Package ‘iSEEfier’

May 29, 2024

Title Streamlining the creation of initial states for starting an iSEE instance

Version 1.0.0

Description iSEEfier provides a set of functionality to quickly and intuitively create, inspect, and combine initial configuration objects. These can be conveniently passed in a straightforward manner to the function call to launch iSEE() with the specified configuration. This package currently works seamlessly with the sets of panels provided by the iSEE and iSEEu packages, but can be extended to accommodate the usage of any custom panel (e.g. from iSEEde, iSEEpathways, or any panel developed independently by the user).

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Imports iSEE, iSEEu, methods, ggplot2, igraph, rlang, stats, SummarizedExperiment, SingleCellExperiment, visNetwork, BiocBaseUtils

Suggests knitr, rmarkdown, scater, scRNAseq, org.Mm.eg.db, scuttle, BiocStyle, testthat (>= 3.0.0)

biocViews CellBasedAssays, Clustering, DimensionReduction, FeatureExtraction, GUI, GeneExpression, ImmunoOncology, ShinyApps, SingleCell, Software, Transcription, Transcriptomics, Visualization

URL https://github.com/NajlaAbassi/iSEEfier

BugReports https://github.com/NajlaAbassi/iSEEfier/issues

Config/testthat/edition 3

VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/iSEEfier
git_branch RELEASE_3_19
Constants-iSEEfier

git_last_commit 7c224a2

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Najla Abassi [aut, cre] (<https://orcid.org/0000-0001-8357-0938>), Federico Marini [aut] (<https://orcid.org/0000-0003-3252-7758>)

Maintainer Najla Abassi <abassi.nejla96@gmail.com>

Contents

- constants-iSEEfier .. 2
- glue_initials ... 3
- iSEEfier-pkg .. 4
- iSEEinInit ... 5
- iSEEEnrich ... 6
- view_initial_network ... 7
- view_initial_tiles .. 8

Index

- constants-iSEEfier Constant values used throughout iSEEfier

constants-iSEEfier

Constant values used throughout iSEEfier

Description

Constant values used throughout iSEEfier

Usage

iSEE_panel_colors

Format

An object of class character of length 17.

Panel colors

- color values (as string character or hex value) for the panels included by default in iSEE and iSEEu
glue_initials

Glue together initial objects into one

Description

Glue a set of initial configuration objects, combining them into a single valid initial set.

Usage

```r
glue_initials(
  ...,  
  remove_duplicate_panels = TRUE,  
  verbose = TRUE,  
  custom_panels_allowed = NULL
)
```

Arguments

- `...`: A set of initial list objects (in the format that is required to be passed as a parameter in the call to `iSEE::iSEE()`) - just as in the behavior of the `c()`/`paste()` function.
- `remove_duplicate_panels`: Logical, defaults to `TRUE`. Defines the behavior to remove panels detected as duplicated. Can be relevant upon concatenating mid to large sets of panels.
- `verbose`: Logical, defaults to `TRUE`. If on, prints out a series of informative messages to describe the actions undertaken upon running.
- `custom_panels_allowed`: Character vector, defaults to `NULL`. Can be used to specify additional panels to be allowed in the concatenation.

Details

The usage of `custom_panels_allowed` can be especially relevant when one creates one or more custom panels, with a specific name that needs to be indicated in this parameter. For example, if using a panel of class `FancyPlotPanel` and one called `FancyTablePanel`, the value for `custom_panels_allowed` should be set to `c("FancyPlotPanel", "FancyTablePanel")`.

It is worth mentioning that `iSEE::iSEE()` is actually able to handle the automatic renaming of panels that could be detected as duplicated. This can basically relax the requirement on the "uniqueness" of the configured panels, with the only caveat of having to think of how the transmissions between panels will be handled; nevertheless, most users might not even need to face this situation.

