Package ‘hipathia’

March 20, 2024

Title HiPathia: High-throughput Pathway Analysis

Version 3.2.0

Description Hipathia is a method for the computation of signal transduction along signaling pathways from transcriptomic data. The method is based on an iterative algorithm which is able to compute the signal intensity passing through the nodes of a network by taking into account the level of expression of each gene and the intensity of the signal arriving to it. It also provides a new approach to functional analysis allowing to compute the signal arriving to the functions annotated to each pathway.

Depends R (>= 4.1), igraph (>= 1.0.1), AnnotationHub(>= 2.6.5), MultiAssayExperiment(>= 1.4.9), SummarizedExperiment(>= 1.8.1)

License GPL-2

Encoding UTF-8

Imports coin, stats, limma, grDevices, utils, graphics, preprocessCore, servr, DelayedArray, matrixStats, methods, S4Vectors, ggplot2, ggpubr, dplyr, tibble, visNetwork, reshape2, MetBrewer

RoxygenNote 7.2.2

Suggests BiocStyle, knitr, rmarkdown, testthat

VignetteBuilder knitr

biocViews Pathways, GraphAndNetwork, GeneExpression, GeneSignaling, GO

LazyData true

git_url https://git.bioconductor.org/packages/hipathia

git_branch RELEASE_3_18

git_last_commit 251de34

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-20
R topics documented:

annotate_paths 3
brca ... 4
brca_data 5
brca_design 5
comp .. 6
create_report 6
DAcomp 8
DAdata 9
DAoverview 10
DAreport 11
DAsummary 12
DAtop ... 13
define_colors 14
do_pca 14
do_wilcoxon 15
exp_data 16
get_go_names 17
get_highest_sig_ancestor 17
get_nodes_data 18
get_node_names 19
get_paths_data 20
get_pathways_annotations 21
get_pathways_list 22
get_pathways_summary 22
get_pathway_functions 23
get_path_names 24
go_vals 25
heatmap_plot 25
hhead .. 27
hidata 28
hipathia 28
igraphs_upgrade 29
is_accepted_species 30
load_annofuns 30
load_annots 31
load_entrez_hgnc 31
load_gobp_frame 32
annotate_paths

Annotates functions to pathways

Description

Annotates functions from a database to each pathway

Usage

```
annotate_paths(metaginfo, dbannot)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>metaginfo</td>
<td>Pathways object</td>
</tr>
<tr>
<td>dbannot</td>
<td>Either a string indicating which precomputed annotation to use ("uniprot" for Uniprot Keywords or "GO" for Gene Ontology terms), or a dataframe with the annotation of the genes to the functions. First column are gene symbols, second column the functions.</td>
</tr>
</tbody>
</table>
Value

Object of annotations from pathways to functions

```r
# @examples
# pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", ", hsa04012"))
# annotate_paths(pathways, "GO")
# @export
```

brca

BRCA gene expression dataset as SummarizedExperiment

Description

A dataset containing a matrix with the Gene expression of 40 samples from the BRCA-US project from The Cancer Genome Atlas (TCGA), and their experimental design, containing 20 "Tumor" samples 20 "Normal" samples.

Usage

```r
data(brca)
```

Format

SummarizedExperiment. The assay is a matrix with 40 columns and 18638 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples. The colData() is a data.frame with 1 column and 40 rows, including the experimental design of the 40 samples from the BRCA-US project from TCGA. Field group is the type of sample, either "Tumor" or "Normal".

Details

The gene expression matrix includes 40 samples. The data has been log-transformed and normalized with TMM.

Value

SummarizedExperiment including a matrix with 40 columns and 18638 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples.

Source

https://cancergenome.nih.gov/
brca_data

BRCA gene expression dataset

Description
Gene expression of 40 samples from the BRCA-US project from The Cancer Genome Atlas (TCGA).

Usage
data(brca_data)

Format
Matrix with 40 columns and 18638 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples.

Details
Gene expression matrix with 40 samples taken from the BRCA-US project from The Cancer Genome Atlas (TCGA). The data has been log-transformed and normalized with TMM.

Value
Matrix with 40 columns and 18638 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples.

Source
https://cancergenome.nih.gov/

brca_design

BRCA experimental design

Description
Experimental design of the gene expression matrix brca_data with 40 samples taken from the BRCA-US project from The Cancer Genome Atlas (TCGA). 20 samples are "Tumor" samples and 20 samples are "Normal" samples.

Usage
data(brca_design)

Format
Dataframe with 1 column and 40 rows, including the experimental design of the 40 samples from the BRCA-US project from TCGA. Field group is the type of sample, either "Tumor" or "Normal".
Value

Dataframe with 1 column and 40 rows, including the experimental design of the 40 samples from the BRCA-US project from TCGA. Field group is the type of sample, either "Tumor" or "Normal".

Source

https://cancergenome.nih.gov/

comp Wilcoxon comparison of pathways object

Description

Comparison object returned by `hipathia::do_wilcoxon` function, after calling `comp <- do_wilcoxon(path_vals, sample_group, g1 = "Tumor", g2 = "Normal")` `path_names <- get_path_names(pathways, rownames(comp))` `comp <- cbind(path_names, comp)`

Usage

data(comp)

Format

Table with 1868 rows and 5 columns

Value

Pathway comparison result

create_report Create visualization HTML

Description

Saves the results of a Wilcoxon comparison for the Hipathia pathway values into a folder, and creates a HTML from which to visualize the results on top of the pathways. The results are stored into the specified folder. If this folder does not exist, it will be created. The parent folder must exist.
create_report

Usage

create_report(
 comp,
 metaginfo,
 output_folder = NULL,
 path = NULL,
 node_colors = NULL,
 group_by = "pathway",
 conf = 0.05,
 verbose = FALSE
)

Arguments

comp Comparison object as given by the do_wilcoxon function
metaginfo Pathways object as returned by the load_pathways function
output_folder Name of the folder in which the report will be stored.
path Absolute path to the parent directory in which 'output_folder' will be saved. If it is not provided, it will be created in a temp folder.
node_colors List of colors with which to paint the nodes of the pathways, as returned by the node_color_per_de function. Default is white.
group_by How to group the subpathways to be visualized. By default they are grouped by the pathway to which they belong. Available groupings include "uniprot", to group subpathways by their annotated Uniprot functions, "GO", to group subpathways by their annotated GO terms, and "genes", to group subpathways by the genes they include. Default is set to "pathway".
conf Level of significance. By default 0.05.
verbose Boolean, whether to show details about the results of the execution

Value

Saves the results and creates a report to visualize them through a server in the specified output_folder. Returns the folder where the report has been stored.

Examples

data(comp)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320",
 "hsa04012"))
report <- create_report(comp, pathways, "save_results")

Not run:
data(results)
data(brca)
sample_group <- colData(brca)[,1]
colors_de <- node_color_per_de(results, pathways, sample_group, "Tumor", "Normal")
DAcomp <- create_report(comp, pathways, "save_results",
node_colors = colors_de)

End(Not run)

DAcomp

Compares the gene expression, pathway activation level and the function activation level of the

Description

Compares the gene expression, pathway activation level and the function activation level of the

Usage

