Package ‘iCNV’

February 19, 2024

Title Integrated Copy Number Variation detection
Version 1.22.0
Author Zilu Zhou, Nancy Zhang
Maintainer Zilu Zhou <zhouzilu@pennmedicine.upenn.edu>
Description Integrative copy number variation (CNV) detection from multiple platform and experimental design.
Depends R (>= 3.3.1), CODEX
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports fields, ggplot2, truncnorm, tidyr, data.table, dplyr, grDevices, graphics, stats, utils, rlang
Suggests knitr, rmarkdown, WES.1KG.WUGSC
VignetteBuilder knitr
biocViews ImmunoOncology, ExomeSeq, WholeGenome, SNP, CopyNumberVariation, HiddenMarkovModel

R topics documented:

 bambaf_from_vcf .. 2
 bed_generator ... 3
 chr ... 4
bambaf_from_vcf

Get BAM baf information from vcf

Description

If your vcf follow the format in the example, you could use this function to extract NGS baf from vcf files. Remember to load library before hands. Save 6 lists, each list has N entry. N = # of individuals (or vcf file) ngs_baf.nm: name of the bamfiles; ngs_baf.chr: the chromosome; ngs_baf.pos: the position of the variants; ngs_baf: the BAF of the variants; ngs_baf.id: the ID of the variants; filenm:the file name

Usage

bambaf_from_vcf(dir = ".", vcf_list, chr = NULL, projname = "")
bed_generator

Generate BED file for WGS dataset.

Arguments

- **dir**
 The directory to all the vcf stored; default is right in this folder. Type character. Default '.'

- **vcf_list**
 All the vcf names stored in vcf.list; could use command:"ls *.vcf > vcf.list" to generate. Type character.

- **chr**
 Specify the chromosome you want to generate. Must be of int from 1-22. If not specify, this function will generate all chromosomes. Default NULL

- **projname**
 Name of the project. Type character. Default "

Value

- **void**

Examples

```r
dir <- system.file("extdata", package="iCNV")
bambaf_from_vcf(dir, 'bam_vcf.list', projname='icnv.demo.')
bambaf_from_vcf(dir, 'bam_vcf.list', chr=22, projname='icnv.demo.')
```

Description

Default position generated from USCS genome browser

Usage

```r
bed_generator(chr = numeric(), hg = numeric(), start = NULL, end = NULL, by = 1000)
```

Arguments

- **chr**
 Specify the chromosome you want to generate. Must be of int from 1-22. Type integer.

- **hg**
 Specify the coordinate you want to generate from. Start and end position of hg19 and hg38 have been pre-implemented. Type integer.

- **start**
 The start position of your BED file. Default NULL

- **end**
 The end position of your BED file. Default NULL

- **by**
 The chunk of your DNA for each bin. Type integer. Default 1000.

Value

- **void**
Examples

- `bed_generator(chr=22, hg=38)`
- `bed_generator(22,38,5001,10000,by=500)`

<table>
<thead>
<tr>
<th>chr</th>
<th>chromosome of the example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

chr

Data chromosome

Usage

```r
chr
```

Format

integer

Value

22

<table>
<thead>
<tr>
<th>filenm</th>
<th>Name of the file</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Example NGS VCF files for the 1000 Genome Project, value stored at filenm

Usage

```r
filenm
```

Format

vector with NGS vcf file names

Value

File names for the NGS vcf
get_array_input

Get array information from given format

Description

If your array input file follow the format in the example, you could use this function to extract array LRR and baf. Remember to load library before hands. Save 4*[# of chr] lists, each list has N entry. N = # of individuals snp_lrr: SNP LRR intensity; snp_lrr.pos: the position of the SNPs snp_baf: the BAF of the SNPs; snp_baf.pos: the position of the SNPs

Usage

get_array_input(dir = character(), pattern = character(), chr = NULL, projname = "")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>A string. The directory path to the folder where store signal intensity file according to chr. Type character</td>
</tr>
<tr>
<td>pattern</td>
<td>A string. The pattern of all the intensity file. Type character</td>
</tr>
<tr>
<td>chr</td>
<td>Specify the chromosome you want to generate. Must be of int from 1-22. If not specify, this function will generate files for all chromosomes. Default NULL</td>
</tr>
<tr>
<td>projname</td>
<td>Name of the project. Type character</td>
</tr>
</tbody>
</table>

