pathway derives from.
- `proteinEdges`
 a data.frame of edges between proteins (or genes).
 Must have the following columns: src_type, src, dest_type, dest, direction and type.
 Direction must be one of the two strings: "directed" or "undirected".
- `metaboliteEdges`
 interactions between metabolites.
 Can be NULL. Otherwise, it must have the same structure as proteinEdges.
- `mixedEdges`
 interactions between metabolites and proteins.
 Can be NULL. Otherwise, it must have the same structure as proteinEdges.
- `timestamp`
 when the pathway was annotated, by default the time `buildPathway` is called.

Value

A new `Pathway` instance.

Examples

```r
edges <- data.frame(src_type = "ENTREZID", src=672, 
                    dest_type = "ENTREZID", dest=7157, 
                    direction="undirected", type="binding")
pathway <- buildPathway("#1", "example", "hsapiens", "database", edges)

# Example with metabolites:
edges <- data.frame(src_type = "ENTREZID", src=672, 
                    dest_type = "ENTREZID", dest=7157, 
                    direction="undirected", type="binding")
```
mixed <- data.frame(src_type = "CHEBI", src="77750",
dest_type = "ENTREZID", dest="7157",
direction="undirected", type="binding")
pathway <- buildPathway("#1", "example", "hsapiens", "database",
edges, mixedEdges = mixed)

convertIdentifiers

Convert the node identifiers of a pathway.

Description
Converts the node identifiers of pathways.

If the option Ncpus is set to a value larger than 1 and the package parallel is installed, the conversion procedure will automatically use multiple cores.

Usage
convertIdentifiers(x, to)

Arguments
x can be a list of pathways or a single pathway

arg a string describing the type of the identifier. Can assume the values "entrez", "symbol" or the name of one of the columns provided by an Annotation package (for example, "UNIPROT").

Value
A Pathway object.

See Also
Pathway

Examples
r <- pathways("hsapiens", "reactome")
convertIdentifiers(r$ mTORC1-mediated signalling", "symbol")
cytoscapePlot

Plot a pathway graph in Cytoscape

Description
Renders the topology of a pathway as a Cytoscape graph.

Usage
cytoscapePlot(pathway, ..., cy.ver = 3)

Arguments
- pathway: a Pathway object.
- ...: optional arguments forwarded to pathwayGraph.
- cy.ver: select a Cytoscape version. Only version 3 is supported in this release.

Details
Requires the RCy3 package.

Value
An invisible list with two items:
- graph: the graphNEL object sent to Cytoscape.
- sued: the RCy3 network SUID.

See Also
Pathway
pathwayGraph

Examples
Not run:
r <- pathways()
cytoscapePlot(convertIdentifiers(reactome$'Unwinding of DNA', "symbol"))

End(Not run)
Description

A biological pathway.

Variants

A Pathway instance actually stores multiple variants of the same biological data. This is the list of included variants:

- proteins: includes only interactions among proteins;
- metabolites: includes only interactions among metabolites;
- mixed: includes all available interactions.

Methods

pathwayId(p): Returns the native ID of the pathway.
pathwayTitle(p): Returns the title of the pathway.
pathwayDatabase(p): Returns the name of the database the pathway was derived from.
pathwaySpecies(p): Returns the name of the species in which the pathway was annotated.
pathwayTimestamp(p): Returns the date of pathway data retrieval.
pathwayURL(p): Returns the URL of the pathway in its original database, if available.
convertIdentifiers(p, to): Returns a new pathway using a different type of node identifiers.
edges(p, which = c("proteins", "metabolites", "mixed"), stringsAsFactors = TRUE): Returns a data.frame describing the edges of this pathway. The option which selects the desired pathway variant (see section "Variants" above). If stringsAsFactors is TRUE, strings are converted to factors.
nodes(p, which = c("proteins", "metabolites", "mixed")): Returns the names of the nodes belonging to this pathway. The option which selects the desired pathway variant (see section "Variants" above).
plot(p): Shows the pathway topology in Cytoscape.
runClipper(p, expr, classes, method, ...): Runs a clipper analysis over the pathway.
runTopologyGSA(p, test, exp1, exp2, alpha, ...): Runs a topologyGSA analysis over the pathway.