```r
DAcomp(
  hidata,
  groups,
  expdes,
  g2 = NULL,
  path.method = "wilcoxon",
  node.method = "limma",
  fun.method = "wilcoxon",
  order = FALSE,
  paired = FALSE,
  adjust = TRUE,
  conf.level = 0.05,
  sel_assay = 1
)
```

Arguments

- `hidata` Either a SummarizedExperiment object or a matrix, returned by function `hipathia`.
- `groups` Either a character indicating the name of the column in colData including the classes to compare, or a character vector with the class to which each sample belongs. Samples must be ordered as in hidata.
- `expdes` String, either an equation expression to pas to `limma`, or the label of the first group to be compared
- `g2` String, label of the second group to be compared, if not specified in expdes.
- `path.method` String, method to be used when comparing pathways. Options include `wilcoxon` (default, performs a Wilcoxon test comparing conditions expdes and g2 - in this case, mandatory parameter) and `limma` (performs a limma DE analysis using functions `lmFit`, `contrasts.fit` and `eBayes` using the formula in expdes or comparing conditions expdes and g2.)
node.method String, method to be used when comparing nodes. Options include
wilcoxon (performs a Wilcoxon test comparing conditions expdes and g2 - in this case,
mandatory parameter) and limma (default, performs a limma DE analysis using
functions lmFit, contrasts.fit and eBayes using the formula in expdes or
comparing conditions expdes and g2).

fun.method String, method to be used when comparing functions. Options include
wilcoxon (default, performs a Wilcoxon test comparing conditions expdes and g2 - in this
case, mandatory parameter) and limma (performs a limma DE analysis using
functions lmFit, contrasts.fit and eBayes using the formula in expdes or
comparing conditions expdes and g2).

order Boolean, whether to order the results table by the FDRp.value column. Default
is FALSE.

paired Boolean, whether the samples to be compared are paired. If TRUE, function
wilcoxsign_test from package coin is used. If FALSE, function wilcox.test
from package stats is used.

adjust Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method.
Default is TRUE.

conf.level Numeric, cut off for significance. Default is 0.05.

sel_assay Character or integer, indicating the assay to be normalized in the Summarized-
Experiment. Default is 1.

Value
List including comparison results for nodes, pathways and functions, if present.

Examples

```r
data(hidata)
comp <- DAcomp(hidata, groups = "group", expdes = "Tumor", g2 = "Normal")
```

Description

Comparison object returned by hipathia::DAcomp function, after calling DAdata <- DAcomp(hidata,
"group", g1 = "Tumor", g2 = "Normal")

Usage

```r
data(DAdata)
```
Format

List object with 4 entries: Nodes includes a matrix with 6826 rows and 8 columns Paths includes a matrix with 1876 rows and 13 columns Uni.terms includes a matrix with 142 rows and 6 columns GO.terms includes a matrix with 1654 rows and 6 columns

Value

List of tibbles with the comparison results

DAoverview

Table and plot of total number of altered and not altered nodes, paths and functions (Uniprot keywords and/or GO terms, if present).

Description

Table and plot of total number of altered and not altered nodes, paths and functions (Uniprot keywords and/or GO terms, if present).

Usage

`DAoverview(DAdata, conf.level = 0.05, adjust = TRUE, colors = "hiro")`

Arguments

- **DAdata**: List of comparison results, returned by function `DAcomp`
- **conf.level**: Numeric, cut off for significance. Default is 0.05.
- **adjust**: Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
- **colors**: String with the color scheme or vector of colors to be used. See `define_colors` for available options. Default is "hiro".

Value

Plot and tibble including the number of total, altered, UP- and DOWN-regulated features for nodes, paths and functions if present.

Examples

```r
data(DAdata)
DAoverview(DAdata)
```
DAreport

Create visualization HTML

Description

Saves the results of a DAdata comparison for the Hipathia pathway values into a folder, and creates a HTML from which to visualize the results on top of the pathways. The results are stored into the specified folder. If this folder does not exist, it will be created. The parent folder must exist.

Usage

```
DAreport(
  DAdata,
  pathways,
  conf.level = 0.05,
  adjust = TRUE,
  group_by = "pathway",
  colors = "classic",
  output_folder = NULL,
  path = NULL,
  verbose = TRUE
)
```

Arguments

- **DAdata**: List of comparison results, returned by function DAcomp.
- **pathways**: Pathways object as returned by the load_pathways function
- **conf.level**: Level of significance. By default 0.05.
- **adjust**: Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
- **group_by**: How to group the subpathways to be visualized. By default they are grouped by the pathway to which they belong. Available groupings include "uniprot", to group subpathways by their annotated Uniprot functions, "GO", to group subpathways by their annotated GO terms, and "genes", to group subpathways by the genes they include. Default is set to "pathway".
- **colors**: String with the color scheme or vector of colors to be used. See define_colors for available options. Default is "hiro".
- **output_folder**: Name of the folder in which the report will be stored.
- **path**: Absolute path to the parent directory in which `output_folder` will be saved. If it is not provided, it will be created in a temp folder.
- **verbose**: Boolean, whether to show details about the results of the execution

Value

Saves the results and creates a report to visualize them through a server in the specified output_folder. Returns the folder where the report has been stored.
Examples

```r
data(DAdata)
data(pathways)
DAreport(DAdata, pathways)
```

DAsummary Lists and plots the top \(n \) altered pathways, taking into account the number of altered.

Description

Lists and plots the top \(n \) altered pathways, taking into account the number of altered.

Usage

```r
DAsummary(
  DAdata,  # List of comparison results, returned by function DAcomp.
  n = 10,  # Number of top features to show.
  conf.level = 0.05,  # Numeric, cut off for significance. Default is 0.05.
  adjust = TRUE,      # Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
  ratio = FALSE,      # Boolean, whether to plot the ratio of significant paths with respect to the total paths in the pathway. Default is FALSE.
  colors = "hiro",   # String with the color scheme or vector of colors to be used. See define_colors for available options. Default is "hiro".
  order.by = "number"  # String, how to order table of results. Available options include ratio (default, uses the ratio of significant paths with respect to the total paths in the pathway) and number (uses the number of significant paths in the pathway).
)
```

Arguments

- **DAdata**: List of comparison results, returned by function DAcomp.
- **n**: Number of top features to show.
- **conf.level**: Numeric, cut off for significance. Default is 0.05.
- **adjust**: Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
- **ratio**: Boolean, whether to plot the ratio of significant paths with respect to the total paths in the pathway. Default is FALSE.
- **colors**: String with the color scheme or vector of colors to be used. See define_colors for available options. Default is "hiro".
- **order.by**: String, how to order table of results. Available options include ratio (default, uses the ratio of significant paths with respect to the total paths in the pathway) and number (uses the number of significant paths in the pathway).

Value

Plot and tibble including top \(n \) altered pathways.
Examples

data(DAdata)
DAsummary(DAdata)

Description

Lists and plots the top \(n \) altered nodes, paths and functions (Uniprot
keywords and/or GO terms, if present).

Usage

DAtop(DAdata, n = 10, conf.level = 0.05, adjust = TRUE, colors = "hiro")

Arguments

- **DAdata**: List of comparison results, returned by function DAcomp.
- **n**: Number of top features to show.
- **conf.level**: Numeric, cut off for significance. Default is 0.05.
- **adjust**: Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
- **colors**: String with the color scheme or vector of colors to be used. See define_colors for available options. Default is "hiro".

Value

Plot and list of tables including top \(n \) altered features for nodes, paths and functions if present.

Examples

data(DAdata)
DAtop(DAdata)
define_colors

Color palettes to be used in plots.

Description

Color palettes to be used in plots.

Usage

define_colors(colors, no.col = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colors</td>
<td>String with the color scheme or vector of colors to be used. Available predefined options include: hipathia, classic, soft, okee, hiro, new, vg, orchid.</td>
</tr>
<tr>
<td>no.col</td>
<td>String with the color given to non-significant nodes, if not given in parameter colors.</td>
</tr>
</tbody>
</table>

Value

Plot and list of tables including top n altered features for nodes, paths and functions if present.

Examples