Value

void

Examples

```r
dir <- system.file("extdata", package="iCNV")
pattern <- paste0("*.csv.arrayicnv")
get_array_input(dir,pattern,chr=22,projname='icnv.demo.')
```

iCNV_detection

CNV detection

Description

Copy number variation detection tool for germline data. Able to combine intensity and BAF from SNP array and NGS data.
Usage

\[
\text{iCNV_detection}(\text{ngs_plr} = \text{NULL}, \text{snp_lrr} = \text{NULL}, \text{ngs_baf} = \text{NULL}, \\
\text{snp_baf} = \text{NULL}, \text{ngs_plr}_\text{pos} = \text{NULL}, \text{snp_lrr}_\text{pos} = \text{NULL}, \\
\text{ngs_baf}_\text{pos} = \text{NULL}, \text{snp_baf}_\text{pos} = \text{NULL}, \text{maxIt} = 50, \text{visual} = 0, \\
\text{projname} = "\text{iCNV}.", \text{CN} = 0, \text{mu} = c(-3, 0, 2), \text{cap} = \text{FALSE})
\]

Arguments

- \text{ngs_plr}: A list of NGS intensity data. Each entry is an individual. If no NGS data, no need to specify.
- \text{snp_lrr}: A list of SNP array intensity data. Each entry is an individual. If no SNP array data, no need to specify.
- \text{ngs_baf}: A list of NGS BAF data. Each entry is an individual. If no NGS data, no need to specify.
- \text{snp_baf}: A list of SNP array BAF data. Each entry is an individual. If no SNP array data, no need to specify.
- \text{ngs_plr}_\text{pos}: A list of NGS intensity position data. Each entry is an individual with dimensions= (#of bins or exons, 2(start and end position)). If no NGS data, no need to specify.
- \text{snp_lrr}_\text{pos}: A list of SNP array intensity position data. Each entry is an individual with length=#of SNPs. If no SNP array data, no need to specify.
- \text{ngs_baf}_\text{pos}: A list of NGS BAF position data. Each entry is an individual with length=#of BAFs. If no NGS data, no need to specify.
- \text{snp_baf}_\text{pos}: A list of SNP array BAF position data. Each entry is an individual with length=#of BAFs. If no SNP array data, no need to specify.
- \text{maxIt}: An integer number indicate the maximum number of EM iteration if not converged during parameter inference. Type integer. Default 50.
- \text{visual}: An indicator variable with value 0,1,2. 0 indicates no visualization, 1 indicates basic visualization, 2 indicates complete visualization (Note visual 2 only work for single platform and integer CN inferenced). Type integer. Default 0
- \text{projname}: A string as the name of this project. Type character. Default ‘iCNV’
- \text{CN}: An indicator variable with value 0,1 for whether wants to infer exact copy number. 0 no exact CN, 1 exact CN. Type integer. Default 0.
- \text{mu}: A length tree vector specify means of intensity in mixture normal distribution (Deletion, Diploid, Duplication). Default \(c(-3,0,2)\)
- \text{cap}: A boolean decides whether we cap insane intensity value due to double deletion or multiple amplification. Type logical. Default False

Value

1. CNV inference, contains CNV inference, Start and end position for each inference, Conditional probability for each inference, \(\text{mu}\) for mixture normal, \(\text{sigma}\) for mixture normal, probability of CNVs, \(\text{Z score}\) for each inference.
2. exact copy number for each CNV inference, if \(\text{CN}=1\).
icnv_output_to_gb

Examples

icnv call without genotype (just infer deletion, duplication)
projname <- 'icnv.demo.'
icnv_res0 <- iCNV_detection(ngs_plr,snp_lrr,
ngs_baf,snp_baf,
ngs_plr.pos,snp_lrr.pos,
ngs_baf.pos,snp_baf.pos,
projname=projname,CN=0,mu=c(-3,0,2),cap=TRUE,visual = 1)

icnv call with genotype inference and complete plot
projname <- 'icnv.demo.geno.'
icnv_res1 <- iCNV_detection(ngs_plr,snp_lrr,
ngs_baf,snp_baf,
ngs_plr.pos,snp_lrr.pos,
ngs_baf.pos,snp_baf.pos,
projname=projname,CN=1,mu=c(-3,0,2),cap=TRUE,visual = 2)

icnv_output_to_gb Convert icnv.output to input for Genome Browser.

