Package ‘heatmaps’

March 29, 2024

Title Flexible Heatmaps for Functional Genomics and Sequence Features

Version 1.26.0

Date 2021-11-21

Author Malcolm Perry <mgperry32@gmail.com>

Maintainer Malcolm Perry <mgperry32@gmail.com>

Depends R (>= 3.4)

Imports methods, grDevices, graphics, stats, Biostrings, GenomicRanges, IRanges, KernSmooth, plotrix, Matrix, EBImage, RColorBrewer, BiocGenerics, GenomeInfoDb

Suggests BSgenome.Drerio.UCSC.danRer7, knitr, rmarkdown, testthat

biocViews Visualization, SequenceMatching, FunctionalGenomics

License Artistic-2.0

Description This package provides functions for plotting heatmaps of genome-wide data across genomic intervals, such as ChIP-seq signals at peaks or across promoters. Many functions are also provided for investigating sequence features.

VignetteBuilder knitr

NeedsCompilation no

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/heatmaps

git_branch RELEASE_3_18

git_last_commit 6bc363d

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-29
R topics documented:

coords ... 2
CoverageHeatmap .. 3
default_color ... 4
getScale ... 5
Heatmap ... 5
Heatmap-class ... 6
HeatmapExamples ... 7
heatmapOptions .. 8
image ... 10
label ... 10
length,Heatmap-method ... 11
metadata .. 12
nseq ... 12
PatternHeatmap ... 13
plotHeatmap ... 14
plotHeatmapList .. 15
plotHeatmapMeta .. 16
plotPatternDensityMap ... 17
plot_clusters ... 18
plot_legend ... 19
PWMScanHeatmap .. 20
rev,Heatmap-method ... 21
scale ... 21
smoothHeatmap .. 22
width,Heatmap-method .. 23
xm ... 23
ym ... 24

Index 25

coords Return or set the coords in a Heatmap

Description

Return or set the coords in a Heatmap

Usage

coords(x)

S4 method for signature 'Heatmap'
coords(x)

coords(x) <- value
CoverageHeatmap

S4 replacement method for signature 'Heatmap'
coords(x) <- value

Arguments

- **x**
 A heatmap

- **value**
 Replacement value

Value

integer, length 2, value of x@coords

Examples

```r
data(HeatmapExamples)
coords(hm) = c(-100, 100)
```

CoverageHeatmap
Generate a Heatmap of coverage

Description

Generate a Heatmap of coverage

Usage

```r
CoverageHeatmap(windows, track, ...)
```

Arguments

- **windows**
 A set of GRanges of equal length

- **track**
 A GRanges or RleList object specifying coverage

- **...**
 additional arguments used by methods

This function generates a Heatmap object from a set of windows and an object containing genome-wide information about coverage. Either a GRanges or an RleList can be used. In the former case, the "weight" parameter is passed directly to the 'coverage' function. If nbin is set, binned coverage is calculated which will save memory and time when plotting and average out variable data.
If the coverage track contains negative values, then the scale will be centered on zero, ie. \(c(-\text{max(abs(image(hm))), max(abs(image(hm))))}\). This makes more sense for most color schemes which are centered on zero, and avoids misleading plots where either positive or negative values are over-emphasised. See `?getScale` for details. The scale can be manually reset if desired using the "scale" method.

- **coords**: Co-ordinates for the heatmap, defaults to \(c(0, \text{width(windows)})\)
- **weight**: Passed to coverage(track) constructor if class(track) == "GRanges"
- **label**: Label for the heatmap
- **nbin**: If set, number of bins to use across each window

Value

A Heatmap object

Methods (by class)

- `windows = GenomicRanges, track = GenomicRanges`: Heatmap of Coverage from 2 GRanges
- `windows = GenomicRanges, track = RleList`: Heatmap of Coverage from GRanges + RleList

Examples

```r
data(HeatmapExamples)
CoverageHeatmap(windows, rle_list, coords=c(-100, 100), label="Example")
```

default_color

Predifined color palettes from RColorBrewer + Rainbow

Description

Predifined color palettes from RColorBrewer + Rainbow

Usage

```r
default_color(col)
```

Arguments

- **col**: Character, RColorBrewer colorscheme or "Rainbow"

This function provides a convenient function to all color palettes from RColorBrewer, and a better version of R’s rainbow function (specifically \(\text{rev(rainbow(9, start=0, end=4/6)})\), so it starts blue and ends with red).