```r
define_colors("hiro")
```

do_pca

Performs a Principal Components Analysis

Description

Performs a Principal Components Analysis

Usage

do_pca(data, sel_assay = 1, cor = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>SummarizedExperiment or matrix of values to be analyzed. Samples must be represented in the columns.</td>
</tr>
<tr>
<td>sel_assay</td>
<td>Character or integer, indicating the assay to be normalized in the Summarized-Experiment. Default is 1.</td>
</tr>
<tr>
<td>cor</td>
<td>A logical value indicating whether the calculation should use the correlation matrix or the covariance matrix. (The correlation matrix can only be used if there are no constant variables.)</td>
</tr>
</tbody>
</table>
Value

`do_pca` returns a list with class `princomp`.

Examples

```r
data(path_vals)
pca_model <- do_pca(path_vals[seq_len(ncol(path_vals)),])
```

Description

Performs a Wilcoxon test for the values in `sel_vals` comparing conditions `g1` and `g2`.

Usage

```r
doiswilcoxon(
  data,  # Either a SummarizedExperiment object or a matrix, containing the values. Columns represent samples.
  group,  # Either a character indicating the name of the column in colData including the classes to compare, or a character vector with the class to which each sample belongs. Samples must be ordered as in data
  g1,  # String, label of the first group to be compared
  g2,  # String, label of the second group to be compared
  paired = FALSE,  # Boolean, whether the samples to be compared are paired. If TRUE, function `wilcoxon_test` from package coin is used. If FALSE, function `wilcox.test` from package stats is used.
  adjust = TRUE,  # Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method
  sel_assay = 1,  # Character or integer, indicating the assay to be normalized in the Summarized-Experiment. Default is 1.
  order = FALSE  # Boolean, whether to order the results table by the `FDRp.value` column. Default is FALSE.
)
```

Arguments

- `data` Either a SummarizedExperiment object or a matrix, containing the values. Columns represent samples.
- `group` Either a character indicating the name of the column in colData including the classes to compare, or a character vector with the class to which each sample belongs. Samples must be ordered as in data.
- `g1` String, label of the first group to be compared.
- `g2` String, label of the second group to be compared.
- `paired` Boolean, whether the samples to be compared are paired. If TRUE, function `wilcoxon_test` from package coin is used. If FALSE, function `wilcox.test` from package stats is used.
- `adjust` Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method.
- `sel_assay` Character or integer, indicating the assay to be normalized in the Summarized-Experiment. Default is 1.
- `order` Boolean, whether to order the results table by the `FDRp.value` column. Default is FALSE.
Value

Dataframe with the result of the comparison

Examples

data(path_vals)
data(brca_design)
sample_group <- brca_design[,colnames(path_vals),"group"]
comp <- do_wilcoxon(path_vals, sample_group, g1 = "Tumor", g2 = "Normal")

exp_data

Normalized BRCA gene expression dataset

Description

Experimental design matrix once expression matrix brca_data has been translated to Entrez genes with translate_matrix and normalized using normalize_data.

Usage

data(exp_data)

Format

Matrix with 40 columns and 3184 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples.

Details

To create the data, the following functions have been called: trans_data <- translate_matrix(brca_data, "hsa") exp_data <- normalize_data(trans_data)

Value

Matrix with 40 columns and 3184 rows. Row names are Entrez IDs and column names are the TCGA identifiers of the samples.
get_go_names

Translates GO IDs to GO names

Description

Translates the GO IDs to readable and comprehensible names.

Usage

```r
get_go_names(names, species, maxchar = NULL, disambiguate = FALSE)
```

Arguments

- `names`: Character vector with the GO IDs to be translated.
- `species`: Species of the samples.
- `maxchar`: Integer, describes the number of maximum characters to be shown. By default no filter is applied.
- `disambiguate`: Boolean, whether to return unique strings by disambiguating with numbers.

Value

A character vector including the readable names of the GO IDs, in the same order as provided.

Examples

```r
data(go_vals)
get_go_names(rownames(go_vals), "hsa")
```

get_highest_sig_ancestor

Get highest common GO ancestor of GO annotations

Description

Get highest common GO ancestor of GO annotations

Usage

```r
get_highest_sig_ancestor(
  go_terms,
  go_comp,
  metaginfo,
  unique = TRUE,
  pval = 0.05
)
```
get_nodes_data

Arguments

- `go_terms`: GO terms for which the highest common ancestors are to be looked for.
- `go_comp`: Wilcoxon comparison of the matrix of GO values as returned by `do_wilcoxon`.
- `metaginfo`: Pathways object
- `unique`: Boolean, whether to return only one highest significant GO ancestor or all of them. By default, TRUE.
- `pval`: P-value cut-off. Default values is set to 0.05.

Value

- highest common ancestors
- `@export`

Description

This function returns the object with the levels of activation of each node for each sample. Rows represent the nodes and columns represent the samples. Each cell is the value of activation of a node in a sample.

Row names are the IDs of the nodes. In order to transform IDs into readable names, use `get_node_names`.

Effector subpathways are subgraphs of a pathway including all the paths leading to an effector protein. Effector proteins are defined as final nodes in the graph. Each effector protein (final node) defines its own effector subpathway as the nodes and edges in a path leading to it.

Decomposed subpathways are subgraphs of a pathway including all the paths starting in a receptor protein and ending in an effector protein. Receptor proteins are defined as initial nodes and effector proteins are defined as final nodes in the graph. Each effector subpathway can be decomposed in as many decomposed subpathways as initial nodes it includes.

Usage

```r
get_nodes_data(results, matrix = FALSE)
```

Arguments

- `results`: Results object as returned by `hipathia`.
- `matrix`: Boolean, if TRUE the function returns a matrix object, if FALSE (as default) returns a SummarizedExperiment object.

Value

Object, either a SummarizedExperiment or a matrix, with the levels of activation of each decomposed subpathway for each sample.
get_node_names

Examples

```r
data(results)
path_vals <- get_paths_data(results)
```

get_node_names
Tranlates node IDs to node names

Description

Translates the node IDs to readable and comprehensible names.

The names of the nodes are encoded as "pathway: name", where "pathway" is the pathway to which the node belongs and "node" is the name of the node. Nodes may include more genes than the one depicted in the name.

Usage

```r
get_node_names(metaginfo, names, maxchar = NULL)
```

Arguments

- `metaginfo`: Pathways object
- `names`: Character vector with the subpathway IDs to be translated
- `maxchar`: Integer, describes the number of maximum characters to be shown. By default no filter is applied.

Value

A character vector including the readable names of the subpathways IDs, in the same order as provided.

Examples

```r
data(results)
pathways_list <- c("hsa03320", "hsa04012")
pathways <- load_pathways(species = "hsa", pathways_list)
node_vals <- get_nodes_data(results)
translated_names <- get_node_names(pathways, rownames(node_vals))
```
get_paths_data

Gets the object of subpathway activation values

Description

This function returns the object with the levels of activation of each subpathway for each sample. Rows represent the subpathways and columns represent the samples. Each cell is the value of activation of a subpathway in a sample.

Rownames are the IDs of the subpathways. In order to transform IDs into readable names, use get_path_names.

Effector subpathways are subgraphs of a pathway including all the paths leading to an effector protein. Effector proteins are defined as final nodes in the graph. Each effector protein (final node) in a pathway defines its own effector subpathway as the nodes and edges in a path leading to it.

Decomposed subpathways are subgraphs of a pathway including all the paths starting in a receptor protein and ending in an effector protein. Receptor proteins are defined as initial nodes and effector proteins are defined as final nodes in the graph. Each effector subpathway can be decomposed in as many decomposed subpathways as initial nodes it includes.

Usage

get_paths_data(results, matrix = FALSE)

Arguments

results Results object as returned by hipathia.
matrix Boolean, if TRUE the function returns a matrix object, if FALSE (as default) returns a SummarizedExperiment object.

Value

Object, either a SummarizedExperiment or a matrix, with the levels of activation of each decomposed subpathway for each sample.

Examples

data(results)
path_vals <- get_paths_data(results)
get_pathways_annotations

Get Pathways functional annotations

Description

Get functional annotation of the pathways, either for a particular annotation or a stored one.

Usage