Description

We could add the output to custom tracks on Genome Browser. Remeber to choose human assembly matches your input data. We color coded the CNVs to make it as consistant as IGV. To show color, click 'User Track after submission', and edit config to 'visibility=2 itemRgb="On"'. Color see Github page for more example.

Usage

icnv_output_to_gb(chr = numeric(), icnv.output)

Arguments

chr CNV chromosome. Type integer.
icnv.output output from output_list_function

Value

matrix for Genome browser

Examples

icnv.output <- output_list(icnv_res=icnv_res0,sampleid=sampname_qc, CN=0, min_size=10000)
gb_input <- icnv_output_to_gb(chr=22,icnv.output)
write.table(gb_input,file='icnv_res_gb_chr22.tab',quote=FALSE,col.names=FALSE,row.names=FALSE)
icnv_res0

Example iCNV calling results.

Description
iCNV calling result of all the samples

Usage
icnv_res

Format
A list containing the calling result of CNVs:

1st item HMM call result without Copy number
2nd item exact copy number

Value
iCNV calling result

ngs_baf

BAF list from NGS

Description
10 samples BAF value extracted from VCF files, location stored at ngs_baf.pos

Usage
ngs_baf

Format
A list of ten, which each entry is the BAF value for a individual

Value
BAF value
Description

46 samples BAF chromosome. Pre-computed using whole exome sequencing data of 46 HapMap samples.

Usage

ngs_baf.chr

Format

A list of 46, which each entry is the BAF chromosome for a individual position

Value

BAF chromosome

Description

46 samples BAF ids. Pre-computed using whole exome sequencing data of 46 HapMap samples.

Usage

ngs_baf.id

Format

A list of 46, which each entry is the BAF variants id a individual position

Value

BAF variants id
ngs_baf.nm
BAF variants sample name from NGS

Description
46 samples BAF names.

Usage
`ngs_baf.nm`

Format
A list of 46, which each entry is the sample name

Value
BAF variants sample names

ngs_baf.pos
BAF position list from NGS

Description
10 samples BAF position extracted from VCF files, value stored at ngs_baf

Usage
`ngs_baf.pos`

Format
A list of ten, which each entry is the BAF positions for a individual

Value
BAF position
ngs_plr

| ngs_plr | Normalized Poisson likelihood ratio list from NGS |

Description

10 samples PLR value from BAM calculated by CODEX, exon position stored at ngs_plr.pos

Usage

`ngs_plr`

Format

A list of ten, which each entry is the PLR value for an individual, calculated from CODEX

Value

PLR value

ngs_plr.pos

| ngs_plr.pos | Exon location list from NGS |

Description

10 samples exon position extracted from BED files, value stored at ngs_plr

Usage

`ngs_plr.pos`

Format

A list of ten, which each entry is the Exon positions for an individual

Value

Exon position
normObj

Description

Pre-stored normObj data for demonstration purposes.

Usage

```r
normObj
```

Details

Pre-computed using whole exome sequencing data of 46 HapMap samples.

Value

normObj demo data (list) pre-computed.

Author(s)

Zilu Zhou <zhouzilu@pennmedicine.upenn.edu>

Examples

```r
Yhat <- normObjDemo$Yhat
AIC <- normObjDemo$AIC
BIC <- normObjDemo$BIC
RSS <- normObjDemo$RSS
K <- normObjDemo$K
```

output_list

Description

Generate human readable output from result calculated by iCNV_detection function.