Author(s)

Gabriele Sales

See Also

pathways
pathwayDatabases

Examples

```r
reactome <- pathways("hsapiens", "reactome")
pathway <- reactome[[1]]

pathwayTitle(pathway)
pathwaySpecies(pathway)
nodes(pathway)
edges(pathway)
```

pathwayDatabases

List the available pathway databases.

Description

Obtains the list of pathway databases available through graphite.

Usage

```
pathwayDatabases()
```

Value

Returns a `data.frame` with two columns: `species` and `database`.

Author(s)

Gabriele Sales

See Also

`pathways`

Examples

```
pathwayDatabases()
```
pathwayGraph

Graph representing the topology of a pathway

Description
Builds a graphNEL object representing the topology of a pathway.

Usage
```r
pathwayGraph(pathway, which = "proteins", edge.types = NULL)
```

Arguments
- **pathway**
a Pathway object.
- **which**
the pathway variant you want. See Pathway documentation for a list of the supported variants.
- **edge.types**
keep only the edges matching the type names in this vector.

Value
A graphNEL object.

See Also
- Pathway
- graphNEL

Examples
```r
r <- pathways("hsapiens", "reactome")
plothensively
pathwayGraph(r$r"mTORC1-mediated signalling", edge.types="Binding")
```

PathwayList-class

Class "PathwayList"

Description
A collection of pathways from a single database.

Extends
Class "Pathways", directly.
Methods

l[i] returns a selection of the pathways contained in the pathway list.
l[[i]] gives access to one of the pathways contained in the pathway list.
l$title' loads a pathways by its title.
convertIdentifiers(l, to) returns a new list of pathways using a different type of node identifiers.
length(l) returns the number of pathways contained in the list.
names(l) returns the titles of the pathways contained in the list.
prepareSPIA(l, pathwaySetName, print.names=FALSE) prepares the pathways for a SPIA analysis.
runClipper(l, expr, classes, method, maxNodes=150, ...) runs a clipper analysis over all the pathways in the list.
runTopologyGSA(l, test, exp1, exp2, alpha, maxNodes=150, ...) runs a topologyGSA analysis over all the pathways in the list.

Author(s)

Gabriele Sales

See Also

pathways

pathways Retrieve a list of pathways.

Description

Retrieve a list of pathways from a database for a given species. graphite currently supports the following databases:

- KEGG
- PANTHER
- PathBank
- PharmGKB
- Reactome
- SMPDB
- WikiPathways

Call the pathwayDatabase function for more details.

Usage

pathways(species, database)
Arguments

species one of the supported species
database the name of the pathway database

Value

A PathwayList object.

See Also

PathwayList, pathwayDatabases

Examples

pathways("hsapiens", "reactome")
prepareSPIA

Prepare pathway dataset needed by runSPIA.

Description

Prepare pathway dataset needed by runSPIA. See runSPIA and spia for more details.

Usage

prepareSPIA(db, pathwaySetName, print.names = FALSE)

Arguments

- **db**: a PathwayList object or a list of Pathways.
- **pathwaySetName**: name of the output pathway set.
- **print.names**: print pathway names as the conversion advances.

Value

This function has no return value.

References

See Also

- runSPIA
- spia
- PathwayList
runSPIA

Run SPIA analysis

Description
Run a topological analysis on an expression dataset using SPIA.

Usage
runSPIA(de, all, pathwaySetName, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>A named vector containing log2 fold-changes of the differentially expressed</td>
</tr>
<tr>
<td></td>
<td>genes. The names of this numeric vector are Entrez gene IDs.</td>
</tr>
<tr>
<td>all</td>
<td>A vector with the Entrez IDs in the reference set. If the data was obtained</td>
</tr>
<tr>
<td></td>
<td>from a microarray experiment, this set will contain all genes present on</td>
</tr>
<tr>
<td></td>
<td>the specific array used for the experiment. This vector should contain all</td>
</tr>
<tr>
<td></td>
<td>names of the 'de' argument.</td>
</tr>
<tr>
<td>pathwaySetName</td>
<td>The name of a pathway set created with prepareSPIA.</td>
</tr>
<tr>
<td>...</td>
<td>Additional options to pass to spia.</td>
</tr>
</tbody>
</table>

Details
The spia option "organism" is internally used. It is an error use it in the additional options.