```r
get_pathways_annotations(pathway_names, metaginfo, dbannot, collapse = FALSE)
```

Arguments

- `pathway_names`: Character vector of the names of the pathways
- `metaginfo`: Pathways object
- `dbannot`: Either a string indicating which precomputed annotation to use ("uniprot" for Uniprot Keywords or "GO" for Gene Ontology terms), or a dataframe with the annotation of the genes to the functions. First column are gene symbols, second column the functions.
- `collapse`: Boolean, whether to collapse all functions of the same path in a single character string.

Value

2-columns matrix with the annotations of each pathway ID in the annotation `dbannot`.

Examples

```r
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
## Not run: get_pathways_annotations(pathway_names, pathways, "GO")
get_pathways_annotations(pathway_names, pathways, "uniprot")
```
get_pathways_list

Lists the IDs of the pathways in a pathways object

Description

Lists the IDs of the pathways included in the pathways object metaginfo

Usage

get_pathways_list(metaginfo)

Arguments

metaginfo Pathways object

Value

List of the pathway IDs included in the pathways object

Examples

```r
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
pathways_list <- get_pathways_list(pathways)
```

get_pathways_summary

Compute pathway summary

Description

Computes a summary of the results, summarizing the number and proportion of up- and down-regulated subpathways in each pathway.

Usage

get_pathways_summary(comp, metaginfo, conf = 0.05)

Arguments

comp Comparison data frame as returned by the do_wilcoxon function.
metaginfo Pathways object
conf Level of significance of the comparison for the adjusted p-value. Default is 0.05.
get_pathway_functions

Value

Table with the summarized information for each of the pathways. Rows are the analyzed pathways. Columns are: * num_total_paths Number of total subpathways in which each pathway is decomposed. * num_significant_paths Number of significant subpathways in the provided comparison. * percent_significant_paths Percentage of significant subpathways from the total number of subpathways in a pathway. * num_up_paths Number of significant up-regulated subpathways in the provided comparison. * percent_up_paths Percentage of significant up-regulated subpathways from the total number of subpathways in a pathway. * num_down_paths Number of significant down-regulated subpathways in the provided comparison. * percent_down_paths Percentage of significant down-regulated subpathways from the total number of subpathways in a pathway.

Examples

data(comp)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
get_pathways_summary(comp, pathways)

get_pathway_functions Returns functions related to a pathway

Description

Returns functions related to a pathway

Usage

get_pathway_functions(
 pathigraph,
 dbannot,
 entrez2hgnc,
 use_last_nodes = TRUE,
 unique = TRUE
)

Arguments

pathigraph Pathway object
dbannot Dataframe with the annotation of the genes to the functions. First column are gene symbols, second column the functions.
entrez2hgnc Relation between Entrez and HGNC genes.
use_last_nodes Boolean, whether to annotate functions to the last nodes of the pathways or not. If FALSE, functions will refer to all the nodes of the pathway.
unique Boolean, whether to return the first function for each path.
Value

List of annotations from pathways to functions

Description

Translates the subpathway IDs to readable and comprehensible names.

For effector subpathways, the names of the subpathways are encoded as "pathway: effector_protein", where "pathway" is the pathway to which the subpathway belongs and "effector_protein" is the name of the last node in the subpathway.

For decomposed subpathways, the names of the subpathways are encoded as "pathway: receptor_protein - effector_protein", where "pathway" is the pathway to which the subpathway belongs, "receptor_protein" is the name of the initial node of the subpathway and "effector_protein" is the name of the last node in the subpathway.

Usage

get_path_names(metaginfo, names, maxchar = NULL)

Arguments

- metaginfo: Pathways object
- names: Character vector with the subpathway IDs to be translated
- maxchar: Integer, describes the number of maximum characters to be shown. By default no filter is applied.

Value

A character vector including the readable names of the subpathways IDs, in the same order as provided.

Examples

data(path_vals)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
translated_names <- get_path_names(pathways, rownames(path_vals))
go_vals
Gene Ontology matrix of the BRCA gene expression dataset

Description

Matrix of Gene Ontology terms activation values for the BRCA dataset. This matrix is computed from the Results object returned by the hipathia function by means of the quantify_terms function.

Usage

```r
data(go_vals)
```

Format

Matrix with 40 columns and 1654 rows. Row names are Gene Ontology terms and column names are the TCGA identifiers of the samples.

Details

```r
go_vals <- quantify_terms(results, pathways, "GO")
```

Value

Matrix with 40 columns and 1654 rows. Row names are Gene Ontology terms and column names are the TCGA identifiers of the samples.

heatmap_plot
Plots subpathways heatmap

Description

Plots a heatmap with the values of the subpathways.

Usage

```r
heatmap_plot(
    data,
    group = NULL,
    sel_assay = 1,
    colors = "classic",
    sample_clust = TRUE,
    variable_clust = FALSE,
    labRow = NULL,
    labCol = NULL,
    sample_colors = NULL,
```
Arguments

- **data**: Either a SummarizedExperiment or a matrix with the values to be plotted. Rows are features and columns are samples.
- **group**: Either a character indicating the name of the column in colData including the classes to plot, or a character vector with the class to which each sample belongs. Samples must be ordered as in data. By default, all samples will be assigned to the same class.
- **sel_assay**: Character or integer, indicating the assay to be normalized in the SummarizedExperiment. Default is 1.
- **colors**: Either a character vector with colors or a key name indicating the color scheme to be used in the heatmap. If a character vector is provided, it is recommended to provide at least 3 colors. Three different predefined color schemes may be selected by providing a key name. Options are: *
 - **classic**: Blue for lower values, white for medium values, red for higher values.
 - **hipathia**: Hipathia predefined color scheme: Green for lower values, white for medium values, orange for higher values.
 - **redgreen**: Green for lower values, black for medium values, red for higher values. By default, the classic color scheme is applied.
- **sample_clust**: Boolean, whether to cluster samples (columns). By default TRUE.
- **variable_clust**: Boolean, whether to cluster variables (rows). By default FALSE. If TRUE, rows with 0 variance are removed.
- **labRow, labCol**: Character vectors with row and column labels to be used. By default rownames(data) or colnames(data) are used, respectively.
- **sample_colors**: Named character vector of colors. The names of the colors must be the classes in group. Each sample will be assigned the color corresponding to its class, taken from the group vector. By default, a color will be assigned automatically to each class.
- **scale**: Boolean, whether to scale each row to the interval [0,1]. Default is TRUE.
- **save_png**: Path to the file where the image as PNG will be saved. By default, the image is not saved.
- **legend**: Boolean, whether to display a legend.
- **legend_xy**: Position for the legend, in case legend is TRUE.
- **pch**: Graphical parameter from par() function.
- **main**: Main title of the image

Value

Heatmap of the values of the subpathways
hhead

Head function for SummarizedExperiment, data.frames and matrix objects

Description

Shows the first \(n\) rows and the first \(n\) columns of a matrix, in case the matrix has more than \(n+5\) rows or columns. Otherwise, it shows all the rows or columns, respectively.

Usage