Value

character, a length-9 color palette
getScale

Examples

default_color("Blues")
default_color("Rainbow")

getscale(x, y)

Arguments

x Min/max values for the heatmap
y Min/max values for the heatmap

This function takes min/max values for a heatmap and generates a scale either
starting, ending or centered on zero.

Value

numeric, length 2, a new scale

Examples

getScale(0.5, 5) # c(0, 5)
getScale(-6, -2) # c(-6, 6)
getScale(-6, 2) # c(-6, 6)

Heatmap

Function to create a heatmap object

Description

Function to create a heatmap object

Usage

Heatmap(image, coords = NULL, label = "", nseq = NULL, scale = NULL,
metadata = list())
Arguments

- **image**: A numeric Matrix
- **coords**: A length-2 integer vector
- **label**: A character vector
- **nseq**: An integer
- **scale**: A length-2 vector
- **metadata**: A list containing arbitrary metadata

Using this function avoids calling `new` directly or manually setting `coords` and `nseq` to integers. Other constructors exist for creating heatmaps from data, rather than a raw matrix.

Value

A Heatmap object

See Also

PatternHeatmap CoverageHeatmap PWMScanHeatmap

Examples

```r
data(HeatmapExamples)
hm = Heatmap(mat, coords=c(-100, 100), label="Test")
```

Description

An S4 class to represent a heatmap

Slots

- **image**: A numeric Matrix
- **scale**: A length-2 vector
- **coords**: A length-2 integer vector
- **nseq**: An integer
- **label**: A character vector
- **metadata**: A list containing arbitrary metadata

A class used to represent a heatmap in a simple, self-contained way

Slots can be accessed and set using getters and setters with the same name.

See Also

CoverageHeatmap PatternHeatmap plotHeatmap plotHeatmapMeta
Examples

data(HeatmapExamples)

hm = new("Heatmap",
 image=mat,
 scale=c(0,max(mat)),
 coords=c(-100L, 100L),
 nseq=1000L,
 label="Test",
 metadata=list())

or use the constructor:
hm = Heatmap(mat, coords=c(-100, 100), label="Test")

HeatmapExamples Data for man page examples

Description

Generated Data for examples
An example heatmap
A second example heatmap
An example matrix
An example RleList
An example DNAStringSet
An example PWM
An example GRanges

Usage

hm

hm2

mat

rle_list

string_set

tata_pwm

windows
Format

An object of class Heatmap of length 500.

Value

invisible("HeatmapExamples")

heatmapOptions Generate default options for a Heatmap

Description

Generate default options for a Heatmap

Usage

heatmapOptions(...)
heatmapOptions

legend: Color for label, white is often useful for dark plots
legend.pos: Character, position of legend relative to heatmap: 'l' for left, 'r' for right
legend.ticks: Number of ticks to use on legend.
cex.legend: cex to use for legend marks
refline: Logical, Draw dashed line at coords = 0 label: Logical, plot label or not
label.xpos: x position for label, from left
label.ypos: y position for label, from top
cex.label: cex for axis labels
label.col: Color for label, white is often useful for dark plots
legend: Logical, plot legend (scale indicating values for colors)
legend: Color for label, white is often useful for dark plots
legend.pos: Character, position of legend relative to heatmap: 'l' for left, 'r' for right
legend.ticks: Number of ticks to use on legend.
cex.legend: cex to use for legend marks
refline: Logical, Draw dashed line at coords = 0
refline.width: Width of reference line
transform: Function to transform values before plotting
plot.mai: Length-4 numeric, margins around plot
legend.mai: Length-4 numeric, margins around legend
partition: Numeric, relative sizes of clusters
partition.lines: Logical, plot lines delineating clusters
partition.legend: Logical, plot cluster legend in HeatmapList
partition.col: Character, colours to use for plotting clusters. Defaults to RColorBrewer's Set1
hook: Function called after plotting is complete.