Usage

```r
output_list(icnv_res, sampleid = NULL, CN = 0, min_size = 0)
```
plotHMMscore

Arguments

- **icnv_res**: CNV inference result. Output from iCNV_detection()
- **sampleid**: the name of the sample, same order as the input
- **CN**: An indicator variable with value 0,1 for whether exact copy number inferred in iCNV_detection. 0 no exact CN, 1 exact CN. Type integer. Default 0.
- **min_size**: A integer which indicate the minimum length of the CNV you are interested in. This could remove super short CNVs due to noise. Type integer. Default 0. Recommend 1000.

Value

output CNV list of each individual

Examples

```r
icnv.output <- output_list(icnv_res=icnv_res0, sampleid=sampname_qc, CN=0)
```

plotHMMscore
Plot CNV inference score.

Description

Plot out CNV inference score. Each row is a sample, each column is a SNP or, exon (WES) or bin (WGS). Red color indicate score favor duplication whereas blue favor deletion.

Usage

```r
plotHMMscore(icnv_res, h = NULL, t = NULL, title = "score plot", output = NULL, col = "")
```

Arguments

- **icnv_res**: CNV inference result. Result from iCNV_detection() (i.e. iCNV_detection(...))
- **h**: start position of this plot. Default Start of the whole chromosome
- **t**: end position of this plot. Default End of the whole chromosome
- **title**: of this plot. Character value. Type character. Default "score plot"
- **output**: generated from output_list_function. If it isn’t null, only CNVs in output file will be highlighted. Default NULL
- **col**: Specify if would like to plot in DGV color scheme (’DGV’,red for deletion, blue for duplication and grey for diploid) or default color scheme (blue for deletion, red for duplicatin and and green for diploid) Type character. Default ""

Value

void
Examples

plotHMMscore(icnv_res0, h=21000000, t=22000000, title='my favorite subject')
plotHMMscore(icnv_res0, h=21000000, t=22000000, title='my favorite subject', col='DGV')

plotindi

Individual sample plot

Description

Plot relationship between platforms and features for each individual. Only work for multi-platform inference.

Usage

plotindi(ngs_plr, snp_lrr, ngs_baf, snp_baf, ngs_plr.pos, snp_lrr.pos,
ngs_baf.pos, snp_baf.pos, icnvres, I = numeric(), h = NULL, t = NULL)

Arguments

ngs_plr A list of NGS intensity data. Each entry is an individual. If no NGS data, no need to specify.
snp_lrr A list of SNP array intensity data. Each entry is an individual. If no SNP array data, no need to specify.
ngs_baf A list of NGS BAF data. Each entry is an individual. If no NGS data, no need to specify.
snp_baf A list of SNP array BAF data. Each entry is an individual. If no SNP array data, no need to specify.
ngs_plr.pos A list of NGS intensity position data. Each entry is an individual with dimension= (#of bins or exons, 2(start and end position)). If no NGS data, no need to specify.
.snp_lrr.pos A list of SNP array intensity position data. Each entry is an individual with length=#of SNPs. If no SNP array data, no need to specify.
ngs_baf.pos A list of NGS BAF position data. Each entry is an individual with length=#of BAFs. If no NGS data, no need to specify.
.snp_baf.pos A list of SNP array BAF position data. Each entry is an individual with length=#of BAFs. If no SNP array data, no need to specify.
icnvres CNV inference result. The output from iCNV_detection()
I Indicating the position of the individual to plot. Type integer.
h start position of this plot. Default Start of the whole chromosome
t end position of this plot. Default End of the whole chromosome

Value

void
plot_intensity

Examples

```r
plotindi(ngs_plr, snp_lrr, ngs_baf, snp_baf,
    ngs_plr.pos, snp_lrr.pos, ngs_baf.pos, snp_baf.pos,
    icnv_res0, I=1)
```

```r
plot_intensity
plot out the NGS plr or array lrr.
```

Description

For quality checking purpose during intermediate steps

Usage

```r
plot_intensity(intensity, chr = numeric())
```

Arguments

- `intensity`: Specify the ngs_plr object generated by CODEX or SNP array.
- `chr`: Specify the chromosome you want to generate. Must be of int from 1-22. Type integer

Value

void

Examples

```r
chr <- 22
plot_intensity(ngs_plr, chr)
plot_intensity(snp_lrr, chr)
```

projname

name of project

Description

name of project

Usage

```r
projname
```

Format

string
qcObj

Demo data pre-stored for qcObj.