```r
hhead(mat, n = 5, sel_assay = 1)
```

Arguments

- `mat`: Object to be shown
- `n`: Number of rows and columns
- `sel_assay`: Character or integer, indicating the assay to be translated in the SummarizedExperiment. Default is 1.

Value

Matrix with as much as \(n\) rows and \(n\) columns.

Examples

```r
mat <- matrix(rnorm(100), ncol = 10)
hhead(mat)
hhead(mat, 3)
hhead(mat, 7)
```
hidata

Results object

Description

Results object returned by hipathia::hipathia function, after calling hidata <- hipathia(brca, pathways, verbose = TRUE, uni.terms = TRUE, GO.terms = TRUE)

Usage

data(hidata)

Format

MultiAssayExperiment object of 4 listed experiments, with the activity values of nodes, paths and functional annotations for each sample: Nodes includes a matrix with 6826 rows Paths includes a matrix with 1876 rows Uni.terms includes a matrix with 142 rows GO.terms includes a matrix with 1654 rows

Value

Object of results, including nodes, pathways and functional information.

hipathia

Computes the level of activation of the subpathways for each of the samples

Description

@@importFrom igraph

Usage

hipathia(
 genes_vals,
 metaginfo,
 uni.terms = FALSE,
 GO.terms = FALSE,
 sel_assay = 1,
 decompose = FALSE,
 scale = TRUE,
 maxnum = 100,
 verbose = TRUE,
 tol = 1e-06,
 test = TRUE
)
igraphs_upgrade

Upgrade igraphs to current version

Description

Upgrades the igraph objects in metaginfo object to the corresponding version of the igraph package.

Arguments

genes_vals A SummarizedExperiment or matrix with the normalized expression values of the genes. Rows represent genes and columns represent samples. Rownames() must be accepted gene IDs.

metaginfo Pathways object

uni.terms Boolean, whether to compute functional analysis with Uniprot keywords.

GO.terms Boolean, whether to compute functional analysis with Gene Ontology terms.

sel_assay Character or integer, indicating the assay to be processed in the SummarizedExperiment. Only applied if genes_vals is a SummarizedExperiment. Default is 1.

decompose Boolean, whether to compute the values for the decomposed subpathways. By default, effector subpathways are computed.

scale Boolean, whether to scale the values matrix to [0,1]. Default is TRUE.

maxnum Number of maximum iterations when iterating the signal through the loops into the pathways

verbose Boolean, whether to show details about the results of the execution of hipathia

tol Tolerance for the difference between two iterations when iterating the signal through the loops into the pathways

test Boolean, whether to test the input objects. Default is TRUE.

Value

A MultiAssayExperiment object with the level of activation of the subpathways from the pathways in pathigraphs for the experiment with expression values in genes_vals.

Examples

data(exp_data)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
results <- hipathia(exp_data, pathways, verbose = TRUE)
Not run: results <- hipathia(exp_data, pathways, decompose = TRUE, verbose = FALSE)
End(Not run)
Usage
igraphs_upgrade(metaginfo)

Arguments
metaginfo Pathways object

Value
The pathways object with the upgraded igraph objects

is_accepted_species Checks whether a species is accepted

Description
Checks whether a species is accepted

Usage
is_accepted_species(species)

Arguments
species Species of the samples.

Value
Boolean, whether species is accepted or not.

load_annofuns Loads annotations object

Description
Loads annotations object

Usage
load_annofuns(db, species)

Arguments
db Database to be used. Either "GO" or "uniprot".
species Species of the samples.

Value
load_annots

Value
Annotations object

Description
Loads functional annotations from HGNC to the selected database.

Usage
```
load_annots(db, species)
```

Arguments
- `db`: Database to be used. Either "GO" or "uniprot".
- `species`: Species of the samples.

  ```
  #@examples #load_annots("GO", "hsa")
  ```

Value
Functional annotations from HGNC to the selected database.

load_entrez_hgnc

Description
Loads table of translation from HGNC to Entrez

Usage
```
load_entrez_hgnc(species)
```

Arguments
- `species`: Species of the samples.

  ```
  #@examples #load_entrez_hgnc("hsa")
  ```

Value
Table of translation from HGNC to Entrez
load_mgi

load_gobp_frame Loads GO graph information

Description

```ruby
# @examples #load_gobp_frame()
```

Usage

```ruby
load_gobp_frame()
```

Value

GO graph information

load_gobp_net Loads GO graph

Description

```ruby
# @examples #load_gobp_net()
```

Usage

```ruby
load_gobp_net()
```

Value

GO graph

load_mgi Loads object with graph information

Description

Loads object with graph information

Usage

```ruby
load_mgi(species)
```

Arguments

- `species`: Species of the samples.
  ```ruby
  # @examples #load_mgi("hsa")
  ```
load_pathways

Load the pathways object.

Description

Loads the pathways object, which includes information about the pathways to be analyzed.

Usage

```r
load_pathways(species, pathways_list = NULL)
```

Arguments

- **species**
 - Species of the samples.
- **pathways_list**
 - Vector of the IDs of the pathways to load. By default all available pathways are load.

Details

The object of pathways includes information about the pathways and the subpathways which will be analyzed. This object must be provided to some of the functions (like `hipathia` or `quantify_terms`) in the package. These functions will analyze all the pathways included in this object. By default, all available pathways are load. In order to restrict the analysis to a predefined set of pathways, specify the set of pathways to load with the parameter `pathways_list`.

Value

An `pathways` object including:
- `species` Species to which the pathways are related.
- `pathigraphs` List of Pathigraph objects. Each Pathigraph contains the necessary information of a pathway for it to be analyzed with Hipathia.
- `all_genes` List of all the genes included in the selection of pathways stored in pathigraphs.
- `eff_norm` Vector of normalization values for effector subpathways.
- `path_norm` Vector of normalization values for decomposed subpathways.

Examples

```r
# Not run: pathways <- load_pathways("hsa")  # Loads all pathways for human
pathways <- load_pathways("mmu", c("mmu03320", "mmu04024", "mmu05200"))  
# Loads pathways 03320, 04024 and 05200 for mouse
```
load_pseudo_mgi
Loads object with pseudo graph information

Description
Loads object with pseudo graph information

Usage
load_pseudo_mgi(species, group_by)

Arguments
- **species**
 Species of the samples.
- **group_by**
 How to group the subpathways to be visualized. By default they are grouped by the pathway to which they belong. Available groupings include "uniprot", to group subpathways by their annotated Uniprot functions, "GO", to group subpathways by their annotated GO terms, and "genes", to group subpathways by the genes they include.

 #@examples #load_pseudo_mgi("hsa", "uniprot")

Value
Pseudo graph information object

load_xref
Loads table of references

Description
Loads table of references

Usage
load_xref(species)

Arguments
- **species**
 Species of the samples.

 #@examples #load_xref("hsa")

Value
Table of references
Create a Pathways object from SIF files

Description

Creates a Pathways object from the information of a pathway stored in a SIF file with some attributes. This pathways object can be used by function hipathia to analyze data.

Usage