Value

a list containing the specified options

See Also

plotHeatmap plotHeatmapList

Examples

myOptions = heatmapOptions()
myOptions$color = "Reds"
plotHeatmap(hm, options=myOptions)
image

Return or set the image in a Heatmap

Description

Return or set the image in a Heatmap

Usage

```r
## S4 method for signature 'Heatmap'
image(x)

image(x) <- value

## S4 replacement method for signature 'Heatmap'
image(x) <- value
```

Arguments

- `x` A heatmap
- `value` Replacement value

Value

matrix, from hm@image

Examples

```r
data(HeatmapExamples)
image(hm) = log(image(hm))
scale(hm) = c(0, max(image(hm)))
```

label

Return or set the label in a Heatmap

Description

Return or set the label in a Heatmap
Usage

label(x)

S4 method for signature 'Heatmap'
label(x)

label(x) <- value

S4 replacement method for signature 'Heatmap'
label(x) <- value

Arguments

x A heatmap

value Replacement value

Value

count, value of hm@label

Examples

data(HeatmapExamples)
label(hm) = "NewLabel"
label(hm) # "NewLabel"

length,Heatmap-method Return the number of sequences in a heatmap

Description

Return the number of sequences in a heatmap

Usage

S4 method for signature 'Heatmap'
length(x)

Arguments

x A heatmap

Value

integer, value of x@nseq
metadata

Return or set the metadata in a Heatmap

Description
Store arbitrary metadata in a list, if desired.

Usage
metadata(x)

S4 method for signature 'Heatmap'
metadata(x)
metadata(x) <- value

S4 replacement method for signature 'Heatmap'
metadata(x) <- value

Arguments

x A heatmap
value Replacement value

Value
list, value of hm@metadata

Examples
data(HeatmapExamples)
metadata(hm) = list(replicate=1, cell_line="ESC")
metadata(hm)$replicate == 1

nseq

Return or set nseq in a Heatmap

Description
Return or set nseq in a Heatmap
PatternHeatmap

Usage

\[
n\text{seq}(x)
\]

S4 method for signature 'Heatmap'
\[
n\text{seq}(x)
\]

\[
n\text{seq}(x) \leftarrow \text{value}
\]

S4 replacement method for signature 'Heatmap'
\[
n\text{seq}(x) \leftarrow \text{value}
\]

Arguments

- \(x \)
 A heatmap

- \(\text{value} \)
 Replacement value

Value

- integer, value of \(\text{hm@nseq} \)

Examples

\[
data(\text{HeatmapExamples})
\]
\[
n\text{seq}(\text{hm}) = 1000
\]

PatternHeatmap

\begin{itemize}
 \item \textit{Generate a Heatmap of patterns in DNA sequence}
\end{itemize}

Description

Generate a Heatmap of patterns in DNA sequence

Usage

\[
\text{PatternHeatmap}(\text{seq, pattern, ...})
\]

S4 method for signature 'DNAStringSet,character'
\[
\text{PatternHeatmap}(\text{seq, pattern, coords = NULL,}
\text{ min.score = NULL, label = NULL})
\]

S4 method for signature 'DNAStringSet,matrix'
\[
\text{PatternHeatmap}(\text{seq, pattern, coords = NULL,}
\text{ min.score = "80\%", label = NULL})
\]
plotHeatmap

Arguments

seq A DNAString of equal length
pattern A nucleotide pattern or PWM
... additional arguments used by methods
This function creates a Heatmap from a set of DNA sequences. The resulting heatmap will be binary, with 1 representing a match and 0 otherwise. Patterns can be specified as a character vector, eg. "CTCCC", or as a PWM. These arguments are passed to Biostrings functions, 'vmatchPattern' and 'matchPWM'. Character arguments can contain standard ambiguity codes. PWMs must be 4 by n matrices with columns names ACGT. "min.score" is specified either as an absolute value, or more commonly as a percentage e.g. "80 for details. PatternHeatmaps often look much better after smoothing.

coords Co-ordinates for the heatmap, defaults to c(0, width(windows))
min.score Minimum score for PWM match
label Label for the heatmap

Value

A heatmap

Methods (by class)

- seq = DNAStringSet, pattern = character: Heatmap of sequence patterns from sequence and character
- seq = DNAStringSet, pattern = matrix: Heatmap of sequence patterns from sequence and matrix

See Also

smoothHeatmap

Examples

data(HeatmapExamples)
PatternHeatmap(string_set, "TA", coords=c(-100, 100), label="TA")
PatternHeatmap(string_set, tata_pwm, coords=c(-100, 100), min.score="80\%", label="TATA PWM")

plotHeatmap

Plot a Heatmap object to the device

Description

Plot a Heatmap object to the device
Usage
plotHeatmap(heatmap, options = NULL, ...)