- **Description**

 Pre-stored qcObj data for demonstration purposes.

- **Usage**

  ```
  qcObj
  ```

- **Details**

 Pre-computed using whole exome sequencing data of 46 HapMap samples.

- **Value**

 qcObj demo data (list) pre-computed.

- **Author(s)**

 Zilu Zhou <zhouzilu@pennmedicine.upenn.edu>

- **Examples**

  ```
  Y_qc <- qcObj$Y_qc
  sampname_qc <- qcObj$sampname_qc
  gc_qc <- qcObj$gc_qc
  mapp_qc <- qcObj$mapp_qc
  ref_qc <- qcObj$ref_qc
  ```

sampname

CODEX sample name

- **Description**

 46 samples BAM names.

- **Usage**

  ```
  sampname
  ```
samplename_qc

Format
A vector of 46, which each entry is the sample name

Value
CODEX sample names

<table>
<thead>
<tr>
<th>samplename_qc</th>
<th>QCed sample name</th>
</tr>
</thead>
</table>

Description
QCed sample name

Usage
samplename_qc

Format
string

Value
name of samples after QC

<table>
<thead>
<tr>
<th>snp_baf</th>
<th>BAF list from Array</th>
</tr>
</thead>
</table>

Description
10 samples BAF value extracted from standard format files, location stored at snp_baf.pos

Usage

Format
A list of ten, which each entry is the BAF value for a individual

Value
BAF value
<table>
<thead>
<tr>
<th>snp_baf.pos</th>
<th>BAF position list from Array</th>
</tr>
</thead>
</table>

Description

10 samples BAF position extracted from standard format, value stored at snp_baf

Usage

snp_baf.pos

Format

A list of ten, which each entry is the BAF positions for an individual

Value

BAF position

<table>
<thead>
<tr>
<th>snp_lrr</th>
<th>Normalized log R ratio list from Array</th>
</tr>
</thead>
</table>

Description

10 samples LRR value from standard format, SNP position stored at snp_lrr.pos

Usage

snp_lrr

Format

A list of ten, which each entry is the LRR value for an individual

Value

LRR value
snplrr.pos

snplrr.pos SNP position list from Array

Description

10 samples SNP position extracted from standard format, value stored at snp_lrr

Usage

snplrr.pos

Format

A list of ten, which each entry is the SNP positions for a individual

Value

SNP position
Index

* BAF,
iCNV_detection, 5
* CNV,
iCNV_detection, 5
* Intensity
iCNV_detection, 5
* Platform
iCNV_detection, 5
* datasets
 chr, 4
 filenm, 4
 icnv_res0, 8
 ngs_baf, 8
 ngs_baf.chr, 9
 ngs_baf.id, 9
 ngs_baf.nm, 10
 ngs_baf.pos, 10
 ngs_plr, 11
 ngs_plr.pos, 11
 normObj, 12
 projname, 15
 qobj, 16
 sampname, 16
 sampname_qc, 17
 snp_baf, 17
 snp_baf.pos, 18
 snp_lrr, 18
 snp_lrr.pos, 19
* integration,
iCNV_detection, 5

bambaf_from_vcf, 2
bed_generator, 3

chr, 4
filenm, 4
get_array_input, 5
iCNV_detection, 5

icnv_output_to_gb, 7
icnv_res0, 8
ngs_baf, 8
ngs_baf.chr, 9
ngs_baf.id, 9
ngs_baf.nm, 10
ngs_baf.pos, 10
ngs_plr, 11
ngs_plr.pos, 11
normObj, 12
output_list, 12
plot_intensity, 15
plotHMMscore, 13
plotindi, 14
projname, 15
qobj, 16
sampname, 16
sampname_qc, 17
snp_baf, 17
snp_baf.pos, 18
snp_lrr, 18
snp_lrr.pos, 19