```r
mgi_from_sif(sif.folder, spe, entrez_symbol = NULL, dbannot = NULL)
```

Arguments

- `sif.folder` Path to the folder in which SIF and ATT files are stored.
- `spe` Species
- `entrez_symbol` Relation between Entrez (NCBI) genes and gene symbols. Data.frame with 2 columns: First column is the EntrezGene ID, second column is the gene Symbol. The genes in the nodes of the pathways should be defined by Entrez IDs in the SIF and ATT files of the pathways. In order to be more readable, gene names are used when plotting the pathways.
- `dbannot` Functional annotation of the genes in the pathways to create function nodes.

Value

A pathways object with the same structure of that returned by function load_pathways.

Plots multiple components of a PCA

Description

Plots multiple components of a PCA analysis computed with do_pca

Usage

```r
multiple_pca_plot(
  fit,
  group = NULL,
  sample_colors = NULL,
  comps = seq_len(3),
  plot_variance = FALSE,
  legend = TRUE,
  cex = 2,
  pch = 20,
)```
main = "Multiple PCA plot",
save_png = NULL
)

Arguments

fit     princomp object as returned by do_pca
group   Vector with the group to which each sample belongs. The samples must be
         ordered as in path_vals. By default, all samples will be assigned to the same
class.
sample_colors Named character vector of colors. The names of the colors must be the classes
in group. Each sample will be assigned the color corresponding to its class,
taken from the group vector. By default a color will be assigned automatically
to each class.
comps   Vector with the components to be plot
plot_variance Logical, whether to plot the cumulative variance.
legend  Boolean, whether to plot a legend in the plot. Default is TRUE.
cex     Graphical parameter from par() function.
pch     Graphical parameter from par() function.
main    Main title of the image
save_png Path to the file where the image as PNG will be saved. By default, the image is
         not saved.

Value

Plots multiple components of a PCA

Examples

data(path_vals)
sample_group <- brca_design[colnames(path_vals),"group"]
pca_model <- do_pca(path_vals[seq_len(ncol(path_vals)),],)
multiple_pca_plot(pca_model, sample_group, cex = 3, plot_variance = TRUE)

node_color

Get colors of the nodes from a comparison file

Description

Computes the colors of the nodes depending on the sign and p.value from the provided file. Sig-
nificant up- and down-regulated nodes are depicted with the selected color, with a gradient towards
the non-significant color depending on the value of the p-value. Smaller p-values give rise to purer
colors than higher p-values.
Usage

node_color(
  comp,
  metaginfo,
  group_by = "pathway",
  colors = "classic",
  conf = 0.05,
  adjust = TRUE
)

Arguments

comp Comparison file as returned by do_wilcoxon. Must include a column named "UP/DOWN" with the sign of the comparison coded as UP or DOWN, a column named "p.value" of raw p.values and a column named "FDRp.value" of adjusted p.values.

metaginfo Object of pathways.

group_by How to group the subpathways to be visualized. By default they are grouped by the pathway to which they belong. Available groupings include "uniprot", to group subpathways by their annotated Uniprot functions, "GO", to group subpathways by their annotated GO terms, and "genes", to group subpathways by the genes they include. Default is set to "pathway".

colors Either a character vector with 3 colors (indicating, in this order, down-regulation, non-significance and up-regulation colors) or a key name indicating the color scheme to be used. Options are:

conf Level of significance of the comparison for the adjusted p-value.

adjust Boolean, whether to adjust the p.value from the comparison. Default is TRUE.

Value

List of color vectors, named by the pathways to which they belong. The color vectors represent the differential expression of the nodes in each pathway.

Slots

classic ColorBrewer blue, white and colorBrewer red.

hipathia Hipathia predefined color scheme: Green, white and orange. By default classic color scheme is applied.

Examples

data(results)
data(brca)
pathways_list <- c("hsa03320", "hsa04012")
pathways <- load_pathways(species = "hsa", pathways_list)
comp <- do_wilcoxon(results[["nodes"]], "group", "Tumor", "Normal")

colors_de <- node_color(comp, pathways)
node_color_per_de  Colors of the nodes by its differential expression

Description
Performs a Limma differential expression on the nodes and computes the colors of the nodes depending on it. Significant up- and down-regulated nodes are depicted with the selected color, with a gradient towards the non-significant color depending on the value of the p-value. Smaller p-values give rise to purer colors than higher p-values.

Usage
node_color_per_de(
  results,
  metaginfo,
  group,
  expdes,
  g2 = NULL,
  group_by = "pathway",
  colors = "classic",
  conf = 0.05,
  adjust = TRUE
)

Arguments
results  Object of results as provided by the hipathia function
metaginfo  Object of pathways
group  Character indicating the column in which the group variable is stored, in case the object provided to hipathia was a SummarizedExperiment, or a vector with the class to which each sample belongs. Samples must be ordered as in results.
expdes  String, either the comparison to be performed or the label of the first group to be compared.
g2  String, label of the second group to be compared. Only necessary in case expdes is the name of the first group, not the comparison.
group_by  How to group the subpathways to be visualized. By default they are grouped by the pathway to which they belong. Available groupings include "uniprot", to group subpathways by their annotated Uniprot functions, "GO", to group subpaths by their annotated GO terms, and "genes", to group subpaths by the genes they include. Default is set to "pathway".
colors  Either a character vector with 3 colors (indicating, in this order, down-regulation, non-significance and up-regulation colors) or a key name indicating the color scheme to be used. Options are:
conf  Level of significance of the comparison for the adjusted p-value.
adjust  Boolean, whether to adjust the p.value from the comparison. Default is TRUE.
Value

List of color vectors, named by the pathways to which they belong. The color vectors represent the differential expression of the nodes in each pathway.

Slots

classic  ColorBrewer blue, white and colorBrewer red.
hipathia  Hipathia predefined color scheme: Green, white and orange. By default classic color scheme is applied.

Examples

data(results)
data(brca)
pathways_list <- c("hsa03320", "hsa04012")
pathways <- load_pathways(species = "hsa", pathways_list)

colors_de <- node_color_per_de(results, pathways, "group", "Tumor - Normal")
colors_de <- node_color_per_de(results, pathways, "group", "Tumor", "Normal")

normalize_data  

Normalize expression data from a SummarizedExperiment or matrix to be used in hipathia

Description

Transforms the rank of the SummarizedExperiment or matrix of gene expression to [0,1] in order to be processed by hipathia. The transformation may be performed in two different ways. If percentil = FALSE, the transformation is a re-scaling of the rank of the matrix. If percentil = TRUE, the transformation is performed assigning to each cell its percentil in the corresponding distribution. This option is recommended for distributions with very long tails.

Usage

normalize_data(
  data,
  sel_assay = 1,
  by_quantiles = FALSE,
  by_gene = FALSE,
  percentil = FALSE,
  truncation_percentil = NULL
)

Arguments

data  Either a SummarizedExperiment or a matrix of gene expression.

sel_assay  Character or integer, indicating the assay to be normalized in the Summarized-Experiment. Default is 1.

by_quantiles  Boolean, whether to normalize the data by quantiles. Default is FALSE.

by_gene  Boolean, whether to transform the rank of each row of the matrix to [0,1]. Default is FALSE.

percentil  Boolean, whether to take as value the percentil of each sample in the corresponding distribution.

truncation_percentil  Real number p in [0,1]. When provided, values beyond percentil p are truncated to the value of percentil p, and values beyond 1-p are truncated to percentil 1-p. By default no truncation is performed.

Details

This transformation may be applied either to the whole matrix (by setting by_gene = FALSE), which we strongly recommend, or to each of the rows (by setting by_gene = TRUE), allowing each gene to have its own scale.

A previous quantiles normalization may be applied by setting by_quantiles = TRUE. This is recommended for noisy data.