S4 method for signature 'Heatmap'
plotHeatmap(heatmap, options = NULL, ...)

Arguments
- heatmap: A heatmap object
- options: A list containing plotting options
- ...: Used for passing individual options

This function will take a heatmap and plot it to the device with the specified options. Options can be passed together in a list or individually as additional arguments. If passing options as a list, it’s best to first create a list containing the default settings using heatmapOptions() and method then setting options individually.

plotHeatmap() does not control device settings at all, these can be set using plotHeatmapList() and the relevant options in heatmapOptions()
See ?heatmapOptions for a full list of options.

Value
invisible(0)

Methods (by class)
- Heatmap: Plot a Heatmap object to the device

See Also
heatmapOptions plotHeatmapList

Examples
data(HeatmapExamples)
plotHeatmap(hm, color="Blues")

plotHeatmapList Plot a list of heatmaps

Description
Plot a list of heatmaps

Usage
plotHeatmapList(heatmap_list, groups = 1:length(heatmap_list),
 options = heatmapOptions(), ...)

plotHeatmapMeta

Plot a Meta-region plot from heatmaps

Arguments

- `heatmap_list`: A list of Heatmaps
- `groups`: Optionally group heatmaps together
- `options`: Heatmap options
- `...`: Additional options

This function takes a list of one or more heatmaps and plots them to a single image tiled horizontally.

The "groups" argument specifies heatmaps to be grouped together and plotted using the same display parameters and a unified scale. `plotHeatmapList` will try to guess the best scale, either starting or finishing at zero, or symmetrical around zero - if this is not the desired behaviour, make sure the scales are identical before the heatmaps are passed to the function.

Options are specified as for `plotHeatmap`, but can be specified per group by passing a list of options instead of a single vector. Note the difference between a length-2 character vector, c("Reds", "Blues"), and a list containing two length-1 character vectors: list("Reds", "Blues").

These are generally large, complex plots, so it can better to plot straight to a file. PNG is preferred since pdf files generated can be if the images are not downsized. The default settings are designed for plots of about 10cm x 20cm per heatmap, but all of the relevant settings can be tweaked using the options. For display-quality images, it helps to increase the resolution at to at least 150ppi, double the default of 72ppi on most systems.

Value

`invisible(0)`

See Also

`plotHeatmap` `heatmapOptions` `plot_legend`

Examples

```r
data(HeatmapExamples)
plotHeatmapList(list(hm, hm2), groups=c(1,2), color=list("Reds", "Blues"))
```

```r
plotHeatmapMeta(hm_list, binsize = 1, colors = gg_col(length(hm_list)),
          addReferenceLine = FALSE)
```
Argument Definitions

hm_list: A list of heatmaps
binsize: Integer, size of bins to use in plot
colors: Color to use for each heatmap
addReferenceLine: Logical, add reference line at zero or not

This function creates a meta-region plot from 1 or more heatmaps with the same coordinates. A meta-region plot graphs the sum of the signal at each position in each heatmap rather than visualising the signal in two dimensions. Often binning is required to smooth noisy signal.

Value

invisible(0)

Examples

```r
data(HeatmapExamples)
plotHeatmapMeta(hm, color="steelblue")
```

Description

Plot heatmaps for several patterns in DNA sequence

Usage

```r
plotPatternDensityMap(seq, patterns, ...)
```

S4 method for signature 'DNAStringSet'
plotPatternDensityMap(seq, patterns, coords = NULL,
 min.score = "80%", sigma = c(3, 3), output.size = NULL,
 options = NULL, ...)

Arguments

seq: DNAStringSet of equal width
patterns: A vector or list of patterns
...: Additional Heatmap plotting options

This function is a convenient wrapper for plotting many different patterns for the same set of sequences. PatternHeatmap() is applied to the sequence for each pattern in the list, they are passed to smoothHeatmap() with the supplied parameters and finally PlotHeatmapList().