Value

A single initial list object, in the format that is required to be passed as a parameter in the call to `iSEE::iSEE()`, concatenating the values provided as input.
Examples

Load a dataset and preprocess this quickly
sce <- scRNAseq::RichardTCellData()
sce <- scuttle::logNormCounts(sce)
sce <- scater::runPCA(sce)
sce <- scater::runTSNE(sce)
Select some features and aspects to focus on
gene_list_1 <- c("ENSMUSG00000026581")
gene_list_2 <- c("ENSMUSG00000005087", "ENSMUSG00000015437")
cluster <- "stimulus"
group <- "single cell quality"
initial1 <- iSEEinit(sce = sce,
 features = gene_list_1,
 clusters = cluster,
 groups = group)
initial2 <- iSEEinit(sce = sce,
 features = gene_list_2,
 clusters = cluster,
 groups = group)
initials_merged <- glue_initials(initial1,
 initial2)
view_initial_tiles(initial1)
view_initial_tiles(initial2)
view_initial_tiles(initials_merged)
Continue your exploration directly within iSEE!
if (interactive())
 iSEE(sce, initial = initial_merged)

iSEEfier

iSEEfier: a very convenient way to fire up your iSEE instance

Description

iSEEfier provides a set of functionality to quickly create, inspect, and combine initial configuration objects. These can be conveniently passed to the function call to launch iSEE() in this manner. This currently works with the sets of panels provided by the iSEE and iSEEu packages, but can be extended to accommodate the usage of any custom panel (e.g. from iSEEde, iSEEpathways, or any panel developed independently by the user).

Author(s)

Maintainer: Najla Abassi <abassi.nejla96@gmail.com> (ORCID)

Authors:

- Federico Marini <marinif@uni-mainz.de> (ORCID)
iSEEinit

See Also

Useful links:

- https://github.com/NajlaAbassi/iSEEfier
- Report bugs at https://github.com/NajlaAbassi/iSEEfier/issues

iSEEinit

iSEEinit: Create an initial state of an iSEE instance for gene expression visualization

Description

iSEEinit() defines the initial setup of an iSEE instance, recommending tailored visual elements to effortlessly illustrate the expression of a gene list in a single view.

Usage

iSEEinit(
 sce,
 features,
 reddim_type = "TSNE",
 clusters = colnames(colData(sce))[1],
 groups = colnames(colData(sce))[1],
 add_markdown_panel = FALSE,
 add_dynamicTable_panel = FALSE
)

Arguments

sce
SingleCellExperiment object
features
A character vector containing a list of genes
reddim_type
A string vector containing the dimensionality reduction type
clusters
A character string containing the name of the clusters/cell-type/state...(as listed in the colData of the sce)
groups
A character string of the groups/conditions...(as it appears in the colData of the sce)
add_markdown_panel
A logical indicating whether or not to include the MarkdownBoard panel in the initial configuration
add_dynamicTable_panel
A logical indicating whether or not the DynamicMarkerTable and linked panels should be included in the initial configuration

Value

A list of "Panel" objects specifying the initial state of iSEE instance
Examples

```r
sce <- scRNAseq::RichardTCellData()
sce <- scuttle::logNormCounts(sce)
sce <- scater::runPCA(sce)
sce <- scater::runTSNE(sce)
gene_list <- c("ENSMUSG00000026581",
"ENSMUSG00000005087",
"ENSMUSG00000015437")
cluster <- "stimulus"
group <- "single cell quality"
initial <- iSEEinit(sce = sce, features = gene_list, clusters = cluster, groups = group)
```

iSEEnrich

Description

iSEEnrich() creates an initial state of an iSEE instance for interactive exploration of feature sets extracted from GO and KEGG database, displaying all associated genes in a `RowDataTable` panel.

Usage

```r
iSEEnrich(
  sce,
  collection = c("GO", "KEGG"),
  organism = "org.Hs.eg.db",
  gene_identifier = "ENTREZID"
)
```

Arguments

- **sce** SingleCellExperiment object
- **collection** A character vector specifying the gene set collections of interest (GO, KEGG)
- **organism** A character string of the org.*.eg.db package to use to extract mappings of gene sets to gene IDs.
- **gene_identifier** A character string specifying the identifier to use to extract gene IDs for the organism package

Value

A list of "Panel" objects specifying the initial state of iSEE instance
view_initial_network

Examples

```r
sce <- scRNAseq::RichardTCellData()
sce <- scuttle::logNormCounts(sce)
sce <- scater::runPCA(sce)
GO_collection <- "GO"
Mm_organism <- "org.Mm.eg.db"
gene_id <- "SYMBOL"
results <- iSEEnrich(sce = sce,
                      collection = GO_collection,
                      organism = Mm_organism,
                      gene_identifier = gene_id)
```

view_initial_network View an initial object as a network

Description

Translates the layout of the initial configuration object as a networks, representing panels as nodes and links between them as edges.