For distributions with extreme outlayer values, a percentil p may be given to the parameter truncation_percentil. When provided, values beyond percentil p are truncated to the value of percentil p, and values beyond 1-p are truncated to percentil 1-p. This step is performed before any other transformation. By default no truncation is performed.

Value

Matrix of gene expression whose values are in [0,1].

Examples

data("brca_data")
trans_data <- translate_data(brca_data, "hsa")
exp_data <- normalize_data(trans_data)
exp_data <- normalize_data(trans_data, by_quantiles = TRUE, truncation_percentil=0.95)
normalize_paths
Normalize the pathway matrix by rows

Description
Due to the nature of the Hipathia method, the length of a pathway may influence its signal rank. In order to compare signal values among subpathways, we strongly recommend to normalize the matrix with this normalization.

Usage
normalize_paths(path_vals, metaginfo)

Arguments
- path_vals: SummarizedExperiment or matrix of the pathway values
- metaginfo: Pathways object

Details
This function removes the bias caused by the length of the subpathways by dividing by the value obtained from running the method with a basal value of 0.5 at each node.

Value
SummarizedExperiment or matrix of normalized pathway values, depending on the class of path_vals.

Examples
```
data(path_vals)
paths <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
path_normalized <- normalize_paths(path_vals, pathways)
```

paths_to_go_ancestor
Create path results table with highest significant GO ancestors

Description
Create table of results with the comparison of the paths together with the GO functional annotation and the highest significant GO ancestor (HSGOA).

Usage
paths_to_go_ancestor(pathways, comp_paths, comp_go, pval = 0.05)
Arguments

- **pathways**: Pathways object
- **comp_paths**: Wilcoxon comparison of the matrix of pathways values as returned by `do_wilcoxon`.
- **comp_go**: Wilcoxon comparison of the matrix of GO values as returned by `do_wilcoxon`.
- **pval**: P-value cut-off. Default values is set to 0.05.

Details

The table returns in each row: the name of a pathway and its Wilcoxon comparison information (direction, adjusted p-value), the GO term to which the path is related (not necessarily unique), the Wilcoxon comparison information for this GO (direction, adjusted p-value), the HSGOA of this GO and its Wilcoxon comparison information (direction, adjusted p-value).

The HSGOA is computed as the GO term with minimum level from all the significant (with respect to value `pval`) ancestors of a GO. The level of a GO term is computed as the number of nodes in the shortest path from this GO term to the term "GO:0008150". The ancestors of a node are defined as all the nodes from which a path can be defined from the ancestor to the node.

Value

Table of comparisons with Highest common ancestors

Examples

```r
data(comp)
data(go_vals)
data(brca_design)
data(path_vals)
sample_group <- brca_design[,colnames(path_vals),"group"]
comp_go <- do_wilcoxon(go_vals, sample_group, g1 = "Tumor", g2 = "Normal")
Not run: pathways <- load_pathways(species = "hsa", pathways_list =
c("hsa03320", "hsa04012"))
table <- paths_to_go_ancestor(pathways, comp, comp_go)
End(Not run)
```

---

### pathways

*Pathways object including pathways hsa03320 and hsa04012.*

Description

Pathways object returned by `hipathia::load_pathways` function, after calling `pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))`

Usage

`data(pathways)`
pathway_comparison_plot

Format
Pathways object

Value
Pathways object including pathways has03320 and has04012.

Description
Plots the layout of a pathway, coloring the significant subpathways in different colors depending on whether they are significantly up- or down-regulated. Nodes may be also colored providing a suitable list of colors for each node. Function node_color_per_de assigns colors to the nodes depending on their differential expression.

Usage
```r
pathway_comparison_plot(
 comp,
 metaginfo,
 pathway,
 conf = 0.05,
 node_colors = NULL,
 colors = "classic"
)
```

Arguments
- `comp`: Comparison data frame as returned by the do_wilcox function.
- `metaginfo`: Pathways object.
- `pathway`: Name of the pathway to be plotted.
- `conf`: Level of significance of the comparison for the adjusted p-value. Default is 0.05.
- `node_colors`: List, named by the pathway name, including the color of each node for each pathway.
- `colors`: Either a character vector with 3 colors (indicating, in this order, down-regulation, non-significance and up-regulation colors) or a key name indicating the color scheme to be used. Options are:

Value
Image in which a pathway is plotted. Edges are colored so that the UP- and DOWN-activated subpathways are identified.
Slots

classic  ColorBrewer blue, white and colorBrewer red.
hipathia  Hipathia predefined color scheme: Green, white and orange. By default classic color scheme is applied.

Examples

data(comp)
pathways_list <- c("hsa03320", "hsa04012")
pathways <- load_pathways(species = "hsa", pathways_list)
pathway_comparison_plot(comp, metaginfo = pathways, pathway = "hsa03320")

## Not run:
data(results)
data(brca)
colors_de <- node_color_per_de(results, pathways, group, "Tumor", "Normal")
pathway_comparison_plot(comp, metaginfo = pathways, pathway = "hsa04012", node_colors = colors_de)

## End(Not run)

---

path_vals  
*Pathways matrix of the BRCA gene expression dataset*

Description

Matrix of pathway activation values for the BRCA dataset. This matrix is extracted from the Results object returned by the hipathia function by means of the get_paths_matrix function.

Usage

data(path_vals)

Format

Matrix with 40 columns and 1868 rows. Row names are Pathway IDs and column names are the TCGA identifiers of the samples.

Details

path_vals <- get_paths_matrix(results)

Value

Matrix with 40 columns and 1868 rows. Row names are Pathway IDs and column names are the TCGA identifiers of the samples.
pca_plot

Plots two components of a PCA

Description

Plots two components of a PCA computed with do_pca

Usage

pca_plot(
  fit,
  group = NULL,
  sample_colors = NULL,
  cp1 = 1,
  cp2 = 2,
  legend = TRUE,
  legend_xy = "bottomleft",
  cex = 2,
  pch = 20,
  mgp = c(3, 1, 0),
  main = "PCA plot",
  save_png = NULL
)

Arguments

fit
princomp object as returned by do_pca

group
Vector with the group to which each sample belongs. The samples must be ordered as in rownames(fit$scores). By default, all samples will be assigned to the same class.

sample_colors
Named character vector of colors. The names of the colors must be the classes in group. Each sample will be assigned the color corresponding to its class, taken from the group vector. By default a color will be assigned automatically to each class.

cp1
Integer, number of the component in the X-axis. Default is 1, the first component.

cp2
Integer, number of the component in the Y-axis. Default is 2, the second component.

legend
Boolean, whether to plot a legend in the plot. Default is TRUE.

legend_xy
Situation of the legend in the plot. Available options are: "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".

cex
Graphical parameter from par() function.

pch
Graphical parameter from par() function.

mgp
Graphical parameter from par() function.
plotVG

Title of the graphics

save_png

Path to the file where the image as PNG will be saved. By default, the image is not saved.

Value

Plots two components of a PCA

Examples

data(path_vals)
sample_group <- brca_design[ colnames(path_vals), "group" ]
pca_model <- do_pca(path_vals[ seq_len(ncol(path_vals)) ], )
pca_plot(pca_model, sample_group)

plotVG

Plots a pathway with or without the comparison information, using the visNetwork library.

Description

Plots a pathway with or without the comparison information, using the visNetwork library.

Usage

plotVG(
  name,
  pathways,
  DAdata = NULL,
  colors = "hiro",
  conf = 0.05,
  adjust = TRUE,
  main = "Pathway",
  submain = "",
  no.col = "BlanchedAlmond",
  height = "800px"
)

Arguments

name
KEGG ID of the pathway to plot.

pathways
Pathways object.