If fine-grained control is desired, or you want to mix other plot types, then more information is available in the vignette.
plot_clusters

Description
Plot partition in a separate panel

Usage
plot_clusters(options)

Arguments
options heatmapOptions passed as a list
Two heatmapOptions values are relevant:
* partition Numeric vector containing relative sizes of the clusters
* colors Colors to use for clusters, additional colors are discarded
This function plots a vertical color scale (or legend). With the default parameters, it looks good at about 1/5 the width of a heatmap, about 1cm x 10cm. This function only plots the legend, it does not set margin parameters.

Value
invisible(0)
plot_legend

See Also

plotHeatmapList

Examples

data(HeatmapExamples)
opts = heatmapOptions()
opts$partition = c(1,2,3,4)
par(mai=opts$legend.mai)
plot_clusters(opts)

plot_legend(scale, options)

Arguments

scale Numeric vector contain min and max for the scale
options heatmapOptions passed as a list
 This function plots a vertical color scale (or legend). With the default parameters, it looks good at about 1/5 the width of a heatmap, about 1cm x 10cm. This function only plots the legend, it does not set margin parameters.

Value

invisible(0)

See Also

plotHeatmapList

Examples

data(HeatmapExamples)
opts = heatmapOptions()
opts$color = "Rainbow"
par(mai=opts$legend.mai)
plot_legend(c(0,1), opts)
Description

Generate a Heatmap of PWM Scores in DNA sequence

Usage

PWMScanHeatmap(seq, pwm, ...)

S4 method for signature 'DNAStringSet,matrix'
PWMScanHeatmap(seq, pwm, coords = NULL,
 label = "")

Arguments

seq A DNAString of equal length
pwm A PWM
... additional arguments used by methods
This function creates a heatmap where each point is the score of a PWM match
starting from that position, which can visualise regions of enrichment or exclusion of certain motifs
coords Co-ordinates for the heatmap, defaults to c(0, width(windows))
label Label for the heatmap

Value

A heatmap

Methods (by class)

- seq = DNAStringSet, pwm = matrix: Heatmap of PWM Scores

See Also

PatternHeatmap

Examples

data(HeatmapExamples)
PatternHeatmap(string_set, tata_pwm, coords=c(-100, 100), label="TATA Scan")
rev,Heatmap-method

Description

Reflect a heatmap in the x axis

Usage

```r
## S4 method for signature 'Heatmap'
rev(x)
```

Arguments

- `x` A heatmap

Value

A heatmap

scale

Description

Return or set the scale in a Heatmap

Usage

```r
scale(x)
```

```r
## S4 method for signature 'Heatmap'
scale(x)
```

```r
scale(x) <- value
```

```r
## S4 replacement method for signature 'Heatmap'
scale(x) <- value
```

Arguments

- `x` A heatmap
- `value` Replacement value
smoothHeatmap

Value
numeric, length 2, the value of hm@scale

Examples
data(HeatmapExamples)
scale(hm) = c(-1000, 1000)

smoothHeatmap

Smooth a heatmap

Description
Smooth a heatmap

Usage
smoothHeatmap(heatmap, ...)

S4 method for signature 'Heatmap'
smoothHeatmap(heatmap, sigma = c(3, 3),
output.size = dim(image(heatmap)), algorithm = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>heatmap</td>
<td>A heatmap object</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments to S4 methods</td>
</tr>
<tr>
<td>sigma</td>
<td>Numeric, length2, (recycled if length 1)</td>
</tr>
<tr>
<td>output.size</td>
<td>Numeric, length 2</td>
</tr>
<tr>
<td>algorithm</td>
<td>"kernel" or "blur"</td>
</tr>
</tbody>
</table>

This function smooths a heatmap using either binned kernel density (more efficient for binary heatmaps) or gaussian blur.

Sigma controls the SD of the kernel in both cases, defined in terms of pixels. This means that if you have very different x and y dimensions (e.g. a 200bp heatmap around 10000 promoters) you will need to compensate by setting sigma[2] higher to get the same visual effect in both dimensions.

"output.size" specifies the dimensions of the output matrix. This can be useful to reduce plotting time significantly.

Smoothing can use either a kernel density estimate or a blurring function. The methods implemented are KernSmooth::bkde2D and EBImage::filter2 with a gaussian filter. The kernel based method assumes we are smoothing individual points so the value of these points are ignored. This is most useful for smoothing PatternHeatmaps where each cell in the matrix is either 1 or 0. For non-binary heatmaps, blur is most appropriate. Not setting this parameter will choose the method automatically.