Usage

```r
view_initial_network(initial, plot_format = c("igraph", "visNetwork", "none"))
```

Arguments

- **initial**: An initial list object, in the format that is required to be passed as a parameter in the call to `iSEE::iSEE()`.
- **plot_format**: Character string, one of `igraph`, `visNetwork`, or `none`. Defaults to `igraph`. Determines the format of the visual representation generated as a side effect of this function - it can be the output of the `plot()` function for `igraph` objects, or an interactive widget created via `visNetwork::visNetwork()`.

Details

Panels are the nodes, with color and names to identify them easily. The connections among panels are represented through directed edges. This can be a compact visualization to obtain an overview for the configuration, without the need of fully launching the app and loading the content of all panels.

This function is particularly useful with mid-to-large initial objects, as they can be quickly generated in a programmatic manner via the `iSEEinit()` provided in this package.

Value

An `igraph` object, underlying the visual representation provided.
See Also

`view_initial_tiles()`

Examples

```r
## Load a dataset and preprocess this quickly
sce <- scRNAseq::RichardTCellData()
sce <- scuttle::logNormCounts(sce)
sce <- scater::runPCA(sce)
sce <- scater::runTSNE(sce)
## Select some features and aspects to focus on
gene_list <- c("ENSMUSG00000026581", "ENSMUSG00000005087", "ENSMUSG00000015437")
cluster <- "stimulus"
group <- "single cell quality"
initial <- iSEEinit(sce = sce,
    features = gene_list,
    clusters = cluster,
    groups = group)

g_init <- view_initial_network(initial)
g_init

view_initial_network(initial, plot_format = "visNetwork")

## Continue your exploration directly within iSEE!
if (interactive())
  iSEE(sce, initial = initial)
```

Description

Previews the layout of the initial configuration object in a graphical form.

Usage

`view_initial_tiles(initial)`

Arguments

- `initial`
 An initial list object, in the format that is required to be passed as a parameter in the call to `iSEE::iSEE()`.
Details

Tiles are used to represent the panel types, and reflect the values of their width. This can be a compact visualization to obtain an overview for the configuration, without the need of fully launching the app and loading the content of all panels.

This function is particularly useful with mid-to-large initial objects, as they can be quickly generated in a programmatic manner via the iSEEinit() provided in this package.

Value

A ggplot object, representing a schematic view for the initial object.

See Also

view_initial_network()

Examples

```r
## Load a dataset and preprocess this quickly
sce <- scRNAseq::RichardTCellData()
sce <- scuttle::logNormCounts(sce)
sce <- scater::runPCA(sce)
sce <- scater::runTSNE(sce)
## Select some features and aspects to focus on
gene_list <- c("ENSMUSG00000026581", "ENSMUSG00000005087", "ENSMUSG0000015437")
cluster <- "stimulus"
group <- "single cell quality"
initial <- iSEEinit(sce = sce,
  features = gene_list,
  clusters = cluster,
  groups = group)
view_initial_tiles(initial)

## Continue your exploration directly within iSEE!
if (interactive())
iSEE(sce, initial = initial)
```
Index

* datasets
 constants-iSEEfier, 2

* internal
 iSEEfier-pkg, 4
 constants-iSEEfier, 2
 glue_initials, 3
 iSEE::iSEE(), 3, 7, 8
 iSEE_panel_colors (constants-iSEEfier), 2
 iSEEfier (iSEEfier-pkg), 4
 iSEEfier-package (iSEEfier-pkg), 4
 iSEEfier-pkg, 4
 iSEEinit, 5
 iSEEnrich, 6

 view_initial_network, 7
 view_initial_network(), 9
 view_initial_tiles, 8
 view_initial_tiles(), 8