DAdata
List of comparison results, returned by function DAcomp.

colors
String with the color scheme or vector of colors to be used. See define_colors for available options. Default is "hiro".
quantify_terms

conf Numeric, cut off for significance. Default is 0.05.
adjust Boolean, whether to adjust the p.value with Benjamini-Hochberg FDR method. Default is TRUE.
main Title of the plot.
submain Subtitle of the plot.
no.col String with the color given to non-significant nodes.
height Height of the plot. Default is "800px".

Value
Plot of the pathway.

Examples

```r
data(pathways)
plotVG("hsa03320", pathways)

data(DAdata)
plotVG("hsa04012", pathways, DAdata)
```

---

quantify_terms Computes the level of activation of the functions related to the previously computed subpathways

Description
Computes the level of activation of the functions related to the previously computed subpathways

Usage

```r
quantify_terms(
 results,
 metaginfo,
 dbannot,
 out_matrix = FALSE,
 normalize = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>results</td>
<td>List of results as returned by the hipathia function</td>
</tr>
<tr>
<td>metaginfo</td>
<td>Pathways object</td>
</tr>
<tr>
<td>dbannot</td>
<td>Either a string indicating which precomputed annotation to use (&quot;uniprot&quot; for Uniprot Keywords or &quot;GO&quot; for Gene Ontology terms), or a dataframe with the annotation of the genes to the functions. First column are gene symbols, second column the functions.</td>
</tr>
</tbody>
</table>
out_matrix  Boolean, whether the output object should be a matrix object. Default is FALSE, returning a SummarizedExperiment object.

normalize  Boolean, whether to normalize the matrix of pathway values with normalize_paths before quantifying the signal. Due to the nature of the Hipathia method, in which the length of each pathway may alter its signal rank, we strongly recommend to perform this normalization. This normalization removes the bias. Default is set to TRUE.

Value

Matrix with the level of activation of the functions in dbannot

Examples

data(results)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
go_values <- quantify_terms(results, pathways, "GO")
uniprot_values <- quantify_terms(results, pathways, "uniprot")

<table>
<thead>
<tr>
<th>results</th>
<th>Results object</th>
</tr>
</thead>
</table>

Description

Results object returned by hipathia::hipathia function, after calling results <- hipathia(exp_data, pathways, verbose=TRUE)

Usage

data(results)

Format

Object of results, including pathways information.

Value

Object of results, including pathways information.
### Description

Saves results to a folder. In particular, it saves the matrix of subpathway values, a table with the results of the provided comparison, the accuracy of the results and the .SIF and attributes of the pathways.

#### Usage

```r
save_results(results, comp, metaginfo, output_folder = NULL, path = NULL)
```

#### Arguments

- **results**: Results object as returned by the `hipathia` function.
- **comp**: Comparison as returned by the `do_wilcoxon` function.
- **metaginfo**: Pathways object
- **output_folder**: Name of the folder in which the results will be stored.
- **path**: Absolute path to the parent directory in which `output_folder` will be saved. If it is not provided, it will be created in a temp folder.

#### Value

Creates a folder in disk in which all the information to browse the pathway results is stored.

#### Examples

```r
data(results)
data(comp)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
save_results(results, comp, pathways, "output_results")
```

### top_pathways

**Computes pathway significance**

#### Description

Performs a test for each pathway checking if the number of significant paths is significant, compared to not having any of the paths as significant.

#### Usage

```r
top_pathways(comp)
```
Arguments

comp Comparison data frame as returned by the do_wilcoxon function.

Value

Table with the names of the pathways and their p-value for the Fisher test comparing the proportion of significant subpaths vs. 0.

Examples

data(comp)
top_pathways(comp)

translate_data

Translation of the rownames IDs of a SummarizedExperiment to Entrez IDs.

Description

Translates the IDs in the rownames of a SummarizedExperiment to Entrez IDs. For accepted IDs to be transformed see the DOCUMENTATION.

Usage

translate_data(data, species, sel_assay = 1, verbose = TRUE)

Arguments

data Either a SummarizedExperiment object or a matrix of gene expression.
species Species of the samples.
sel_assay Character or integer, indicating the assay to be translated in the SummarizedExperiment. Default is 1.
verbose Boolean, whether to show details about the results of the execution.

Value

Either a SummarizedExperiment or a matrix (depending on the input type) of gene expression with Entrez IDs as rownames.

Examples

data("brca_data")
trans_data <- translate_data(brca_data, "hsa")
translate_matrix  Translation of the rownames IDs of a matrix to Entrez IDs.

Description

Translates the IDs in the rownames of a matrix to Entrez IDs. For accepted IDs to be transformed see the DOCUMENTATION.

Usage

translate_matrix(exp, species, verbose = TRUE)

Arguments

exp  Matrix of gene expression.
species  Species of the samples.
verbose  Boolean, whether to show details about the results of the execution.

Value

Matrix of gene expression with Entrez IDs as rownames.

visualize_report  Visualize a HiPathia report

Description

Visualize a HiPathia report

Usage

visualize_report(output_folder, port = 4000)

Arguments

output_folder  Folder in which results to visualize are stored
port  Port to use

Value

The instructions to visualize a HiPathia report in a web browser
Examples

```r
data(comp)
pathways <- load_pathways(species = "hsa", pathways_list = c("hsa03320", "hsa04012"))
report <- create_report(comp, pathways, "save_results")
visualize_report(report)

Not run:
data(results)
data(brca)
sample_group <- colData(brca)[,1]
colors_de <- node_color_per_de(results, pathways, sample_group, "Tumor", "Normal")
report <- create_report(comp, pathways, "save_results", node_colors = colors_de)
visualize_report(report)
visualize_report(report, port = 5000)

End(Not run)
```
## Index

### *datasets*
- brca, 4
- brca_data, 5
- brca_design, 5
- comp, 6
- DAdata, 9
- exp_data, 16
- go_vals, 25
- hidata, 28
- path_vals, 44
- pathways, 42
- results, 48

- annotate_paths, 3
- brca, 4
- brca_data, 5
- brca_design, 5

- comp, 6
- create_report, 6

- DAcomp, 8
- DAdata, 9
- DAoverview, 10
- DAreport, 11
- DAsummary, 12
- DAtop, 13
- define_colors, 14
- do_pca, 14
- do_wilcoxon, 15

- exp_data, 16

- get_go_names, 17
- getHighestSigAncestor, 17
- getNodeNames, 19
- getNodesData, 18
- getPathNames, 24
- getPathsData, 20
- get_pathway_functions, 23

- get_pathways_annotations, 21
- get_pathways_list, 22
- get_pathways_summary, 22
- go_vals, 25

- heatmap_plot, 25
- hhead, 27
- hidata, 28
- hipathia, 28

- igraphs_upgrade, 29
- is_accepted_species, 30

- load_annofuns, 30
- load_annots, 31
- load_entrez_hgnc, 31
- load_gobp_frame, 32
- load_gobp_net, 32
- load_mgi, 32
- load_pathways, 33
- load_pseudo_mgi, 34
- load_xref, 34

- mgi_from_sif, 35
- multiple_pca_plot, 35

- node_color, 36
- node_color_per_de, 38
- normalize_data, 39
- normalize_paths, 41

- path_vals, 44
- paths_to_go_ancestor, 41
- pathway_comparison_plot, 43
- pathways, 42
- pca_plot, 45
- plotVG, 46

- quantify_terms, 47

- results, 48
save_results, 49

top_pathways, 49
translate_data, 50
translate_matrix, 51

visualize_report, 51