Scaling the output heatmap is handled as in CoverageHeatmap.
width,Heatmap-method

Value

A heatmap

Methods (by class)

- Heatmap: Smooth a heatmap

Examples

data(HeatmapExamples)
hm_smoothed = smoothHeatmap(hm, sigma=c(5,5), algorithm="blur")

width,Heatmap-method Return the width of sequence represented in a heatmap

Description

Return the width of sequence represented in a heatmap

Usage

S4 method for signature 'Heatmap'
width(x)

Arguments

x A heatmap

Value

integer

xm

Generate co-ordinates for each row of the image matrix of a Heatmap

Description

Generate co-ordinates for each row of the image matrix of a Heatmap

Usage

xm(x)

S4 method for signature 'Heatmap'
xm(x)
Arguments

x A Heatmap

Value
numeric, a list of co-ordinates for plotting values in hm@image

Methods (by class)

• Heatmap: Generate co-ordinates for each column of the image matrix of a Heatmap

Examples

data(HeatmapExamples)
ym(hm)

ym Generate co-ordinates for each column of the image matrix of a Heatmap

Description
Generate co-ordinates for each column of the image matrix of a Heatmap

Usage

ym(x)

S4 method for signature 'Heatmap'
ym(x)

Arguments

x A Heatmap

Value
numeric, a list of co-ordinates for plotting values in hm@image

Methods (by class)

• Heatmap: Generate co-ordinates for each column of the matrix

Examples

data(HeatmapExamples)
ym(hm)
Index

* datasets
 HeatmapExamples, 7
 coords, 2
 coords,Heatmap-method (coords), 2
 coords<-(coords), 2
 coords<-,Heatmap-method (coords), 2
 CoverageHeatmap, 3
 CoverageHeatmap,GenomicRanges,GenomicRanges-method (CoverageHeatmap), 3
 CoverageHeatmap,GenomicRanges,RleList-method (CoverageHeatmap), 3
 default_color, 4
 getScale, 5
 Heatmap, 5
 Heatmap-class, 6
 HeatmapExamples, 7
 heatmapOptions, 8
 hm (HeatmapExamples), 7
 hm2 (HeatmapExamples), 7
 image, 10
 image,Heatmap-method (image), 10
 image<-(image), 10
 image<-,Heatmap-method (image), 10
 label, 10
 label,Heatmap-method (label), 10
 label<-(label), 10
 label<-,Heatmap-method (label), 10
 length,Heatmap-method, 11
 mat (HeatmapExamples), 7
 metadata, 12
 metadata,Heatmap-method (metadata), 12
 metadata<-(metadata), 12
 metadata<-,Heatmap-method (metadata), 12
 nseq, 12
 nseq,Heatmap-method (nseq), 12
 nseq<-(nseq), 12
 nseq<-,Heatmap-method (nseq), 12
 PatternHeatmap, 13
 PatternHeatmap,DNAStringSet,character-method (PatternHeatmap), 13
 PatternHeatmap,DNAStringSet,matrix-method (PatternHeatmap), 13
 plot_clusters, 18
 plotLegend, 19
 plotHeatmap, 14
 plotHeatmap,Heatmap-method (plotHeatmap), 14
 plotHeatmapList, 15
 plotHeatmapMeta, 16
 plotPatternDensityMap, 17
 plotPatternDensityMap,DNAStringSet-method (plotPatternDensityMap), 17
 PWMScanHeatmap, 20
 PWMScanHeatmap,DNAStringSet,matrix-method (PWMScanHeatmap), 20
 rev,Heatmap-method, 21
 rle_list (HeatmapExamples), 7
 scale, 21
 scale,Heatmap-method (scale), 21
 scale<-(scale), 21
 scale<-,Heatmap-method (scale), 21
 smoothHeatmap, 22
 smoothHeatmap,Heatmap-method (smoothHeatmap), 22
 string_set (HeatmapExamples), 7
 tata_pwm (HeatmapExamples), 7
 width,Heatmap-method, 23
 windows (HeatmapExamples), 7
xm, 23
xm, Heatmap-method (xm), 23

ym, 24
ym, Heatmap-method (ym), 24