Value
The same of spia, without KEGG links. A data frame containing the ranked pathways and various statistics: pSize is the number of genes on the pathway; NDE is the number of DE genes per pathway; tA is the observed total preturbation accumulation in the pathway; pNDE is the probability to observe at least NDE genes on the pathway using a hypergeometric model; pPERT is the probability to observe a total accumulation more extreme than tA only by chance; pG is the p-value obtained by combining pNDE and pPERT; pGdr and pGFWER are the False Discovery Rate and respectively Bonferroni adjusted global p-values; and the Status gives the direction in which the pathway is perturbed (activated or inhibited).

References
runTopologyGSA

Run a topological analysis on an expression dataset using topologyGSA.

Description

Use graphical models to test the pathway components highlighting those involved in its deregulation. If the option Ncpus is set to a value larger than 1 and the package parallel is installed, the conversion procedure will automatically use multiple cores.

Usage

runTopologyGSA(x, test, exp1, exp2, alpha, ...)

Arguments

x a PathwayList, a list of Pathways or a single Pathway object.
test Either "var" and "mean". Determine the type of test used by topologyGSA.
exp1 Experiment matrix of the first class, genes in columns.
exp2 Experiment matrix of the second class, genes in columns.
alpha Significance level of the test.

See Also

spia

Examples

if (require(SPIA) && require(hgu133plus2.db)) {
 data(colorectalcancer)
 top$ENTREZ <- mapIds(hgu133plus2.db, top$ID, "ENTREZID", "PROBEID", multiVals = "first")
 top <- top[!is.na(top$ENTREZ) & !duplicated(top$ENTREZ),]
 top$ENTREZ <- paste("ENTREZID", top$ENTREZ, sep = ":")
 tg1 <- top[top$adj.P.Val < 0.05,]
 DE_Colorectal = tg1$logFC
 names(DE_Colorectal) <- tg1$ENTREZ
 ALL_Colorectal <- top$ENTREZ
 kegg <- pathways("hsapiens", "kegg")[1:20]
 kegg <- convertIdentifiers(kegg, "ENTREZID")
 prepareSPIA(kegg, "keggEx")
 runSPIA(de = DE_Colorectal, all = ALL_Colorectal, "keggEx")
 unlink("keggExSPIA.RData")
}
runTopologyGSA

... Additional parameters forwarded to topologyGSA.
When invoked on a PathwayList, can use the named option "maxNodes" to limit the analysis to those pathways having up to this given number of nodes.

Details
This function produces a warning and returns NULL when the number of genes in common between the expression matrices and the pathway is less than 3.

Value
See documentation of `pathway.var.test` and `pathway.mean.test`.

References
Massa MS, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC System Biol. 2010 Sep 1;4:121.

Examples
if (require(topologyGSA)) {
 data(examples)
 colnames(y1) <- paste("SYMBOL", colnames(y1), sep = ":")
 colnames(y2) <- paste("SYMBOL", colnames(y2), sep = ":")

 k <- pathways("hsapiens", "kegg")
 p <- convertIdentifiers(k["Fc epsilon RI signaling pathway"], "SYMBOL")
 runTopologyGSA(p, "var", y1, y2, 0.05)
}
Index

* analysis
 * runSPIA, 12
 * runTopologyGSA, 13
 * classes
 * Pathway-class, 6
 * PathwayList-class, 8
 * Pathways-class, 10
 * spia
 * runSPIA, 12
 * topologyGSEA
 * runTopologyGSA, 13
 * topology
 * runSPIA, 12
 * runTopologyGSA, 13
 * [,PathwayList-method (PathwayList-class), 8
 * [[,PathwayList-method (PathwayList-class), 8
 * $,PathwayList-method (PathwayList-class), 8
 * as.list.PathwayList, 2
 * buildPathway, 3
 * convertIdentifiers, 4
 * convertIdentifiers,Pathway-method (Pathway-class), 6
 * convertIdentifiers,PathwayList-method (PathwayList-class), 8
 * cytoscapePlot, 5
 * edges,Pathway-method (Pathway-class), 6
 * graphNEL, 5, 8
 * length,PathwayList-method (PathwayList-class), 8
 * names,PathwayList-method (PathwayList-class), 8
 * topology
 * topologyGSEA
 * runSPIA, 12
 * runTopologyGSA, 13
 * runSPIA, 12
 * runTopologyGSA, 13

15
runTopologyGSAMulti (runTopologyGSA), 13
spia, 11–13